Skip to main content
Erschienen in: Cardiovascular Toxicology 5/2020

27.08.2020 | Myocardial Infarction

Roles of MicroRNA-122 in Cardiovascular Fibrosis and Related Diseases

verfasst von: Ying Liu, Jia-Wei Song, Jian-Yu Lin, Ran Miao, Jiu-Chang Zhong

Erschienen in: Cardiovascular Toxicology | Ausgabe 5/2020

Einloggen, um Zugang zu erhalten

Abstract

Fibrotic diseases cause annually more than 800,000 deaths worldwide, where of the majority accounts for cardiovascular fibrosis, which is characterized by endothelial dysfunction, myocardial stiffening and reduced dispensability. MicroRNAs (miRs), small noncoding RNAs, play critical roles in cardiovascular dysfunction and related disorders. Intriguingly, there is a critical link among miR-122, cardiovascular fibrosis, sirtuin 6 (SIRT6) and angiotensin-converting enzyme 2 (ACE2), which was recently identified as a coreceptor for SARS-CoV2 and a negative regulator of the rennin-angiotensin system. MiR-122 overexpression appears to exacerbate the angiotensin II-mediated loss of autophagy and increased inflammation, apoptosis, extracellular matrix deposition, cardiovascular fibrosis and dysfunction by modulating the SIRT6-Elabela-ACE2, LGR4-β-catenin, TGFβ-CTGF and PTEN-PI3K-Akt signaling pathways. More importantly, the inhibition of miR-122 has proautophagic, antioxidant, anti-inflammatory, anti-apoptotic and antifibrotic effects. Clinical and experimental studies clearly demonstrate that miR-122 functions as a crucial hallmark of fibrogenesis, cardiovascular injury and dysfunction. Additionally, the miR-122 level is related to the severity of hypertension, atherosclerosis, atrial fibrillation, acute myocardial infarction and heart failure, and miR-122 expression is a risk factor for these diseases. The miR-122 level has emerged as an early-warning biomarker cardiovascular fibrosis, and targeting miR-122 is a novel therapeutic approach against progression of cardiovascular dysfunction. Therefore, an increased understanding of the cardiovascular roles of miR-122 will help the development of effective interventions. This review summarizes the biogenesis of miR-122; regulatory effects and underlying mechanisms of miR-122 on cardiovascular fibrosis and related diseases; and its function as a potential specific biomarker for cardiovascular dysfunction.
Literatur
3.
Zurück zum Zitat Pinar, A. A., Scott, T. E., Huuskes, B. M., Tapia Cáceres, F. E., Kemp-Harper, B. K., & Samuel, C. S. (2020). Targeting the NLRP3 inflammasome to treat cardiovascular fibrosis. Pharmacology & Therapeutics, 209, 107511. Pinar, A. A., Scott, T. E., Huuskes, B. M., Tapia Cáceres, F. E., Kemp-Harper, B. K., & Samuel, C. S. (2020). Targeting the NLRP3 inflammasome to treat cardiovascular fibrosis. Pharmacology & Therapeutics, 209, 107511.
4.
Zurück zum Zitat Paul, M., Amos, Z., & Wing-Kin, S. (2019). Fibrosis in chronic liver disease: An update on diagnostic and treatment modalities. Drugs, 79(9), 903–927. Paul, M., Amos, Z., & Wing-Kin, S. (2019). Fibrosis in chronic liver disease: An update on diagnostic and treatment modalities. Drugs, 79(9), 903–927.
5.
Zurück zum Zitat Zhao, Z., Zhong, L., Li, P., He, K., Qiu, C., Zhao, L., et al. (2020). Cholesterol impairs hepatocyte lysosomal function causing M1 polarization of macrophages via exosomal miR-122-5p. Experimental Cell Research, 387(1), 111738.PubMed Zhao, Z., Zhong, L., Li, P., He, K., Qiu, C., Zhao, L., et al. (2020). Cholesterol impairs hepatocyte lysosomal function causing M1 polarization of macrophages via exosomal miR-122-5p. Experimental Cell Research, 387(1), 111738.PubMed
6.
Zurück zum Zitat Xu, R., Zhang, Z. Z., Chen, L. J., Yu, H. M., Guo, S. J., Xu, Y. L., et al. (2016). Ascending aortic adventitial remodeling and fibrosis are ameliorated with Apelin-13 in rats after TAC via suppression of the miRNA-122 and LGR4-β-catenin signaling. Peptides, 86, 85–94.PubMed Xu, R., Zhang, Z. Z., Chen, L. J., Yu, H. M., Guo, S. J., Xu, Y. L., et al. (2016). Ascending aortic adventitial remodeling and fibrosis are ameliorated with Apelin-13 in rats after TAC via suppression of the miRNA-122 and LGR4-β-catenin signaling. Peptides, 86, 85–94.PubMed
7.
