Skip to main content
Erschienen in: Inflammation 5/2016

05.08.2016 | ORIGINAL ARTICLE

Icariine Restores LPS-Induced Bone Loss by Downregulating miR-34c Level

verfasst von: Jian Liu, Danqing Li, Xuying Sun, Yuting Wang, Qiangbing Xiao, Anmin Chen

Erschienen in: Inflammation | Ausgabe 5/2016

Einloggen, um Zugang zu erhalten

Abstract

Bacteria-induced inflammatory responses cause excessive bone resorption in chronic inflammatory diseases such as septic arthritis, osteomyelitis, and orthopedic implant failure. Icariine has been reported to facilitate the bone healing and reduce the occurrence of osteoporosis in clinical, moreover, laboratory studies which have proved that Icariine promotes the proliferation and differentiation of osteoblasts in vitro. The present study aimed to evaluate the effects of Icariine on lipopolysaccharide (LPS)-induced bone loss via an osteogenic-in vitro model and to elucidate the underlying molecular mechanisms. Here, we showed that Icariine restored LPS-induced bone loss in a dose-dependent manner without any cytotoxicity even at 100 μM in an osteogenic-in vitro model. Interestingly, Icariine restored the protein expression of Runx2, a key transcription factor for osteogenesis, but had no effect on its mRNA expression level. MiRNA-34c was dramatically upregulated after LPS stimulation; however, Icariine preincubation reversed miRNA-34c level. Western blot analysis showed that overexpression of miR-34c markedly inhibited the expression of osteogenic gene makers such as alkaline phosphatase (ALP), Runx2, OPN, and BMP2. ALP activity analysis and Alizarin Red S staining exhibited that both Icariine-induced osteogenic differentiation and mineral nodule formation were significantly inverted by overexpression of miR-34c. Western blot results also showed that Icariine notably inhibited LPS-induced phosphorylation of JNKs, p38, IkBα, IKKβ, and p65. Taken together, our studies suggested that Icariine restored LPS-induced bone loss by downregulating miR-34c level and suppressing JNKs, p38, and NF-kB pathways, which highlighted the potential use of Icariine as a therapeutic agent in the treatment of bacteria-induced bone loss diseases.
Literatur
2.
Zurück zum Zitat Guo, C., L. Yuan, J.G. Wang, F. Wang, X.K. Yang, F.H. Zhang, J.L. Song, X.Y. Ma, Q. Cheng, and G.H. Song. 2014. Lipopolysaccharide (LPS) induces the apoptosis and inhibits osteoblast differentiation through JNK pathway in MC3T3-E1 cells. Inflammation 37(2): 621–31.CrossRefPubMed Guo, C., L. Yuan, J.G. Wang, F. Wang, X.K. Yang, F.H. Zhang, J.L. Song, X.Y. Ma, Q. Cheng, and G.H. Song. 2014. Lipopolysaccharide (LPS) induces the apoptosis and inhibits osteoblast differentiation through JNK pathway in MC3T3-E1 cells. Inflammation 37(2): 621–31.CrossRefPubMed
3.
Zurück zum Zitat Bandow, K., A. Maeda, K. Kakimoto, J. Kusuyama, M. Shamoto, T. Ohnishi, and T. Matsuguchi. 2010. Molecular mechanisms of the inhibitory effect of lipopolysaccharide (LPS) on osteoblast differentiation. Biochemical and Biophysical Research Communications 402(4): 755–61.CrossRefPubMed Bandow, K., A. Maeda, K. Kakimoto, J. Kusuyama, M. Shamoto, T. Ohnishi, and T. Matsuguchi. 2010. Molecular mechanisms of the inhibitory effect of lipopolysaccharide (LPS) on osteoblast differentiation. Biochemical and Biophysical Research Communications 402(4): 755–61.CrossRefPubMed
4.
Zurück zum Zitat Matsuguchi, T., N. Chiba, K. Bandow, K. Kakimoto, A. Masuda, and T. Ohnishi. 2009. JNK activity is essential for Atf4 expression and late-stage osteoblast differentiation. Journal of Bone and Mineral Research 24(3): 398–410.CrossRefPubMed Matsuguchi, T., N. Chiba, K. Bandow, K. Kakimoto, A. Masuda, and T. Ohnishi. 2009. JNK activity is essential for Atf4 expression and late-stage osteoblast differentiation. Journal of Bone and Mineral Research 24(3): 398–410.CrossRefPubMed
