Skip to main content
Erschienen in: European Archives of Psychiatry and Clinical Neuroscience 3/2023

03.06.2022 | Original Paper

Negative symptoms are associated with modularity and thalamic connectivity in schizophrenia

verfasst von: Adem Bayrakçı, Nabi Zorlu, Merve Karakılıç, Funda Gülyüksel, Berna Yalınçetin, Elif Oral, Fazıl Gelal, Emre Bora

Erschienen in: European Archives of Psychiatry and Clinical Neuroscience | Ausgabe 3/2023

Einloggen, um Zugang zu erhalten

Abstract

Negative symptoms, including avolition, anhedonia, asociality, blunted affect and alogia are associated with poor long-term outcome and functioning. However, treatment options for negative symptoms are limited and neurobiological mechanisms underlying negative symptoms in schizophrenia are still poorly understood. Diffusion-weighted magnetic resonance imaging scans were acquired from 64 patients diagnosed with schizophrenia and 35 controls. Global and regional network properties and rich club organization were investigated using graph analytical methods. We found that the schizophrenia group had higher modularity, clustering coefficient and characteristic path length, and lower rich connections compared to controls, suggesting highly connected nodes within modules but less integrated with nodes in other modules in schizophrenia. We also found a lower nodal degree in the left thalamus and left putamen in schizophrenia relative to the control group. Importantly, higher modularity was associated with greater negative symptoms but not with cognitive deficits in patients diagnosed with schizophrenia suggesting an alteration in modularity might be specific to overall negative symptoms. The nodal degree of the left thalamus was associated with both negative and cognitive symptoms. Our findings are important for improving our understanding of abnormal white-matter network topology underlying negative symptoms in schizophrenia.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Javitt DC (2001) Management of negative symptoms of schizophrenia. Curr Psychiatry Rep 3:413–417PubMedCrossRef Javitt DC (2001) Management of negative symptoms of schizophrenia. Curr Psychiatry Rep 3:413–417PubMedCrossRef
2.
Zurück zum Zitat Kirkpatrick B, Buchanan RW, Ross DE, Carpenter WT Jr (2001) A separate disease within the syndrome of schizophrenia. Arch Gen Psychiatry 58:165–171PubMedCrossRef Kirkpatrick B, Buchanan RW, Ross DE, Carpenter WT Jr (2001) A separate disease within the syndrome of schizophrenia. Arch Gen Psychiatry 58:165–171PubMedCrossRef
3.
Zurück zum Zitat Galderisi S, Bucci P, Mucci A et al (2013) Categorical and dimensional approaches to negative symptoms of schizophrenia: focus on long-term stability and functional outcome. Schizophr Res 147:157–162PubMedCrossRef Galderisi S, Bucci P, Mucci A et al (2013) Categorical and dimensional approaches to negative symptoms of schizophrenia: focus on long-term stability and functional outcome. Schizophr Res 147:157–162PubMedCrossRef
4.
Zurück zum Zitat Rabinowitz J, Levine SZ, Garibaldi G, Bugarski-Kirola D, Berardo CG, Kapur S (2012) Negative symptoms have greater impact on functioning than positive symptoms in schizophrenia: analysis of CATIE data. Schizophr Res 137:147–150PubMedCrossRef Rabinowitz J, Levine SZ, Garibaldi G, Bugarski-Kirola D, Berardo CG, Kapur S (2012) Negative symptoms have greater impact on functioning than positive symptoms in schizophrenia: analysis of CATIE data. Schizophr Res 137:147–150PubMedCrossRef
5.
Zurück zum Zitat Robertson BR, Prestia D, Twamley EW, Patterson TL, Bowie CR, Harvey PD (2014) Social competence versus negative symptoms as predictors of real world social functioning in schizophrenia. Schizophr Res 160:136–141PubMedPubMedCentralCrossRef Robertson BR, Prestia D, Twamley EW, Patterson TL, Bowie CR, Harvey PD (2014) Social competence versus negative symptoms as predictors of real world social functioning in schizophrenia. Schizophr Res 160:136–141PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Begue I, Kaiser S, Kirschner M (2020) Pathophysiology of negative symptom dimensions of schizophrenia - Current developments and implications for treatment. Neurosci Biobehav Rev 116:74–88PubMedCrossRef Begue I, Kaiser S, Kirschner M (2020) Pathophysiology of negative symptom dimensions of schizophrenia - Current developments and implications for treatment. Neurosci Biobehav Rev 116:74–88PubMedCrossRef
7.
