Skip to main content
Erschienen in: Inflammation 5/2016

19.07.2016 | ORIGINAL ARTICLE

Nanoparticle-Delivered IRF5 siRNA Facilitates M1 to M2 Transition, Reduces Demyelination and Neurofilament Loss, and Promotes Functional Recovery After Spinal Cord Injury in Mice

verfasst von: Jun Li, Yanbin Liu, Haidong Xu, Qiang Fu

Erschienen in: Inflammation | Ausgabe 5/2016

Einloggen, um Zugang zu erhalten

ABSTRACT

Macrophage activation and persistent inflammation contribute to the pathogenesis of spinal cord injury (SCI), and different phenotypes of macrophages play diverse roles in the pathological process of SCI. After SCI, there is an acute phase of alternatively activated (M2) macrophage infiltration, followed by a long-lasting phase of classically activated (M1) macrophage accumulation in the wound. The long-lasting predominance of M1 macrophages may derail healing and compromise organ functions. Based on the previous findings that the transcription factor interferon regulatory factor 5 (IRF5) up-regulates genes associated with M1 macrophages, we attempted to examine the effect of silencing IRF5 on SCI progression. IRF5 expression was assessed with Western blotting or immunohistochemistry. Macrophage phenotypes were measured with flow cytometry or immunohistochemistry. M1- or M2-related cytokines were measured with a Luminex assay kit. IRF5 siRNA was delivered into the macrophages infiltrated into the wound of SCI mice through lipidoid nanoparticle. Locomotor functions were measured with Basso Mouse Scale (BMS) scoring. Myelination was assessed with luxol fast blue staining. Myelin binding protein, neurofilaments, synaptic markers, and cytokines in the wound area were measured with Western blotting. The Mann–Whitney U test was used for statistical analyses. After SCI, significant elevation of IRF5 was evident on day 1, peaked on day 7, and gradually decreased thereafter. Similar dynamic change in the expression of CD86, a typical M1 marker, was observed. In contrast, there was a transient increase in the expression of CD206, a typical M2 marker, which peaked 6 h after SCI, and returned to baseline within 1 day. Macrophages isolated from the epicenter at day 3 after SCI were predominantly M1 phenotype, and a siRNA-mediated knockdown of IRF5 resulted in a reduced expression of M1 macrophage markers and increased expression of M2 macrophage markers. Nanoparticle-mediated delivery of IRF5 siRNA to SCI mouse model resulted in a dramatic decrease in the number of M1 macrophages and a significant increase in the number of M2 macrophages in the wound. This was associated with a robust inflammation resolution, attenuation of demyelination and neurofilament loss, and significant improvement of locomotor function (p < 0.05). IRF5 may serve as a therapeutic target to promote post-SCI recovery.
Literatur
1.
Zurück zum Zitat Akinc, A., A. Zumbuehl, M. Goldberg, E.S. Leshchiner, V. Busini, N. Hossain, S.A. Bacallado, D.N. Nguyen, J. Fuller, R. Alvarez, et al. 2008. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nature Biotechnology 26: 561–569.CrossRefPubMedPubMedCentral Akinc, A., A. Zumbuehl, M. Goldberg, E.S. Leshchiner, V. Busini, N. Hossain, S.A. Bacallado, D.N. Nguyen, J. Fuller, R. Alvarez, et al. 2008. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nature Biotechnology 26: 561–569.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Alabi, C., A. Vegas, and D. Anderson. 2012. Attacking the genome: emerging siRNA nanocarriers from concept to clinic. Current Opinion in Pharmacology 12: 427–433.CrossRefPubMed Alabi, C., A. Vegas, and D. Anderson. 2012. Attacking the genome: emerging siRNA nanocarriers from concept to clinic. Current Opinion in Pharmacology 12: 427–433.CrossRefPubMed
3.
Zurück zum Zitat Aouadi, M., G.J. Tesz, S.M. Nicoloro, M. Wang, M. Chouinard, E. Soto, G.R. Ostroff, and M.P. Czech. 2009. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature 458: 1180–1184.CrossRefPubMedPubMedCentral Aouadi, M., G.J. Tesz, S.M. Nicoloro, M. Wang, M. Chouinard, E. Soto, G.R. Ostroff, and M.P. Czech. 2009. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature 458: 1180–1184.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Basso, D.M., L.C. Fisher, A.J. Anderson, L.B. Jakeman, D.M. McTigue, and P.G. Popovich. 2006. Basso mouse scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. Journal of Neurotrauma 23: 635–659.CrossRefPubMed Basso, D.M., L.C. Fisher, A.J. Anderson, L.B. Jakeman, D.M. McTigue, and P.G. Popovich. 2006. Basso mouse scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. Journal of Neurotrauma 23: 635–659.CrossRefPubMed
5.