Zurück zum Zitat Filipowicz, W., & Grosshans, H. (2011). The liver-specific microRNA miR-122: Biology and therapeutic potential. Progress in Drug Research, 67, 221–238.PubMed Filipowicz, W., & Grosshans, H. (2011). The liver-specific microRNA miR-122: Biology and therapeutic potential. Progress in Drug Research, 67, 221–238.PubMed
8.
Zurück zum Zitat Gatfield, D., Le Martelot, G., Vejnar, C. E., Gerlach, D., Schaad, O., Fleury-Olela, F., et al. (2009). Integration of microRNA miR-122 in hepatic circadian gene expression. Genes & Development, 23(11), 1313–1326. Gatfield, D., Le Martelot, G., Vejnar, C. E., Gerlach, D., Schaad, O., Fleury-Olela, F., et al. (2009). Integration of microRNA miR-122 in hepatic circadian gene expression. Genes & Development, 23(11), 1313–1326.
9.
Zurück zum Zitat Rivoli, L., Vliegenthart, A. D., de Potter, C. M., van Bragt, J. J., Tzoumas, N., Gallacher, P., et al. (2017). The effect of renal dysfunction and haemodialysis on circulating liver specific miR-122. British Journal of Clinical Pharmacology, 83(3), 584–592.PubMed Rivoli, L., Vliegenthart, A. D., de Potter, C. M., van Bragt, J. J., Tzoumas, N., Gallacher, P., et al. (2017). The effect of renal dysfunction and haemodialysis on circulating liver specific miR-122. British Journal of Clinical Pharmacology, 83(3), 584–592.PubMed
10.
Zurück zum Zitat Lunney, M., Ruospo, M., Natale, P., Quinn, R. R., Ronksley, P. E., Konstantinidis, I., et al. (2020). Pharmacological interventions for heart failure in people with chronic kidney disease. Cochrane Database System Review, 2(2), CD012466. Lunney, M., Ruospo, M., Natale, P., Quinn, R. R., Ronksley, P. E., Konstantinidis, I., et al. (2020). Pharmacological interventions for heart failure in people with chronic kidney disease. Cochrane Database System Review, 2(2), CD012466.
11.
Zurück zum Zitat Song, J. J., Ma, Z., Wang, J., Chen, L. X., & Zhong, J. C. (2020). Gender differences in hypertension. The Journal of Cardiovascular Translational Research, 13(1), 47–54.PubMed Song, J. J., Ma, Z., Wang, J., Chen, L. X., & Zhong, J. C. (2020). Gender differences in hypertension. The Journal of Cardiovascular Translational Research, 13(1), 47–54.PubMed
12.
Zurück zum Zitat Hu, J., Wu, H., Wang, D., Yang, Z., & Dong, J. (2019). LncRNA ANRIL promotes NLRP3 inflammasome activation in uric acid nephropathy through miR-122-5p/BRCC3 axis. Biochimie, 157, 102–110.PubMed Hu, J., Wu, H., Wang, D., Yang, Z., & Dong, J. (2019). LncRNA ANRIL promotes NLRP3 inflammasome activation in uric acid nephropathy through miR-122-5p/BRCC3 axis. Biochimie, 157, 102–110.PubMed
13.
Zurück zum Zitat Qu, X. H., & Zhang, K. (2018). MiR-122 regulates cell apoptosis and ROS by targeting DJ-1 in renal ischemic reperfusion injury rat models. European Review for Medical and Pharmacological Sciences, 22(24), 8830–8838.PubMed Qu, X. H., & Zhang, K. (2018). MiR-122 regulates cell apoptosis and ROS by targeting DJ-1 in renal ischemic reperfusion injury rat models. European Review for Medical and Pharmacological Sciences, 22(24), 8830–8838.PubMed
14.
Zurück zum Zitat Wang, Y., Liang, H., Jin, F., Yan, X., Xu, G., Hu, H., et al. (2019). Injured liver-released miRNA-122 elicits acute pulmonary inflammation via activating alveolar macrophage TLR7 signaling pathway. Proceedings of the National academy of Sciences of the United States of America, 116(13), 6162–6171.PubMedPubMedCentral Wang, Y., Liang, H., Jin, F., Yan, X., Xu, G., Hu, H., et al. (2019). Injured liver-released miRNA-122 elicits acute pulmonary inflammation via activating alveolar macrophage TLR7 signaling pathway. Proceedings of the National academy of Sciences of the United States of America, 116(13), 6162–6171.PubMedPubMedCentral
15.