Zurück zum Zitat Fusar-Poli P, Papanastasiou E, Stahl D et al (2015) Treatments of negative symptoms in schizophrenia: meta-analysis of 168 randomized placebo-controlled trials. Schizophr Bull 41:892–899PubMedCrossRef Fusar-Poli P, Papanastasiou E, Stahl D et al (2015) Treatments of negative symptoms in schizophrenia: meta-analysis of 168 randomized placebo-controlled trials. Schizophr Bull 41:892–899PubMedCrossRef
8.
Zurück zum Zitat Uranova NA, Vostrikov VM, Orlovskaya DD, Rachmanova VI (2004) Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophr Res 67:269–275PubMedCrossRef Uranova NA, Vostrikov VM, Orlovskaya DD, Rachmanova VI (2004) Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophr Res 67:269–275PubMedCrossRef
9.
Zurück zum Zitat Uranova N, Orlovskaya D, Vikhreva O et al (2001) Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 55:597–610PubMedCrossRef Uranova N, Orlovskaya D, Vikhreva O et al (2001) Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 55:597–610PubMedCrossRef
10.
Zurück zum Zitat Kelly S, Jahanshad N, Zalesky A et al (2018) Widespread white matter microstructural differences in schizophrenia across 4322 individuals: results from the ENIGMA Schizophrenia DTI Working Group. Mol Psychiatry 23:1261–1269PubMedCrossRef Kelly S, Jahanshad N, Zalesky A et al (2018) Widespread white matter microstructural differences in schizophrenia across 4322 individuals: results from the ENIGMA Schizophrenia DTI Working Group. Mol Psychiatry 23:1261–1269PubMedCrossRef
11.
Zurück zum Zitat Klauser P, Baker ST, Cropley VL et al (2017) White matter disruptions in schizophrenia are spatially widespread and topologically converge on brain network hubs. Schizophr Bull 43:425–435PubMed Klauser P, Baker ST, Cropley VL et al (2017) White matter disruptions in schizophrenia are spatially widespread and topologically converge on brain network hubs. Schizophr Bull 43:425–435PubMed
12.
Zurück zum Zitat Yang X, Cao D, Liang X, Zhao J (2017) Schizophrenia symptomatic associations with diffusion tensor imaging measured fractional anisotropy of brain: a meta-analysis. Neuroradiology 59:699–708PubMedCrossRef Yang X, Cao D, Liang X, Zhao J (2017) Schizophrenia symptomatic associations with diffusion tensor imaging measured fractional anisotropy of brain: a meta-analysis. Neuroradiology 59:699–708PubMedCrossRef
13.
Zurück zum Zitat Huang JY, Liu CM, Hwang TJ et al (2018) Shared and distinct alterations of white matter tracts in remitted and nonremitted patients with schizophrenia. Hum Brain Mapp 39:2007–2019PubMedPubMedCentralCrossRef Huang JY, Liu CM, Hwang TJ et al (2018) Shared and distinct alterations of white matter tracts in remitted and nonremitted patients with schizophrenia. Hum Brain Mapp 39:2007–2019PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Ochi R, Noda Y, Tsuchimoto S et al (2020) White matter microstructural organizations in patients with severe treatment-resistant schizophrenia: A diffusion tensor imaging study. Prog Neuropsychopharmacol Biol Psychiatry 100:109871PubMedCrossRef Ochi R, Noda Y, Tsuchimoto S et al (2020) White matter microstructural organizations in patients with severe treatment-resistant schizophrenia: A diffusion tensor imaging study. Prog Neuropsychopharmacol Biol Psychiatry 100:109871PubMedCrossRef
15.
Zurück zum Zitat Zeng B, Ardekani BA, Tang Y et al (2016) Abnormal white matter microstructure in drug-naive first episode schizophrenia patients before and after eight weeks of antipsychotic treatment. Schizophr Res 172:1–8PubMedCrossRef Zeng B, Ardekani BA, Tang Y et al (2016) Abnormal white matter microstructure in drug-naive first episode schizophrenia patients before and after eight weeks of antipsychotic treatment. Schizophr Res 172:1–8PubMedCrossRef
16.