Zurück zum Zitat Blight, A.R. 2002. Miracles and molecules—progress in spinal cord repair. Nature Neuroscience 5(Suppl): 1051–1054.CrossRefPubMed Blight, A.R. 2002. Miracles and molecules—progress in spinal cord repair. Nature Neuroscience 5(Suppl): 1051–1054.CrossRefPubMed
6.
Zurück zum Zitat Bomstein, Y., J.B. Marder, K. Vitner, I. Smirnov, G. Lisaey, O. Butovsky, V. Fulga, and E. Yoles. 2003. Features of skin-coincubated macrophages that promote recovery from spinal cord injury. Journal of Neuroimmunology 142: 10–16.CrossRefPubMed Bomstein, Y., J.B. Marder, K. Vitner, I. Smirnov, G. Lisaey, O. Butovsky, V. Fulga, and E. Yoles. 2003. Features of skin-coincubated macrophages that promote recovery from spinal cord injury. Journal of Neuroimmunology 142: 10–16.CrossRefPubMed
7.
Zurück zum Zitat Busch, S.A., J.A. Hamilton, K.P. Horn, F.X. Cuascut, R. Cutrone, N. Lehman, R.J. Deans, A.E. Ting, R.W. Mays, and J. Silver. 2011. Multipotent adult progenitor cells prevent macrophage-mediated axonal dieback and promote regrowth after spinal cord injury. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 31: 944–953.CrossRef Busch, S.A., J.A. Hamilton, K.P. Horn, F.X. Cuascut, R. Cutrone, N. Lehman, R.J. Deans, A.E. Ting, R.W. Mays, and J. Silver. 2011. Multipotent adult progenitor cells prevent macrophage-mediated axonal dieback and promote regrowth after spinal cord injury. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 31: 944–953.CrossRef
8.
Zurück zum Zitat Carlson, S.L., M.E. Parrish, J.E. Springer, K. Doty, and L. Dossett. 1998. Acute inflammatory response in spinal cord following impact injury. Experimental Neurology 151: 77–88.CrossRefPubMed Carlson, S.L., M.E. Parrish, J.E. Springer, K. Doty, and L. Dossett. 1998. Acute inflammatory response in spinal cord following impact injury. Experimental Neurology 151: 77–88.CrossRefPubMed
9.
Zurück zum Zitat Chen, K.B., K. Uchida, H. Nakajima, T. Yayama, T. Hirai, S. Watanabe, A.R. Guerrero, S. Kobayashi, W.Y. Ma, S.Y. Liu, and H. Baba. 2011. Tumor necrosis factor-alpha antagonist reduces apoptosis of neurons and oligodendroglia in rat spinal cord injury. Spine 36: 1350–1358.CrossRefPubMed Chen, K.B., K. Uchida, H. Nakajima, T. Yayama, T. Hirai, S. Watanabe, A.R. Guerrero, S. Kobayashi, W.Y. Ma, S.Y. Liu, and H. Baba. 2011. Tumor necrosis factor-alpha antagonist reduces apoptosis of neurons and oligodendroglia in rat spinal cord injury. Spine 36: 1350–1358.CrossRefPubMed
10.
Zurück zum Zitat Courties, G., T. Heidt, M. Sebas, Y. Iwamoto, D. Jeon, J. Truelove, B. Tricot, G. Wojtkiewicz, P. Dutta, H.B. Sager, et al. 2014. In vivo silencing of the transcription factor IRF5 reprograms the macrophage phenotype and improves infarct healing. Journal of the American College of Cardiology 63: 1556–1566.CrossRefPubMed Courties, G., T. Heidt, M. Sebas, Y. Iwamoto, D. Jeon, J. Truelove, B. Tricot, G. Wojtkiewicz, P. Dutta, H.B. Sager, et al. 2014. In vivo silencing of the transcription factor IRF5 reprograms the macrophage phenotype and improves infarct healing. Journal of the American College of Cardiology 63: 1556–1566.CrossRefPubMed
11.