5.
Zurück zum Zitat Qian, G., X. Zhang, L. Lu, X. Wu, S. Li, and J. Meng. 2006. Regulation of Cbfa1 expression by total flavonoids of Herba epimedii. Endocrine Journal 53(1): 87–94.CrossRefPubMed Qian, G., X. Zhang, L. Lu, X. Wu, S. Li, and J. Meng. 2006. Regulation of Cbfa1 expression by total flavonoids of Herba epimedii. Endocrine Journal 53(1): 87–94.CrossRefPubMed
6.
Zurück zum Zitat Qin, L., G. Zhang, W.Y. Hung, Y. Shi, K. Leung, H.Y. Yeung, and P. Leung. 2005. Phytoestrogen-rich herb formula “XLGB” prevents OVX-induced deterioration of musculoskeletal tissues at the hip in old rats. Journal of Bone and Mineral Metabolism 23(Suppl): 55–61.CrossRefPubMed Qin, L., G. Zhang, W.Y. Hung, Y. Shi, K. Leung, H.Y. Yeung, and P. Leung. 2005. Phytoestrogen-rich herb formula “XLGB” prevents OVX-induced deterioration of musculoskeletal tissues at the hip in old rats. Journal of Bone and Mineral Metabolism 23(Suppl): 55–61.CrossRefPubMed
7.
Zurück zum Zitat Yin, X.X., Z.Q. Chen, Z.J. Liu, Q.J. Ma, and G.T. Dang. 2007. Icariine stimulates proliferation and differentiation of human osteoblasts by increasing production of bone morphogenetic protein 2. Chinese Medical Journal 120(3): 204–10.PubMed Yin, X.X., Z.Q. Chen, Z.J. Liu, Q.J. Ma, and G.T. Dang. 2007. Icariine stimulates proliferation and differentiation of human osteoblasts by increasing production of bone morphogenetic protein 2. Chinese Medical Journal 120(3): 204–10.PubMed
8.
Zurück zum Zitat Zhou, H., S. Wang, Y. Xue, and N. Shi. 2014. Regulation of the levels of Smad1 and Smad5 in MC3T3-E1 cells by Icariine in vitro. Molecular Medicine Reports 9(2): 590–4.PubMed Zhou, H., S. Wang, Y. Xue, and N. Shi. 2014. Regulation of the levels of Smad1 and Smad5 in MC3T3-E1 cells by Icariine in vitro. Molecular Medicine Reports 9(2): 590–4.PubMed
9.
Zurück zum Zitat Bartel, D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2): 281–97.CrossRefPubMed Bartel, D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2): 281–97.CrossRefPubMed
10.
Zurück zum Zitat Kim, V.N., J. Han, and M.C. Siomi. 2009. Biogenesis of small RNAs in animals. Nature Reviews. Molecular Cell Biology 10(2): 126–39.CrossRefPubMed Kim, V.N., J. Han, and M.C. Siomi. 2009. Biogenesis of small RNAs in animals. Nature Reviews. Molecular Cell Biology 10(2): 126–39.CrossRefPubMed
13.
Zurück zum Zitat Chen, X., S. Gu, B.F. Chen, W.L. Shen, Z. Yin, G.W. Xu, J.J. Hu, T. Zhu, G. Li, C. Wan, H.W. Ouyang, T.L. Lee, and W.Y. Chan. 2015. Nanoparticle delivery of stable miR-199a-5p agomir improves the osteogenesis of human mesenchymal stem cells via the HIF1a pathway. Biomaterials 53: 239–50.CrossRefPubMed Chen, X., S. Gu, B.F. Chen, W.L. Shen, Z. Yin, G.W. Xu, J.J. Hu, T. Zhu, G. Li, C. Wan, H.W. Ouyang, T.L. Lee, and W.Y. Chan. 2015. Nanoparticle delivery of stable miR-199a-5p agomir improves the osteogenesis of human mesenchymal stem cells via the HIF1a pathway. Biomaterials 53: 239–50.CrossRefPubMed
14.
Zurück zum Zitat Hu, Z., Y. Wang, Z. Sun, H. Wang, H. Zhou, L. Zhang, S. Zhang, and X. Cao. 2015. miRNA-132-3p inhibits osteoblast differentiation by targeting Ep300 in simulated microgravity. Scientific Reports 5: 18655.CrossRefPubMedPubMedCentral Hu, Z., Y. Wang, Z. Sun, H. Wang, H. Zhou, L. Zhang, S. Zhang, and X. Cao. 2015. miRNA-132-3p inhibits osteoblast differentiation by targeting Ep300 in simulated microgravity. Scientific Reports 5: 18655.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Kureel, J., M. Dixit, A.M. Tyagi, M.N. Mansoori, K. Srivastava, A. Raghuvanshi, R. Maurya, R. Trivedi, A. Goel, and D. Singh. 2014. miR-542-3p suppresses osteoblast cell proliferation and differentiation, targets BMP-7 signaling and inhibits bone formation. Cell Death & Disease 5: e1050.CrossRef Kureel, J., M. Dixit, A.M. Tyagi, M.N. Mansoori, K. Srivastava, A. Raghuvanshi, R. Maurya, R. Trivedi, A. Goel, and D. Singh. 2014. miR-542-3p suppresses osteoblast cell proliferation and differentiation, targets BMP-7 signaling and inhibits bone formation. Cell Death & Disease 5: e1050.CrossRef