Zurück zum Zitat Hu, Y., Du, G., Li, G., Peng, X., Zhang, Z., & Zhai, Y. (2019). The miR-122 inhibition alleviates lipid accumulation and inflammation in NAFLD cell model. Archives of Physiology and Biochemistry, 16, 1–5. Hu, Y., Du, G., Li, G., Peng, X., Zhang, Z., & Zhai, Y. (2019). The miR-122 inhibition alleviates lipid accumulation and inflammation in NAFLD cell model. Archives of Physiology and Biochemistry, 16, 1–5.
16.
Zurück zum Zitat Snyder-Talkington, B. N., Dong, C., Sargent, L. M., Porter, D. W., Staska, L. M., Hubbs, A. F., et al. (2016). mRNAs and miRNAs in whole blood associated with lung hyperplasia, fibrosis, and bronchiolo-alveolar adenoma and adenocarcinoma after multi-walled carbon nanotube inhalation exposure in mice. Journal of Applied Toxicology, 36(1), 161–174.PubMed Snyder-Talkington, B. N., Dong, C., Sargent, L. M., Porter, D. W., Staska, L. M., Hubbs, A. F., et al. (2016). mRNAs and miRNAs in whole blood associated with lung hyperplasia, fibrosis, and bronchiolo-alveolar adenoma and adenocarcinoma after multi-walled carbon nanotube inhalation exposure in mice. Journal of Applied Toxicology, 36(1), 161–174.PubMed
17.
Zurück zum Zitat Weber, G. J., Purkayastha, B., Ren, L., Pushpakumar, S., & Sen, U. (2018). Hypertension exaggerates renovascular resistance via miR-122-associated stress response in aging. Journal of Hypertension, 36(11), 2226–2236.PubMed Weber, G. J., Purkayastha, B., Ren, L., Pushpakumar, S., & Sen, U. (2018). Hypertension exaggerates renovascular resistance via miR-122-associated stress response in aging. Journal of Hypertension, 36(11), 2226–2236.PubMed
18.
Zurück zum Zitat Song, G., Zhu, L., Ruan, Z., Wang, R., & Shen, Y. (2019). MicroRNA-122 promotes cardiomyocyte hypertrophy via targeting FoxO3. Biochemical and Biophysical Research Communications, 519(4), 682–688.PubMed Song, G., Zhu, L., Ruan, Z., Wang, R., & Shen, Y. (2019). MicroRNA-122 promotes cardiomyocyte hypertrophy via targeting FoxO3. Biochemical and Biophysical Research Communications, 519(4), 682–688.PubMed
19.
Zurück zum Zitat Zhang, H. G., Zhang, Q. J., Li, B. W., Li, L. H., Song, X. H., Xiong, C. M., et al. (2020). The circulating level of miR-122 is a potential risk factor for endothelial dysfunction in young patients with essential hypertension. Hypertension Research, 43(6), 511–517.PubMed Zhang, H. G., Zhang, Q. J., Li, B. W., Li, L. H., Song, X. H., Xiong, C. M., et al. (2020). The circulating level of miR-122 is a potential risk factor for endothelial dysfunction in young patients with essential hypertension. Hypertension Research, 43(6), 511–517.PubMed
20.
Zurück zum Zitat Martínez-Micaelo, N., Beltrán-Debón, R., Baiges, I., Faiges, M., & Alegret, J. M. (2017). Specific circulating microRNA signature of bicuspid aortic valve disease. Journal of Translational Medicine, 15(1), 76.PubMedPubMedCentral Martínez-Micaelo, N., Beltrán-Debón, R., Baiges, I., Faiges, M., & Alegret, J. M. (2017). Specific circulating microRNA signature of bicuspid aortic valve disease. Journal of Translational Medicine, 15(1), 76.PubMedPubMedCentral
21.
Zurück zum Zitat Stojkovic, S., Koller, L., Sulzgruber, P., Hülsmann, M., Huber, K., Mayr, M., et al. (2020). Liver-specific microRNA-122 as prognostic biomarker in patients with chronic systolic heart failure. International Journal of Cardiology, 303, 80–85.PubMed Stojkovic, S., Koller, L., Sulzgruber, P., Hülsmann, M., Huber, K., Mayr, M., et al. (2020). Liver-specific microRNA-122 as prognostic biomarker in patients with chronic systolic heart failure. International Journal of Cardiology, 303, 80–85.PubMed
22.
Zurück zum Zitat Ivey, M. J., Kuwabara, J. T., Pai, J. T., Moore, R. E., Sun, Z., & Tallquist, M. D. (2018). Resident fibroblast expansion during cardiac growth and remodeling. Journal of Molecular and Cellular Cardiology, 114, 161–174.PubMed Ivey, M. J., Kuwabara, J. T., Pai, J. T., Moore, R. E., Sun, Z., & Tallquist, M. D. (2018). Resident fibroblast expansion during cardiac growth and remodeling. Journal of Molecular and Cellular Cardiology, 114, 161–174.PubMed
23.