Zurück zum Zitat David, S., A.D. Greenhalgh, and A. Kroner. 2015. Macrophage and microglial plasticity in the injured spinal cord. Neuroscience 307: 311–318.CrossRefPubMed David, S., A.D. Greenhalgh, and A. Kroner. 2015. Macrophage and microglial plasticity in the injured spinal cord. Neuroscience 307: 311–318.CrossRefPubMed
12.
Zurück zum Zitat David, S., and A. Kroner. 2011. Repertoire of microglial and macrophage responses after spinal cord injury. Nature Reviews. Neuroscience 12: 388–399.CrossRefPubMed David, S., and A. Kroner. 2011. Repertoire of microglial and macrophage responses after spinal cord injury. Nature Reviews. Neuroscience 12: 388–399.CrossRefPubMed
13.
Zurück zum Zitat Downs, T.R., and W.W. Wilfinger. 1983. Fluorometric quantification of DNA in cells and tissue. Analytical Biochemistry 131: 538–547.CrossRefPubMed Downs, T.R., and W.W. Wilfinger. 1983. Fluorometric quantification of DNA in cells and tissue. Analytical Biochemistry 131: 538–547.CrossRefPubMed
14.
Zurück zum Zitat Fleming, J.C., M.D. Norenberg, D.A. Ramsay, G.A. Dekaban, A.E. Marcillo, A.D. Saenz, M. Pasquale-Styles, W.D. Dietrich, and L.C. Weaver. 2006. The cellular inflammatory response in human spinal cords after injury. Brain: a Journal of Neurology 129: 3249–3269.CrossRef Fleming, J.C., M.D. Norenberg, D.A. Ramsay, G.A. Dekaban, A.E. Marcillo, A.D. Saenz, M. Pasquale-Styles, W.D. Dietrich, and L.C. Weaver. 2006. The cellular inflammatory response in human spinal cords after injury. Brain: a Journal of Neurology 129: 3249–3269.CrossRef
15.
Zurück zum Zitat Gensel, J.C., S. Nakamura, Z. Guan, N. van Rooijen, D.P. Ankeny, and P.G. Popovich. 2009. Macrophages promote axon regeneration with concurrent neurotoxicity. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 29: 3956–3968.CrossRef Gensel, J.C., S. Nakamura, Z. Guan, N. van Rooijen, D.P. Ankeny, and P.G. Popovich. 2009. Macrophages promote axon regeneration with concurrent neurotoxicity. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 29: 3956–3968.CrossRef
16.
Zurück zum Zitat Giger, R.J., E.R. Hollis 2nd, and M.H. Tuszynski. 2010. Guidance molecules in axon regeneration. Cold Spring Harbor Perspectives in Biology 2: a001867.CrossRefPubMedPubMedCentral Giger, R.J., E.R. Hollis 2nd, and M.H. Tuszynski. 2010. Guidance molecules in axon regeneration. Cold Spring Harbor Perspectives in Biology 2: a001867.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Gordon, S., and F.O. Martinez. 2010. Alternative activation of macrophages: mechanism and functions. Immunity 32: 593–604.CrossRefPubMed Gordon, S., and F.O. Martinez. 2010. Alternative activation of macrophages: mechanism and functions. Immunity 32: 593–604.CrossRefPubMed
18.
Zurück zum Zitat Guerrero, A.R., K. Uchida, H. Nakajima, S. Watanabe, M. Nakamura, W.E. Johnson, and H. Baba. 2012. Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice. Journal of Neuroinflammation 9: 40.CrossRefPubMedPubMedCentral Guerrero, A.R., K. Uchida, H. Nakajima, S. Watanabe, M. Nakamura, W.E. Johnson, and H. Baba. 2012. Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice. Journal of Neuroinflammation 9: 40.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Hausmann, O.N. 2003. Post-traumatic inflammation following spinal cord injury. Spinal Cord 41: 369–378.CrossRefPubMed Hausmann, O.N. 2003. Post-traumatic inflammation following spinal cord injury. Spinal Cord 41: 369–378.CrossRefPubMed
20.
Zurück zum Zitat Horn, K.P., S.A. Busch, A.L. Hawthorne, N. van Rooijen, and J. Silver. 2008. Another barrier to regeneration in the CNS: activated macrophages induce extensive retraction of dystrophic axons through direct physical interactions. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 28: 9330–9341.CrossRef Horn, K.P., S.A. Busch, A.L. Hawthorne, N. van Rooijen, and J. Silver. 2008. Another barrier to regeneration in the CNS: activated macrophages induce extensive retraction of dystrophic axons through direct physical interactions. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 28: 9330–9341.CrossRef
21.