16.
Zurück zum Zitat Li, H., T. Li, J. Fan, L. Fan, S. Wang, X. Weng, Q. Han, and R.C. Zhao. 2015. miR-216a rescues dexamethasone suppression of osteogenesis, promotes osteoblast differentiation and enhances bone formation, by regulating c-Cbl-mediated PI3K/AKT pathway. Cell Death and Differentiation 22(12): 1935–45.CrossRefPubMed Li, H., T. Li, J. Fan, L. Fan, S. Wang, X. Weng, Q. Han, and R.C. Zhao. 2015. miR-216a rescues dexamethasone suppression of osteogenesis, promotes osteoblast differentiation and enhances bone formation, by regulating c-Cbl-mediated PI3K/AKT pathway. Cell Death and Differentiation 22(12): 1935–45.CrossRefPubMed
17.
Zurück zum Zitat Zhao, C., W. Sun, P. Zhang, S. Ling, Y. Li, D. Zhao, J. Peng, A. Wang, Q. Li, J. Song, C. Wang, X. Xu, Z. Xu, G. Zhong, B. Han, and Y.Z. Chang. 2015. miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biology 12(3): 343–53.CrossRefPubMedPubMedCentral Zhao, C., W. Sun, P. Zhang, S. Ling, Y. Li, D. Zhao, J. Peng, A. Wang, Q. Li, J. Song, C. Wang, X. Xu, Z. Xu, G. Zhong, B. Han, and Y.Z. Chang. 2015. miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biology 12(3): 343–53.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Zhang, Y., R.L. Xie, C.M. Croce, J.L. Stein, J.B. Lian, A.J. van Wijnen, and G.S. Stein. 2011. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proceedings of the National Academy of Sciences of the United States of America 108(24): 9863–8.CrossRefPubMedPubMedCentral Zhang, Y., R.L. Xie, C.M. Croce, J.L. Stein, J.B. Lian, A.J. van Wijnen, and G.S. Stein. 2011. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proceedings of the National Academy of Sciences of the United States of America 108(24): 9863–8.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Yang, J., N. Su, X. Du, and L. Chen. 2014. Gene expression patterns in bone following lipopolysaccharide stimulation. Cellular and Molecular Biology Letters 19(4): 611–22.CrossRefPubMed Yang, J., N. Su, X. Du, and L. Chen. 2014. Gene expression patterns in bone following lipopolysaccharide stimulation. Cellular and Molecular Biology Letters 19(4): 611–22.CrossRefPubMed
20.
Zurück zum Zitat Catuogno, S., L. Cerchia, G. Romano, P. Pognonec, G. Condorelli, and V. de Franciscis. 2013. miR-34c may protect lung cancer cells from paclitaxel-induced apoptosis. Oncogene 32(3): 341–51.CrossRefPubMed Catuogno, S., L. Cerchia, G. Romano, P. Pognonec, G. Condorelli, and V. de Franciscis. 2013. miR-34c may protect lung cancer cells from paclitaxel-induced apoptosis. Oncogene 32(3): 341–51.CrossRefPubMed
21.
Zurück zum Zitat Hagman, Z., B.S. Haflidadottir, M. Ansari, M. Persson, A. Bjartell, A. Edsjo, and Y. Ceder. 2013. The tumour suppressor miR-34c targets MET in prostate cancer cells. British Journal of Cancer 109(5): 1271–8.CrossRefPubMedPubMedCentral Hagman, Z., B.S. Haflidadottir, M. Ansari, M. Persson, A. Bjartell, A. Edsjo, and Y. Ceder. 2013. The tumour suppressor miR-34c targets MET in prostate cancer cells. British Journal of Cancer 109(5): 1271–8.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Li, Y.Q., X.Y. Ren, Q.M. He, Y.F. Xu, X.R. Tang, Y. Sun, M.S. Zeng, T.B. Kang, N. Liu, and J. Ma. 2015. MiR-34c suppresses tumor growth and metastasis in nasopharyngeal carcinoma by targeting MET. Cell Death & Disease 6: e1618.CrossRef Li, Y.Q., X.Y. Ren, Q.M. He, Y.F. Xu, X.R. Tang, Y. Sun, M.S. Zeng, T.B. Kang, N. Liu, and J. Ma. 2015. MiR-34c suppresses tumor growth and metastasis in nasopharyngeal carcinoma by targeting MET. Cell Death & Disease 6: e1618.CrossRef