Zurück zum Zitat Lin, J., & Zheng, X. (2017). Salvianolate blocks apoptosis during myocardial infarction by downregulating miR-122-5p. Current Neurovascular Research, 14(4), 323–329.PubMed Lin, J., & Zheng, X. (2017). Salvianolate blocks apoptosis during myocardial infarction by downregulating miR-122-5p. Current Neurovascular Research, 14(4), 323–329.PubMed
24.
Zurück zum Zitat Gong, L., Chang, H., & Xu, H. (2019). LncRNA MALAT1 knockdown alleviates oxygen-glucose deprivation and reperfusion induced cardiomyocyte apoptotic death by regulating miR-122. Experimental and Molecular Pathology, 111, 104325.PubMed Gong, L., Chang, H., & Xu, H. (2019). LncRNA MALAT1 knockdown alleviates oxygen-glucose deprivation and reperfusion induced cardiomyocyte apoptotic death by regulating miR-122. Experimental and Molecular Pathology, 111, 104325.PubMed
25.
Zurück zum Zitat Zhang, X., & Jing, W. (2018). Upregulation of miR-122 is associated with cardiomyocyte apoptosis in atrial fibrillation. Molecular Medicine Reports, 18(2), 1745–1751.PubMed Zhang, X., & Jing, W. (2018). Upregulation of miR-122 is associated with cardiomyocyte apoptosis in atrial fibrillation. Molecular Medicine Reports, 18(2), 1745–1751.PubMed
26.
Zurück zum Zitat González, A., Schelbert, E. B., Díez, J., & Butler, J. (2018). Myocardial interstitial fibrosis in heart failure: Biological and translational perspectives. Journal of the American College of Cardiology, 71(15), 1696–1706.PubMed González, A., Schelbert, E. B., Díez, J., & Butler, J. (2018). Myocardial interstitial fibrosis in heart failure: Biological and translational perspectives. Journal of the American College of Cardiology, 71(15), 1696–1706.PubMed
27.
Zurück zum Zitat Prabhat, R., Rajesh, K., & Kumar, V. S. (2019). Cardiac fibroblasts and cardiac fibrosis: Precise role of exosomes. Frontiers in Cell and Developmental Biology, 7, 318. Prabhat, R., Rajesh, K., & Kumar, V. S. (2019). Cardiac fibroblasts and cardiac fibrosis: Precise role of exosomes. Frontiers in Cell and Developmental Biology, 7, 318.
28.
Zurück zum Zitat Tallquist Michelle, D. (2020). Cardiac fibroblast diversity. Annual Review of Physiology, 82, 63–78.PubMed Tallquist Michelle, D. (2020). Cardiac fibroblast diversity. Annual Review of Physiology, 82, 63–78.PubMed
29.
Zurück zum Zitat Harvey, A., Montezano, A. C., Lopes, R. A., Rios, F., & Touyz, R. M. (2016). Vascular fibrosis in aging and hypertension: Molecular mechanisms and clinical implications. Canadian Journal of Cardiology, 32(5), 659–668.PubMed Harvey, A., Montezano, A. C., Lopes, R. A., Rios, F., & Touyz, R. M. (2016). Vascular fibrosis in aging and hypertension: Molecular mechanisms and clinical implications. Canadian Journal of Cardiology, 32(5), 659–668.PubMed
30.
Zurück zum Zitat Lokugamage, N., Choudhuri, S., Davies, C., Chowdhury, I. H., & Garg, N. J. (2020). Antigen-based nano-immunotherapy controls parasite persistence, inflammatory and oxidative stress, and cardiac fibrosis, the hallmarks of chronic chagas cardiomyopathy, in a mouse model of trypanosoma cruzi infection. Vaccines (Basel), 8(1), 96. https://doi.org/10.3390/vaccines8010096.CrossRef Lokugamage, N., Choudhuri, S., Davies, C., Chowdhury, I. H., & Garg, N. J. (2020). Antigen-based nano-immunotherapy controls parasite persistence, inflammatory and oxidative stress, and cardiac fibrosis, the hallmarks of chronic chagas cardiomyopathy, in a mouse model of trypanosoma cruzi infection. Vaccines (Basel), 8(1), 96. https://​doi.​org/​10.​3390/​vaccines8010096.CrossRef
31.