Zurück zum Zitat Khayrullina, G., S. Bermudez, and K.R. Byrnes. 2015. Inhibition of NOX2 reduces locomotor impairment, inflammation, and oxidative stress after spinal cord injury. Journal of Neuroinflammation 12: 172.CrossRefPubMedPubMedCentral Khayrullina, G., S. Bermudez, and K.R. Byrnes. 2015. Inhibition of NOX2 reduces locomotor impairment, inflammation, and oxidative stress after spinal cord injury. Journal of Neuroinflammation 12: 172.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Kigerl, K.A., J.C. Gensel, D.P. Ankeny, J.K. Alexander, D.J. Donnelly, and P.G. Popovich. 2009. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 29: 13435–13444.CrossRef Kigerl, K.A., J.C. Gensel, D.P. Ankeny, J.K. Alexander, D.J. Donnelly, and P.G. Popovich. 2009. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 29: 13435–13444.CrossRef
23.
Zurück zum Zitat Krausgruber, T., K. Blazek, T. Smallie, S. Alzabin, H. Lockstone, N. Sahgal, T. Hussell, M. Feldmann, and I.A. Udalova. 2011. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nature Immunology 12: 231–238.CrossRefPubMed Krausgruber, T., K. Blazek, T. Smallie, S. Alzabin, H. Lockstone, N. Sahgal, T. Hussell, M. Feldmann, and I.A. Udalova. 2011. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nature Immunology 12: 231–238.CrossRefPubMed
24.
Zurück zum Zitat Kroner, A., A.D. Greenhalgh, J.G. Zarruk, R. Passos Dos Santos, M. Gaestel, and S. David. 2014. TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron 83: 1098–1116.CrossRefPubMed Kroner, A., A.D. Greenhalgh, J.G. Zarruk, R. Passos Dos Santos, M. Gaestel, and S. David. 2014. TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron 83: 1098–1116.CrossRefPubMed
25.
Zurück zum Zitat Laskin, D.L. 2009. Macrophages and inflammatory mediators in chemical toxicity: a battle of forces. Chemical Research in Toxicology 22: 1376–1385.CrossRefPubMedPubMedCentral Laskin, D.L. 2009. Macrophages and inflammatory mediators in chemical toxicity: a battle of forces. Chemical Research in Toxicology 22: 1376–1385.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Leuschner, F., P. Dutta, R. Gorbatov, T.I. Novobrantseva, J.S. Donahoe, G. Courties, K.M. Lee, J.I. Kim, J.F. Markmann, B. Marinelli, et al. 2011. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nature Biotechnology 29: 1005–1010.CrossRefPubMedPubMedCentral Leuschner, F., P. Dutta, R. Gorbatov, T.I. Novobrantseva, J.S. Donahoe, G. Courties, K.M. Lee, J.I. Kim, J.F. Markmann, B. Marinelli, et al. 2011. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nature Biotechnology 29: 1005–1010.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Li, F., B. Cheng, J. Cheng, D. Wang, H. Li, and X. He. 2015. CCR5 blockade promotes M2 macrophage activation and improves locomotor recovery after spinal cord injury in mice. Inflammation 38: 126–133.CrossRefPubMed Li, F., B. Cheng, J. Cheng, D. Wang, H. Li, and X. He. 2015. CCR5 blockade promotes M2 macrophage activation and improves locomotor recovery after spinal cord injury in mice. Inflammation 38: 126–133.CrossRefPubMed
28.