23.
Zurück zum Zitat Yang, S., W.S. Li, F. Dong, H.M. Sun, B. Wu, J. Tan, W.J. Zou, and D.S. Zhou. 2014. KITLG is a novel target of miR-34c that is associated with the inhibition of growth and invasion in colorectal cancer cells. Journal of Cellular and Molecular Medicine 18(10): 2092–102.CrossRefPubMedPubMedCentral Yang, S., W.S. Li, F. Dong, H.M. Sun, B. Wu, J. Tan, W.J. Zou, and D.S. Zhou. 2014. KITLG is a novel target of miR-34c that is associated with the inhibition of growth and invasion in colorectal cancer cells. Journal of Cellular and Molecular Medicine 18(10): 2092–102.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Hu, S., H. Wang, K. Chen, P. Cheng, S. Gao, J. Liu, X. Li, and X. Sun. 2015. MicroRNA-34c downregulation ameliorates amyloid-beta-induced synaptic failure and memory deficits by targeting VAMP2. Journal of Alzheimer’s Disease 48(3): 673–86.CrossRefPubMed Hu, S., H. Wang, K. Chen, P. Cheng, S. Gao, J. Liu, X. Li, and X. Sun. 2015. MicroRNA-34c downregulation ameliorates amyloid-beta-induced synaptic failure and memory deficits by targeting VAMP2. Journal of Alzheimer’s Disease 48(3): 673–86.CrossRefPubMed
25.
Zurück zum Zitat Zovoilis, A., H.Y. Agbemenyah, R.C. Agis-Balboa, R.M. Stilling, D. Edbauer, P. Rao, L. Farinelli, I. Delalle, A. Schmitt, P. Falkai, S. Bahari-Javan, S. Burkhardt, F. Sananbenesi, and A. Fischer. 2011. microRNA-34c is a novel target to treat dementias. The EMBO Journal 30(20): 4299–308.CrossRefPubMedPubMedCentral Zovoilis, A., H.Y. Agbemenyah, R.C. Agis-Balboa, R.M. Stilling, D. Edbauer, P. Rao, L. Farinelli, I. Delalle, A. Schmitt, P. Falkai, S. Bahari-Javan, S. Burkhardt, F. Sananbenesi, and A. Fischer. 2011. microRNA-34c is a novel target to treat dementias. The EMBO Journal 30(20): 4299–308.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Zhang, Y., R.L. Xie, J. Gordon, K. LeBlanc, J.L. Stein, J.B. Lian, A.J. van Wijnen, and G.S. Stein. 2012. Control of mesenchymal lineage progression by microRNAs targeting skeletal gene regulators Trps1 and Runx2. Journal of Biological Chemistry 287(26): 21926–35.CrossRefPubMedPubMedCentral Zhang, Y., R.L. Xie, J. Gordon, K. LeBlanc, J.L. Stein, J.B. Lian, A.J. van Wijnen, and G.S. Stein. 2012. Control of mesenchymal lineage progression by microRNAs targeting skeletal gene regulators Trps1 and Runx2. Journal of Biological Chemistry 287(26): 21926–35.CrossRefPubMedPubMedCentral
Metadaten
Titel
Icariine Restores LPS-Induced Bone Loss by Downregulating miR-34c Level
verfasst von
Jian Liu
Danqing Li
Xuying Sun
Yuting Wang
Qiangbing Xiao
Anmin Chen
Publikationsdatum
05.08.2016
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2016
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0411-6

Weitere Artikel der Ausgabe 5/2016

Inflammation 5/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhöhte Mortalität bei postpartalem Brustkrebs

07.05.2024 Mammakarzinom Nachrichten

Auch für Trägerinnen von BRCA-Varianten gilt: Erkranken sie fünf bis zehn Jahre nach der letzten Schwangerschaft an Brustkrebs, ist das Sterberisiko besonders hoch.

Hypertherme Chemotherapie bietet Chance auf Blasenerhalt

07.05.2024 Harnblasenkarzinom Nachrichten

Eine hypertherme intravesikale Chemotherapie mit Mitomycin kann für Patienten mit hochriskantem nicht muskelinvasivem Blasenkrebs eine Alternative zur radikalen Zystektomie darstellen. Kölner Urologen berichten über ihre Erfahrungen.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Vorhofflimmern bei Jüngeren gefährlicher als gedacht

06.05.2024 Vorhofflimmern Nachrichten

Immer mehr jüngere Menschen leiden unter Vorhofflimmern. Betroffene unter 65 Jahren haben viele Risikofaktoren und ein signifikant erhöhtes Sterberisiko verglichen mit Gleichaltrigen ohne die Erkrankung.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.