Zurück zum Zitat van den Heuvel MP, Fornito A (2014) Brain networks in schizophrenia. Neuropsychol Rev 24:32–48PubMedCrossRef van den Heuvel MP, Fornito A (2014) Brain networks in schizophrenia. Neuropsychol Rev 24:32–48PubMedCrossRef
17.
Zurück zum Zitat Zhang X, Braun U, Harneit A et al (2021) Generative network models of altered structural brain connectivity in schizophrenia. Neuroimage 225:117510PubMedCrossRef Zhang X, Braun U, Harneit A et al (2021) Generative network models of altered structural brain connectivity in schizophrenia. Neuroimage 225:117510PubMedCrossRef
18.
Zurück zum Zitat Stephan KE, Friston KJ, Frith CD (2009) Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull 35:509–527PubMedPubMedCentralCrossRef Stephan KE, Friston KJ, Frith CD (2009) Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull 35:509–527PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198PubMedCrossRef Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198PubMedCrossRef
21.
Zurück zum Zitat van den Heuvel MP, Sporns O, Collin G et al (2013) Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiat 70:783–792CrossRef van den Heuvel MP, Sporns O, Collin G et al (2013) Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiat 70:783–792CrossRef
22.
Zurück zum Zitat Zalesky A, Fornito A, Seal ML et al (2011) Disrupted axonal fiber connectivity in schizophrenia. Biol Psychiatry 69:80–89PubMedCrossRef Zalesky A, Fornito A, Seal ML et al (2011) Disrupted axonal fiber connectivity in schizophrenia. Biol Psychiatry 69:80–89PubMedCrossRef
23.
Zurück zum Zitat Schmidt A, Crossley NA, Harrisberger F et al (2017) Structural network disorganization in subjects at clinical high risk for psychosis. Schizophr Bull 43:583–591PubMed Schmidt A, Crossley NA, Harrisberger F et al (2017) Structural network disorganization in subjects at clinical high risk for psychosis. Schizophr Bull 43:583–591PubMed
24.
Zurück zum Zitat Wang S, Gong G, Zhong S et al (2020) Neurobiological commonalities and distinctions among 3 major psychiatric disorders: a graph theoretical analysis of the structural connectome. J Psychiatry Neurosci 45:15–22PubMedCrossRef Wang S, Gong G, Zhong S et al (2020) Neurobiological commonalities and distinctions among 3 major psychiatric disorders: a graph theoretical analysis of the structural connectome. J Psychiatry Neurosci 45:15–22PubMedCrossRef
25.
Zurück zum Zitat Shon SH, Yoon W, Kim H, Joo SW, Kim Y, Lee J (2018) Deterioration in global organization of structural brain networks in schizophrenia: a diffusion MRI tractography study. Front Psychiatry 9:272PubMedPubMedCentralCrossRef Shon SH, Yoon W, Kim H, Joo SW, Kim Y, Lee J (2018) Deterioration in global organization of structural brain networks in schizophrenia: a diffusion MRI tractography study. Front Psychiatry 9:272PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Cea-Canas B, de Luis R, Lubeiro A et al (2019) Structural connectivity in schizophrenia and bipolar disorder: Effects of chronicity and antipsychotic treatment. Prog Neuropsychopharmacol Biol Psychiatry 92:369–377PubMedCrossRef Cea-Canas B, de Luis R, Lubeiro A et al (2019) Structural connectivity in schizophrenia and bipolar disorder: Effects of chronicity and antipsychotic treatment. Prog Neuropsychopharmacol Biol Psychiatry 92:369–377PubMedCrossRef
27.
Zurück zum Zitat Sun Y, Chen Y, Lee R, Bezerianos A, Collinson SL, Sim K (2016) Disruption of brain anatomical networks in schizophrenia: A longitudinal, diffusion tensor imaging based study. Schizophr Res 171:149–157PubMedCrossRef Sun Y, Chen Y, Lee R, Bezerianos A, Collinson SL, Sim K (2016) Disruption of brain anatomical networks in schizophrenia: A longitudinal, diffusion tensor imaging based study. Schizophr Res 171:149–157PubMedCrossRef
29.