Zurück zum Zitat Gyöngyösi, M., Winkler, J., Ramos, I., Do, Q. T., Firat, H., McDonald, K., et al. (2017). Myocardial fibrosis: Biomedical research from bench to bedside. European Journal of Heart Failure, 19(2), 177–191.PubMedPubMedCentral Gyöngyösi, M., Winkler, J., Ramos, I., Do, Q. T., Firat, H., McDonald, K., et al. (2017). Myocardial fibrosis: Biomedical research from bench to bedside. European Journal of Heart Failure, 19(2), 177–191.PubMedPubMedCentral
32.
Zurück zum Zitat Chen, L. J., Xu, R., Yu, H. M., Chang, Q., & Zhong, J. C. (2015). The ACE2/apelin signaling, microRNAs, and hypertension. International Journal of Hypertension, 2015, 896861.PubMedPubMedCentral Chen, L. J., Xu, R., Yu, H. M., Chang, Q., & Zhong, J. C. (2015). The ACE2/apelin signaling, microRNAs, and hypertension. International Journal of Hypertension, 2015, 896861.PubMedPubMedCentral
33.
Zurück zum Zitat Zhang, H. N., Xu, Q. Q., Thakur, A., Alfred, M. O., Chakraborty, M., Ghosh, A., et al. (2018). Endothe-lial dysfunction in diabetes and hypertension: Role of microRNAs and long non-coding RNAs. Life Sciences, 213, 258–268.PubMed Zhang, H. N., Xu, Q. Q., Thakur, A., Alfred, M. O., Chakraborty, M., Ghosh, A., et al. (2018). Endothe-lial dysfunction in diabetes and hypertension: Role of microRNAs and long non-coding RNAs. Life Sciences, 213, 258–268.PubMed
35.
Zurück zum Zitat Liao, C. H., Wang, C. Y., Liu, K. H., Liu, Y. Y., Wen, M. S., & Yeh, T. S. (2018). MiR-122 marks the differences between subcutaneous and visceral adiposetissuesand associates with the outcome of bariatric surgery. Obesity Research & Clinical Practice, 12(6), 570–577. Liao, C. H., Wang, C. Y., Liu, K. H., Liu, Y. Y., Wen, M. S., & Yeh, T. S. (2018). MiR-122 marks the differences between subcutaneous and visceral adiposetissuesand associates with the outcome of bariatric surgery. Obesity Research & Clinical Practice, 12(6), 570–577.
36.
Zurück zum Zitat Wang, Y., Jin, P., Liu, J., & Xie, X. (2019). Exosomal microRNA-122 mediates obesity-related cardiomyopathy through suppressing mitochondrial ADP-ribosylation factor-like 2. Clinical Science, 133(17), 1871–1881.PubMed Wang, Y., Jin, P., Liu, J., & Xie, X. (2019). Exosomal microRNA-122 mediates obesity-related cardiomyopathy through suppressing mitochondrial ADP-ribosylation factor-like 2. Clinical Science, 133(17), 1871–1881.PubMed
37.
Zurück zum Zitat Liang, W., Guo, J., Li, J., Bai, C., & Dong, Y. (2016). Downregulation of miR-122 attenuates hypoxia/ reoxygenation (H/R)-induced myocardial cell apoptosis by upregulating GATA-4. Biochemical and Biophysical Research Communications, 478(3), 1416–1422.PubMed Liang, W., Guo, J., Li, J., Bai, C., & Dong, Y. (2016). Downregulation of miR-122 attenuates hypoxia/ reoxygenation (H/R)-induced myocardial cell apoptosis by upregulating GATA-4. Biochemical and Biophysical Research Communications, 478(3), 1416–1422.PubMed
38.
Zurück zum Zitat Zhang, X., Wang, X., Wu, J., Peng, J., Deng, X., Shen, Y., et al. (2018). The diagnostic values of circulating miRNAs for hypertension and bioinformatics analysis. Bioscience Reports, 38(4), BSR20180525.PubMedPubMedCentral Zhang, X., Wang, X., Wu, J., Peng, J., Deng, X., Shen, Y., et al. (2018). The diagnostic values of circulating miRNAs for hypertension and bioinformatics analysis. Bioscience Reports, 38(4), BSR20180525.PubMedPubMedCentral
39.
Zurück zum Zitat Gheblawi, M., Wang, K., Viveiros, A., Nguyen, O., Zhong, J., Turner, A. J., et al. (2020). Angiotensin converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system–celebrating the 20th Anniversary of the Discovery of ACE2. Circulation Research, 126(10), 1456–1474.PubMed Gheblawi, M., Wang, K., Viveiros, A., Nguyen, O., Zhong, J., Turner, A. J., et al. (2020). Angiotensin converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system–celebrating the 20th Anniversary of the Discovery of ACE2. Circulation Research, 126(10), 1456–1474.PubMed
41.