Zurück zum Zitat Lobatto, M.E., V. Fuster, Z.A. Fayad, and W.J. Mulder. 2011. Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nature Reviews. Drug Discovery 10: 835–852.CrossRefPubMedPubMedCentral Lobatto, M.E., V. Fuster, Z.A. Fayad, and W.J. Mulder. 2011. Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nature Reviews. Drug Discovery 10: 835–852.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Love, K.T., K.P. Mahon, C.G. Levins, K.A. Whitehead, W. Querbes, J.R. Dorkin, J. Qin, W. Cantley, L.L. Qin, T. Racie, et al. 2010. Lipid-like materials for low-dose, in vivo gene silencing. Proceedings of the National Academy of Sciences of the United States of America 107: 1864–1869.CrossRefPubMedPubMedCentral Love, K.T., K.P. Mahon, C.G. Levins, K.A. Whitehead, W. Querbes, J.R. Dorkin, J. Qin, W. Cantley, L.L. Qin, T. Racie, et al. 2010. Lipid-like materials for low-dose, in vivo gene silencing. Proceedings of the National Academy of Sciences of the United States of America 107: 1864–1869.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Ma, S.F., Y.J. Chen, J.X. Zhang, L. Shen, R. Wang, J.S. Zhou, J.G. Hu, and H.Z. Lu. 2015. Adoptive transfer of M2 macrophages promotes locomotor recovery in adult rats after spinal cord injury. Brain, Behavior, and Immunity 45: 157–170.CrossRefPubMed Ma, S.F., Y.J. Chen, J.X. Zhang, L. Shen, R. Wang, J.S. Zhou, J.G. Hu, and H.Z. Lu. 2015. Adoptive transfer of M2 macrophages promotes locomotor recovery in adult rats after spinal cord injury. Brain, Behavior, and Immunity 45: 157–170.CrossRefPubMed
31.
Zurück zum Zitat Mantovani, A., A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati. 2004. The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology 25: 677–686.CrossRefPubMed Mantovani, A., A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati. 2004. The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology 25: 677–686.CrossRefPubMed
32.
Zurück zum Zitat Novobrantseva, T.I., A. Borodovsky, J. Wong, B. Klebanov, M. Zafari, K. Yucius, W. Querbes, P. Ge, V.M. Ruda, S. Milstein, et al. 2012. Systemic RNAi-mediated gene silencing in nonhuman primate and rodent myeloid cells. Molecular Therapy Nucleic Acids 1: e4.CrossRefPubMedPubMedCentral Novobrantseva, T.I., A. Borodovsky, J. Wong, B. Klebanov, M. Zafari, K. Yucius, W. Querbes, P. Ge, V.M. Ruda, S. Milstein, et al. 2012. Systemic RNAi-mediated gene silencing in nonhuman primate and rodent myeloid cells. Molecular Therapy Nucleic Acids 1: e4.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Novrup, H.G., V. Bracchi-Ricard, D.G. Ellman, J. Ricard, A. Jain, E. Runko, L. Lyck, M. Yli-Karjanmaa, D.E. Szymkowski, D.D. Pearse, et al. 2014. Central but not systemic administration of XPro1595 is therapeutic following moderate spinal cord injury in mice. Journal of Neuroinflammation 11: 159.CrossRefPubMedPubMedCentral Novrup, H.G., V. Bracchi-Ricard, D.G. Ellman, J. Ricard, A. Jain, E. Runko, L. Lyck, M. Yli-Karjanmaa, D.E. Szymkowski, D.D. Pearse, et al. 2014. Central but not systemic administration of XPro1595 is therapeutic following moderate spinal cord injury in mice. Journal of Neuroinflammation 11: 159.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Papa, S., I. Caron, E. Erba, N. Panini, M. De Paola, A. Mariani, C. Colombo, R. Ferrari, D. Pozzer, E.R. Zanier, et al. 2016. Early modulation of pro-inflammatory microglia by minocycline loaded nanoparticles confers long lasting protection after spinal cord injury. Biomaterials 75: 13–24.CrossRefPubMed Papa, S., I. Caron, E. Erba, N. Panini, M. De Paola, A. Mariani, C. Colombo, R. Ferrari, D. Pozzer, E.R. Zanier, et al. 2016. Early modulation of pro-inflammatory microglia by minocycline loaded nanoparticles confers long lasting protection after spinal cord injury. Biomaterials 75: 13–24.CrossRefPubMed
35.
Zurück zum Zitat Peer, D., E.J. Park, Y. Morishita, C.V. Carman, and M. Shimaoka. 2008. Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 319: 627–630.CrossRefPubMedPubMedCentral Peer, D., E.J. Park, Y. Morishita, C.V. Carman, and M. Shimaoka. 2008. Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 319: 627–630.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Pineau, I., and S. Lacroix. 2007. Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved. The Journal of Comparative Neurology 500: 267–285.CrossRefPubMed Pineau, I., and S. Lacroix. 2007. Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved. The Journal of Comparative Neurology 500: 267–285.CrossRefPubMed
37.
Zurück zum Zitat Popovich, P.G., Z. Guan, P. Wei, I. Huitinga, N. van Rooijen, and B.T. Stokes. 1999. Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Experimental Neurology 158: 351–365.CrossRefPubMed Popovich, P.G., Z. Guan, P. Wei, I. Huitinga, N. van Rooijen, and B.T. Stokes. 1999. Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Experimental Neurology 158: 351–365.CrossRefPubMed
38.