Zurück zum Zitat de Lange SC, Scholtens LH, Initiative ADN et al (2019) Shared vulnerability for connectome alterations across psychiatric and neurological brain disorders. Nat Hum Behav 3:988–998PubMedCrossRef de Lange SC, Scholtens LH, Initiative ADN et al (2019) Shared vulnerability for connectome alterations across psychiatric and neurological brain disorders. Nat Hum Behav 3:988–998PubMedCrossRef
30.
Zurück zum Zitat Cui LB, Wei Y, Xi YB et al (2019) Connectome-based patterns of first-episode medication-naive patients with schizophrenia. Schizophr Bull 45:1291–1299PubMedPubMedCentralCrossRef Cui LB, Wei Y, Xi YB et al (2019) Connectome-based patterns of first-episode medication-naive patients with schizophrenia. Schizophr Bull 45:1291–1299PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Collin G, Kahn RS, de Reus MA, Cahn W, van den Heuvel MP (2014) Impaired rich club connectivity in unaffected siblings of schizophrenia patients. Schizophr Bull 40:438–448PubMedCrossRef Collin G, Kahn RS, de Reus MA, Cahn W, van den Heuvel MP (2014) Impaired rich club connectivity in unaffected siblings of schizophrenia patients. Schizophr Bull 40:438–448PubMedCrossRef
32.
Zurück zum Zitat Michielse S, Rakijo K, Peeters S et al (2019) Microstructural white matter network-connectivity in individuals with psychotic disorder, unaffected siblings and controls. Neuroimage Clin 23:101931PubMedPubMedCentralCrossRef Michielse S, Rakijo K, Peeters S et al (2019) Microstructural white matter network-connectivity in individuals with psychotic disorder, unaffected siblings and controls. Neuroimage Clin 23:101931PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Wei Q, Zhao L, Zou Y et al (2020) The role of altered brain structural connectivity in resilience, vulnerability, and disease expression to schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 101:109917PubMedCrossRef Wei Q, Zhao L, Zou Y et al (2020) The role of altered brain structural connectivity in resilience, vulnerability, and disease expression to schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 101:109917PubMedCrossRef
34.
Zurück zum Zitat Alloza C, Bastin ME, Cox SR et al (2017) Central and non-central networks, cognition, clinical symptoms, and polygenic risk scores in schizophrenia. Hum Brain Mapp 38:5919–5930PubMedPubMedCentralCrossRef Alloza C, Bastin ME, Cox SR et al (2017) Central and non-central networks, cognition, clinical symptoms, and polygenic risk scores in schizophrenia. Hum Brain Mapp 38:5919–5930PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Zhang R, Wei Q, Kang Z et al (2015) Disrupted brain anatomical connectivity in medication-naive patients with first-episode schizophrenia. Brain Struct Funct 220:1145–1159PubMedCrossRef Zhang R, Wei Q, Kang Z et al (2015) Disrupted brain anatomical connectivity in medication-naive patients with first-episode schizophrenia. Brain Struct Funct 220:1145–1159PubMedCrossRef
36.
Zurück zum Zitat Wang Q, Su TP, Zhou Y et al (2012) Anatomical insights into disrupted small-world networks in schizophrenia. Neuroimage 59:1085–1093PubMedCrossRef Wang Q, Su TP, Zhou Y et al (2012) Anatomical insights into disrupted small-world networks in schizophrenia. Neuroimage 59:1085–1093PubMedCrossRef
38.
Zurück zum Zitat Lerman-Sinkoff DB, Barch DM (2016) Network community structure alterations in adult schizophrenia: identification and localization of alterations. Neuroimage Clin 10:96–106PubMedCrossRef Lerman-Sinkoff DB, Barch DM (2016) Network community structure alterations in adult schizophrenia: identification and localization of alterations. Neuroimage Clin 10:96–106PubMedCrossRef
39.
Zurück zum Zitat Scariati E, Schaer M, Karahanoglu I et al (2016) Large-scale functional network reorganization in 22q11.2 deletion syndrome revealed by modularity analysis. Cortex 82:86–99PubMedCrossRef Scariati E, Schaer M, Karahanoglu I et al (2016) Large-scale functional network reorganization in 22q11.2 deletion syndrome revealed by modularity analysis. Cortex 82:86–99PubMedCrossRef
40.