Zurück zum Zitat Cengiz, M., Karatas, O. F., Koparir, E., Yavuzer, S., Ali, C., Yavuzer, H., et al. (2015). Differential expression of hypertension-associated microRNAs in the plasma of patients with white coat hypertension. Medicine (Baltimore), 94(13), e693. Cengiz, M., Karatas, O. F., Koparir, E., Yavuzer, S., Ali, C., Yavuzer, H., et al. (2015). Differential expression of hypertension-associated microRNAs in the plasma of patients with white coat hypertension. Medicine (Baltimore), 94(13), e693.
42.
Zurück zum Zitat Xu, S. (2020). Therapeutic potential of blood flow mimetic compounds in preventing endothelial dysfunction and atherosclerosis. Pharmacological Research, 155, 104737.PubMed Xu, S. (2020). Therapeutic potential of blood flow mimetic compounds in preventing endothelial dysfunction and atherosclerosis. Pharmacological Research, 155, 104737.PubMed
43.
Zurück zum Zitat Elhanati, S., Ben-Hamo, R., Kanfi, Y., Varvak, A., Glazz, R., Lerrer, B., et al. (2016). Reciprocal regulation between SIRT6 and miR-122 controls liver metabolism and predicts hepatocarcinoma prognosis. Cell Reports, 14(2), 234–242.PubMed Elhanati, S., Ben-Hamo, R., Kanfi, Y., Varvak, A., Glazz, R., Lerrer, B., et al. (2016). Reciprocal regulation between SIRT6 and miR-122 controls liver metabolism and predicts hepatocarcinoma prognosis. Cell Reports, 14(2), 234–242.PubMed
44.
Zurück zum Zitat Zhang, Z. Z., Cheng, Y. W., Jin, H. Y., Chang, Q., Shang, Q. H., Xu, Y. L., et al. (2017). The sirtuin 6 prevents angiotensin II-mediated myocardial fibrosis and injury by targeting AMPK-ACE2 signaling. Oncotarget, 8(42), 72302–72314.PubMedPubMedCentral Zhang, Z. Z., Cheng, Y. W., Jin, H. Y., Chang, Q., Shang, Q. H., Xu, Y. L., et al. (2017). The sirtuin 6 prevents angiotensin II-mediated myocardial fibrosis and injury by targeting AMPK-ACE2 signaling. Oncotarget, 8(42), 72302–72314.PubMedPubMedCentral
45.
Zurück zum Zitat Zhou, X., Wang, J., Fa, Y., & Ye, H. (2019). Signature microRNA expression profile is associated with spontaneous hypertension in African green monkey. Clinical and Experimental Hypertension, 41(3), 287–291.PubMed Zhou, X., Wang, J., Fa, Y., & Ye, H. (2019). Signature microRNA expression profile is associated with spontaneous hypertension in African green monkey. Clinical and Experimental Hypertension, 41(3), 287–291.PubMed
46.
Zurück zum Zitat Menendez-Castro, C., Cordasic, N., Dambietz, T., Veelken, R., Amann, K., Hartner, A., et al. (2020). Correlations between interleukin-11 expression and hypertensive kidney injury in a rat model of renovascular hypertension. American Journal of Hypertension, 33(4), 331–340.PubMed Menendez-Castro, C., Cordasic, N., Dambietz, T., Veelken, R., Amann, K., Hartner, A., et al. (2020). Correlations between interleukin-11 expression and hypertensive kidney injury in a rat model of renovascular hypertension. American Journal of Hypertension, 33(4), 331–340.PubMed
47.
Zurück zum Zitat Wang, J., Wei, L., Yang, X., & Zhong, J. (2019). Roles of growth differentiation factor 15 in atherosclerosis and coronary artery disease. Journal of the American Heart Association, 8(17), e012826.PubMedPubMedCentral Wang, J., Wei, L., Yang, X., & Zhong, J. (2019). Roles of growth differentiation factor 15 in atherosclerosis and coronary artery disease. Journal of the American Heart Association, 8(17), e012826.PubMedPubMedCentral
48.
Zurück zum Zitat Wang, Y. L., & Yu, W. (2018). Association of circulating microRNA-122 with presence and severity of atherosclerotic lesions. Peer J, 6, e5218.PubMed Wang, Y. L., & Yu, W. (2018). Association of circulating microRNA-122 with presence and severity of atherosclerotic lesions. Peer J, 6, e5218.PubMed
49.