Zurück zum Zitat Rettig, G.R., and M.A. Behlke. 2012. Progress toward in vivo use of siRNAs-II. Molecular Therapy: the Journal of the American Society of Gene Therapy 20: 483–512.CrossRef Rettig, G.R., and M.A. Behlke. 2012. Progress toward in vivo use of siRNAs-II. Molecular Therapy: the Journal of the American Society of Gene Therapy 20: 483–512.CrossRef
39.
Zurück zum Zitat Schwartz, M. 2010. “Tissue-repairing” blood-derived macrophages are essential for healing of the injured spinal cord: from skin-activated macrophages to infiltrating blood-derived cells? Brain, Behavior, and Immunity 24: 1054–1057.CrossRefPubMed Schwartz, M. 2010. “Tissue-repairing” blood-derived macrophages are essential for healing of the injured spinal cord: from skin-activated macrophages to infiltrating blood-derived cells? Brain, Behavior, and Immunity 24: 1054–1057.CrossRefPubMed
40.
Zurück zum Zitat Sun, X., X. Wang, T. Chen, T. Li, K. Cao, A. Lu, Y. Chen, D. Sun, J. Luo, J. Fan, et al. 2010. Myelin activates FAK/Akt/NF-kappaB pathways and provokes CR3-dependent inflammatory response in murine system. PLoS One 5: e9380.CrossRefPubMedPubMedCentral Sun, X., X. Wang, T. Chen, T. Li, K. Cao, A. Lu, Y. Chen, D. Sun, J. Luo, J. Fan, et al. 2010. Myelin activates FAK/Akt/NF-kappaB pathways and provokes CR3-dependent inflammatory response in murine system. PLoS One 5: e9380.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Takaoka, A., H. Yanai, S. Kondo, G. Duncan, H. Negishi, T. Mizutani, S. Kano, K. Honda, Y. Ohba, T.W. Mak, and T. Taniguchi. 2005. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 434: 243–249.CrossRefPubMed Takaoka, A., H. Yanai, S. Kondo, G. Duncan, H. Negishi, T. Mizutani, S. Kano, K. Honda, Y. Ohba, T.W. Mak, and T. Taniguchi. 2005. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 434: 243–249.CrossRefPubMed
42.
Zurück zum Zitat Thompson, C.D., J.C. Zurko, B.F. Hanna, D.J. Hellenbrand, and A. Hanna. 2013. The therapeutic role of interleukin-10 after spinal cord injury. Journal of Neurotrauma 30: 1311–1324.CrossRefPubMed Thompson, C.D., J.C. Zurko, B.F. Hanna, D.J. Hellenbrand, and A. Hanna. 2013. The therapeutic role of interleukin-10 after spinal cord injury. Journal of Neurotrauma 30: 1311–1324.CrossRefPubMed
43.
Zurück zum Zitat Weiss, M., K. Blazek, A.J. Byrne, D.P. Perocheau, and I.A. Udalova. 2013. IRF5 is a specific marker of inflammatory macrophages in vivo. Mediators of Inflammation 2013: 245804.CrossRefPubMedPubMedCentral Weiss, M., K. Blazek, A.J. Byrne, D.P. Perocheau, and I.A. Udalova. 2013. IRF5 is a specific marker of inflammatory macrophages in vivo. Mediators of Inflammation 2013: 245804.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Whitehead, K.A., R. Langer, and D.G. Anderson. 2009. Knocking down barriers: advances in siRNA delivery. Nature Reviews. Drug Discovery 8: 129–138.CrossRefPubMed Whitehead, K.A., R. Langer, and D.G. Anderson. 2009. Knocking down barriers: advances in siRNA delivery. Nature Reviews. Drug Discovery 8: 129–138.CrossRefPubMed
Metadaten
Titel
Nanoparticle-Delivered IRF5 siRNA Facilitates M1 to M2 Transition, Reduces Demyelination and Neurofilament Loss, and Promotes Functional Recovery After Spinal Cord Injury in Mice
verfasst von
Jun Li
Yanbin Liu
Haidong Xu
Qiang Fu
Publikationsdatum
19.07.2016
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2016
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0405-4

Weitere Artikel der Ausgabe 5/2016

Inflammation 5/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.