Zurück zum Zitat Collin G, Seidman LJ, Keshavan MS et al (2020) Functional connectome organization predicts conversion to psychosis in clinical high-risk youth from the SHARP program. Mol Psychiatry 25:2431–2440PubMedCrossRef Collin G, Seidman LJ, Keshavan MS et al (2020) Functional connectome organization predicts conversion to psychosis in clinical high-risk youth from the SHARP program. Mol Psychiatry 25:2431–2440PubMedCrossRef
41.
Zurück zum Zitat Andreasen NC (1984): Scale for the assessment of positive symptoms. Iowa City: University of Iowa Andreasen NC (1984): Scale for the assessment of positive symptoms. Iowa City: University of Iowa
42.
Zurück zum Zitat Kirkpatrick B, Strauss GP, Nguyen L et al (2011) The brief negative symptom scale: psychometric properties. Schizophr Bull 37:300–305PubMedCrossRef Kirkpatrick B, Strauss GP, Nguyen L et al (2011) The brief negative symptom scale: psychometric properties. Schizophr Bull 37:300–305PubMedCrossRef
43.
Zurück zum Zitat PolatNazli I, Ergul C, Aydemir O, Chandhoke S, Ucok A, Gonul AS (2016) Validation of Turkish version of brief negative symptom scale. Int J Psychiatry Clin Pract 20:265–271CrossRef PolatNazli I, Ergul C, Aydemir O, Chandhoke S, Ucok A, Gonul AS (2016) Validation of Turkish version of brief negative symptom scale. Int J Psychiatry Clin Pract 20:265–271CrossRef
44.
Zurück zum Zitat Addington D, Addington J, Maticka-Tyndale E (1994) Specificity of the Calgary Depression Scale for schizophrenics. Schizophr Res 11:239–244PubMedCrossRef Addington D, Addington J, Maticka-Tyndale E (1994) Specificity of the Calgary Depression Scale for schizophrenics. Schizophr Res 11:239–244PubMedCrossRef
45.
Zurück zum Zitat Aydemir Ö, EsenDanacı A, Deveci A, İçelli İ (2000) Calgary şizofrenide depresyon ölçeği’nin Türkçe versiyonunun güvenilirliği ve geçerliliği. Nöropsikiyatri Arşivi 37:82–86 Aydemir Ö, EsenDanacı A, Deveci A, İçelli İ (2000) Calgary şizofrenide depresyon ölçeği’nin Türkçe versiyonunun güvenilirliği ve geçerliliği. Nöropsikiyatri Arşivi 37:82–86
46.
Zurück zum Zitat Tournier JD, Smith R, Raffelt D et al (2019) MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 202:116137PubMedCrossRef Tournier JD, Smith R, Raffelt D et al (2019) MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 202:116137PubMedCrossRef
47.
Zurück zum Zitat Dikmeer N, Besiroglu L, Di Biase MA, Zalesky A, Kasal MI, Bilge A et al (2021) White matter microstructure and connectivity in patients with obsessive-compulsive disorder and their unaffected siblings. Acta Psychiatr Scand. 143:72–81PubMedCrossRef Dikmeer N, Besiroglu L, Di Biase MA, Zalesky A, Kasal MI, Bilge A et al (2021) White matter microstructure and connectivity in patients with obsessive-compulsive disorder and their unaffected siblings. Acta Psychiatr Scand. 143:72–81PubMedCrossRef
48.
Zurück zum Zitat Veraart J, Novikov DS, Christiaens D, Ades-Aron B, Sijbers J, Fieremans E (2016) Denoising of diffusion MRI using random matrix theory. Neuroimage 142:394–406PubMedCrossRef Veraart J, Novikov DS, Christiaens D, Ades-Aron B, Sijbers J, Fieremans E (2016) Denoising of diffusion MRI using random matrix theory. Neuroimage 142:394–406PubMedCrossRef
49.