Zurück zum Zitat Li, Y., Yang, N., Dong, B., Yang, J., Kou, L., & Qin, Q. (2019). MicroRNA-122 promotes endothelial cell apoptosis by targeting XIAP: Therapeutic implication for atherosclerosis. Life Sciences, 232, 116590.PubMed Li, Y., Yang, N., Dong, B., Yang, J., Kou, L., & Qin, Q. (2019). MicroRNA-122 promotes endothelial cell apoptosis by targeting XIAP: Therapeutic implication for atherosclerosis. Life Sciences, 232, 116590.PubMed
50.
Zurück zum Zitat Barraclough, J. Y., Joan, M., Joglekar, M. V., Hardikar, A. A., & Patel, S. (2019). MicroRNAs as prognostic markers in acute coronary syndrome patients-a systematic review. Cells, 8(12), 1572–1584.PubMedCentral Barraclough, J. Y., Joan, M., Joglekar, M. V., Hardikar, A. A., & Patel, S. (2019). MicroRNAs as prognostic markers in acute coronary syndrome patients-a systematic review. Cells, 8(12), 1572–1584.PubMedCentral
51.
Zurück zum Zitat Li, X. D., Yang, Y. J., Wang, L. Y., Qiao, S. B., Lu, X. F., Wu, Y. J., et al. (2017). Elevated plasma miRNA-122, -140-3p, -720, -2861, and -3149 during early period of acute coronary syndrome are derived from peripheral blood mononuclear cells. PLoS ONE, 12(9), e0184256.PubMedPubMedCentral Li, X. D., Yang, Y. J., Wang, L. Y., Qiao, S. B., Lu, X. F., Wu, Y. J., et al. (2017). Elevated plasma miRNA-122, -140-3p, -720, -2861, and -3149 during early period of acute coronary syndrome are derived from peripheral blood mononuclear cells. PLoS ONE, 12(9), e0184256.PubMedPubMedCentral
52.
Zurück zum Zitat Patel, V. B., Zhong, J. C., Grant, M. B., & Oudit, G. Y. (2016). Role of the ACE2/angiotensin 1–7 axis of the renin-angiotensin system in heart failure. Circulation Research, 118(8), 1313–1326.PubMedPubMedCentral Patel, V. B., Zhong, J. C., Grant, M. B., & Oudit, G. Y. (2016). Role of the ACE2/angiotensin 1–7 axis of the renin-angiotensin system in heart failure. Circulation Research, 118(8), 1313–1326.PubMedPubMedCentral
53.
Zurück zum Zitat Zhang, Z. Z., Wang, W., Jin, H. Y., McKinnie, S. M., Farhan, M., Paul, M., et al. (2017). Pyr-apelin-13 is a negative regulator of angiotensin II-mediated adverse myocardial remodeling and dysfunction. Hypertension, 70(6), 1165–1175.PubMed Zhang, Z. Z., Wang, W., Jin, H. Y., McKinnie, S. M., Farhan, M., Paul, M., et al. (2017). Pyr-apelin-13 is a negative regulator of angiotensin II-mediated adverse myocardial remodeling and dysfunction. Hypertension, 70(6), 1165–1175.PubMed
54.
Zurück zum Zitat Koyama, S., Kuragaichi, T., Sato, Y., Kuwabara, Y., Usami, S., Horie, T., et al. (2017). Dynamic changes of serum microRNA-122-5p through therapeutic courses indicates amelioration of acute liver injury accompanied by acute cardiac decompensation. ESC Heart Failure, 4(2), 112–121.PubMed Koyama, S., Kuragaichi, T., Sato, Y., Kuwabara, Y., Usami, S., Horie, T., et al. (2017). Dynamic changes of serum microRNA-122-5p through therapeutic courses indicates amelioration of acute liver injury accompanied by acute cardiac decompensation. ESC Heart Failure, 4(2), 112–121.PubMed
55.
Zurück zum Zitat Liu, X., Meng, H., Jiang, C., Yang, S., Cui, F., & Yang, P. (2016). Differential microRNA expression and regulation in the rat model of post-infarction heart failure. PLoS ONE, 11(8), e0160920.PubMedPubMedCentral Liu, X., Meng, H., Jiang, C., Yang, S., Cui, F., & Yang, P. (2016). Differential microRNA expression and regulation in the rat model of post-infarction heart failure. PLoS ONE, 11(8), e0160920.PubMedPubMedCentral
56.
Zurück zum Zitat Yao, X. L., Lu, X. L., Yan, C. Y., et al. (2015). Circulating miR-122-5p as a potential novel biomarker for diagnosis of acute myocardial infarction. International Journal of Clinical and Experimental Pathology, 8(12), 16014–16019.PubMedPubMedCentral Yao, X. L., Lu, X. L., Yan, C. Y., et al. (2015). Circulating miR-122-5p as a potential novel biomarker for diagnosis of acute myocardial infarction. International Journal of Clinical and Experimental Pathology, 8(12), 16014–16019.PubMedPubMedCentral
57.