Zurück zum Zitat Kellner E, Dhital B, Kiselev VG, Reisert M (2016) Gibbs-ringing artifact removal based on local subvoxel-shifts. Magn Reson Med 76:1574–1581PubMedCrossRef Kellner E, Dhital B, Kiselev VG, Reisert M (2016) Gibbs-ringing artifact removal based on local subvoxel-shifts. Magn Reson Med 76:1574–1581PubMedCrossRef
50.
Zurück zum Zitat Andersson JL, Sotiropoulos SN (2016) An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 125:1063–1078PubMedCrossRef Andersson JL, Sotiropoulos SN (2016) An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 125:1063–1078PubMedCrossRef
52.
Zurück zum Zitat Tournier JD, Calamante F, Connelly A (2013) Determination of the appropriate b value and number of gradient directions for high-angular-resolution diffusion-weighted imaging. NMR Biomed 26:1775–1786PubMedCrossRef Tournier JD, Calamante F, Connelly A (2013) Determination of the appropriate b value and number of gradient directions for high-angular-resolution diffusion-weighted imaging. NMR Biomed 26:1775–1786PubMedCrossRef
53.
Zurück zum Zitat Tournier JD, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35:1459–1472PubMedCrossRef Tournier JD, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35:1459–1472PubMedCrossRef
54.
Zurück zum Zitat Smith RE, Tournier JD, Calamante F, Connelly A (2012) Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. Neuroimage 62:1924–1938PubMedCrossRef Smith RE, Tournier JD, Calamante F, Connelly A (2012) Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. Neuroimage 62:1924–1938PubMedCrossRef
55.
Zurück zum Zitat Smith RE, Tournier J-D, Calamante F, Connelly A (2013) SIFT: Spherical-deconvolution informed filtering of tractograms. Neuroimage 67:298–312PubMedCrossRef Smith RE, Tournier J-D, Calamante F, Connelly A (2013) SIFT: Spherical-deconvolution informed filtering of tractograms. Neuroimage 67:298–312PubMedCrossRef
56.
Zurück zum Zitat Tzourio-Mazoyer N, Landeau B, Papathanassiou D et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289PubMedCrossRef Tzourio-Mazoyer N, Landeau B, Papathanassiou D et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289PubMedCrossRef
58.
Zurück zum Zitat de Reus MA, van den Heuvel MP (2013) Estimating false positives and negatives in brain networks. Neuroimage 70:402–409PubMedCrossRef de Reus MA, van den Heuvel MP (2013) Estimating false positives and negatives in brain networks. Neuroimage 70:402–409PubMedCrossRef
59.
Zurück zum Zitat Reess TJ, Rus OG, Schmidt R et al (2016) Connectomics-based structural network alterations in obsessive-compulsive disorder. Transl Psychiatry 6:e882PubMedPubMedCentralCrossRef Reess TJ, Rus OG, Schmidt R et al (2016) Connectomics-based structural network alterations in obsessive-compulsive disorder. Transl Psychiatry 6:e882PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat van Wijk BC, Stam CJ, Daffertshofer A (2010) Comparing brain networks of different size and connectivity density using graph theory. PLoS ONE 5:e13701PubMedPubMedCentralCrossRef van Wijk BC, Stam CJ, Daffertshofer A (2010) Comparing brain networks of different size and connectivity density using graph theory. PLoS ONE 5:e13701PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Zorlu N, Capraz N, Oztekin E et al (2019) Rich club and reward network connectivity as endophenotypes for alcohol dependence: a diffusion tensor imaging study. Addict Biol 24:265–274PubMedCrossRef Zorlu N, Capraz N, Oztekin E et al (2019) Rich club and reward network connectivity as endophenotypes for alcohol dependence: a diffusion tensor imaging study. Addict Biol 24:265–274PubMedCrossRef
62.
Zurück zum Zitat Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069PubMedCrossRef Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069PubMedCrossRef
64.
Zurück zum Zitat Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–349PubMedCrossRef Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–349PubMedCrossRef
65.
Zurück zum Zitat Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296:910–913PubMedCrossRef Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296:910–913PubMedCrossRef
66.
Zurück zum Zitat Kim S (2015) ppcor: an R package for a fast calculation to semi-partial correlation coefficients. Commun Stat Appl Methods 22:665–674PubMedPubMedCentral Kim S (2015) ppcor: an R package for a fast calculation to semi-partial correlation coefficients. Commun Stat Appl Methods 22:665–674PubMedPubMedCentral
67.