Zurück zum Zitat Cortez-Dias, N., Costa, M. C., Carrilho-Ferreira, P., Silva, D., Jorge, C., Calisto, C., et al. (2016). Circulating miR-122-5p/miR-133b ratio is a specific early prognostic biomarker in acute myocardial infarction. Circulation Journal, 80(10), 2183–2191.PubMed Cortez-Dias, N., Costa, M. C., Carrilho-Ferreira, P., Silva, D., Jorge, C., Calisto, C., et al. (2016). Circulating miR-122-5p/miR-133b ratio is a specific early prognostic biomarker in acute myocardial infarction. Circulation Journal, 80(10), 2183–2191.PubMed
58.
Zurück zum Zitat Wang, Y., Chang, W., Zhang, Y., Zhang, L., Ding, H., Qi, H., et al. (2019). Circulating miR-22-5p and miR-122-5p are promising novel biomarkers for diagnosis of acute myocardial infarction. Journal of Cellular Physiology, 234(4), 4778–4786.PubMed Wang, Y., Chang, W., Zhang, Y., Zhang, L., Ding, H., Qi, H., et al. (2019). Circulating miR-22-5p and miR-122-5p are promising novel biomarkers for diagnosis of acute myocardial infarction. Journal of Cellular Physiology, 234(4), 4778–4786.PubMed
59.
Zurück zum Zitat Fu, X., Khalil, H., Kanisicak, O., Boyer, J. G., Vagnozzi, R. J., Maliken, B. D., et al. (2018). Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. Journal of Clinical Investigation, 128(5), 2127–2143.PubMed Fu, X., Khalil, H., Kanisicak, O., Boyer, J. G., Vagnozzi, R. J., Maliken, B. D., et al. (2018). Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. Journal of Clinical Investigation, 128(5), 2127–2143.PubMed
60.
Zurück zum Zitat Li, Q., Zhang, Z., Li, H., Pan, X., Chen, S., Cui, Z., et al. (2019). Lycium barbarum polysaccharides protects H9c2 cells from hypoxia-induced injury by down-regulation of miR-122. Biomedicine & Pharmacotherapy, 110, 20–28. Li, Q., Zhang, Z., Li, H., Pan, X., Chen, S., Cui, Z., et al. (2019). Lycium barbarum polysaccharides protects H9c2 cells from hypoxia-induced injury by down-regulation of miR-122. Biomedicine & Pharmacotherapy, 110, 20–28.
61.
Zurück zum Zitat Zhang, Z. W., Li, H., Chen, S. S., Li, Y., Cui, Z. Y., & Ma, J. (2017). MicroRNA-122 regulates caspase-8 and promotes the apoptosis of mouse cardiomyocytes. Brazilian Journal of Medical and Biological Research, 50(2), e5760.PubMedPubMedCentral Zhang, Z. W., Li, H., Chen, S. S., Li, Y., Cui, Z. Y., & Ma, J. (2017). MicroRNA-122 regulates caspase-8 and promotes the apoptosis of mouse cardiomyocytes. Brazilian Journal of Medical and Biological Research, 50(2), e5760.PubMedPubMedCentral
62.
Zurück zum Zitat Chen, C., Li, R., Ross, R. S., & Manso, A. M. (2016). Integrins and integrin-related proteins in cardiac fibrosis. Journal of Molecular and Cellular Cardiology, 93, 162–174.PubMed Chen, C., Li, R., Ross, R. S., & Manso, A. M. (2016). Integrins and integrin-related proteins in cardiac fibrosis. Journal of Molecular and Cellular Cardiology, 93, 162–174.PubMed
63.
Zurück zum Zitat Zhang, Z., Li, H., Cui, Z., Zhou, Z., Chen, S., Ma, J., et al. (2019). Long non-coding RNA UCA1 relieves cardiomyocytes H9c2 injury aroused by oxygen-glucose deprivation via declining miR-122. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 3492–3499.PubMed Zhang, Z., Li, H., Cui, Z., Zhou, Z., Chen, S., Ma, J., et al. (2019). Long non-coding RNA UCA1 relieves cardiomyocytes H9c2 injury aroused by oxygen-glucose deprivation via declining miR-122. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 3492–3499.PubMed
Metadaten
Titel
Roles of MicroRNA-122 in Cardiovascular Fibrosis and Related Diseases
verfasst von
Ying Liu
Jia-Wei Song
Jian-Yu Lin
Ran Miao
Jiu-Chang Zhong
Publikationsdatum
27.08.2020
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 5/2020
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-020-09603-4

Weitere Artikel der Ausgabe 5/2020

Cardiovascular Toxicology 5/2020 Zur Ausgabe