Zurück zum Zitat Li F, Lui S, Yao L et al (2018) Altered white matter connectivity within and between networks in antipsychotic-naive first-episode schizophrenia. Schizophr Bull 44:409–418PubMedCrossRef Li F, Lui S, Yao L et al (2018) Altered white matter connectivity within and between networks in antipsychotic-naive first-episode schizophrenia. Schizophr Bull 44:409–418PubMedCrossRef
68.
Zurück zum Zitat Yeo RA, Ryman SG, van den Heuvel MP et al (2016) Graph metrics of structural brain networks in individuals with schizophrenia and healthy controls: group differences, relationships with intelligence, and genetics. J Int Neuropsychol Soc 22:240–249PubMedCrossRef Yeo RA, Ryman SG, van den Heuvel MP et al (2016) Graph metrics of structural brain networks in individuals with schizophrenia and healthy controls: group differences, relationships with intelligence, and genetics. J Int Neuropsychol Soc 22:240–249PubMedCrossRef
69.
Zurück zum Zitat Zalesky A, Fornito A, Harding IH et al (2010) Whole-brain anatomical networks: does the choice of nodes matter? Neuroimage 50:970–983PubMedCrossRef Zalesky A, Fornito A, Harding IH et al (2010) Whole-brain anatomical networks: does the choice of nodes matter? Neuroimage 50:970–983PubMedCrossRef
70.
Zurück zum Zitat Wang H, Zeng LL, Chen Y, Yin H, Tan Q, Hu D (2015) Evidence of a dissociation pattern in default mode subnetwork functional connectivity in schizophrenia. Sci Rep 5:14655PubMedPubMedCentralCrossRef Wang H, Zeng LL, Chen Y, Yin H, Tan Q, Hu D (2015) Evidence of a dissociation pattern in default mode subnetwork functional connectivity in schizophrenia. Sci Rep 5:14655PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Brady RO Jr, Gonsalvez I, Lee I et al (2019) Cerebellar-prefrontal network connectivity and negative symptoms in schizophrenia. Am J Psychiatry 176:512–520PubMedPubMedCentralCrossRef Brady RO Jr, Gonsalvez I, Lee I et al (2019) Cerebellar-prefrontal network connectivity and negative symptoms in schizophrenia. Am J Psychiatry 176:512–520PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Manoliu A, Riedl V, Doll A et al (2013) Insular dysfunction reflects altered between-network connectivity and severity of negative symptoms in schizophrenia during psychotic remission. Front Hum Neurosci 7:216PubMedPubMedCentralCrossRef Manoliu A, Riedl V, Doll A et al (2013) Insular dysfunction reflects altered between-network connectivity and severity of negative symptoms in schizophrenia during psychotic remission. Front Hum Neurosci 7:216PubMedPubMedCentralCrossRef
73.
74.
Zurück zum Zitat Domen P, Peeters S, Michielse S et al (2017) Differential time course of microstructural white matter in patients with psychotic disorder and individuals at risk: a 3-year follow-up study. Schizophr Bull 43:160–170PubMedCrossRef Domen P, Peeters S, Michielse S et al (2017) Differential time course of microstructural white matter in patients with psychotic disorder and individuals at risk: a 3-year follow-up study. Schizophr Bull 43:160–170PubMedCrossRef
75.
Zurück zum Zitat Viher PV, Stegmayer K, Giezendanner S et al (2016) Cerebral white matter structure is associated with DSM-5 schizophrenia symptom dimensions. Neuroimage Clin 12:93–99PubMedPubMedCentralCrossRef Viher PV, Stegmayer K, Giezendanner S et al (2016) Cerebral white matter structure is associated with DSM-5 schizophrenia symptom dimensions. Neuroimage Clin 12:93–99PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Melicher T, Horacek J, Hlinka J et al (2015) White matter changes in first episode psychosis and their relation to the size of sample studied: a DTI study. Schizophr Res 162:22–28PubMedCrossRef Melicher T, Horacek J, Hlinka J et al (2015) White matter changes in first episode psychosis and their relation to the size of sample studied: a DTI study. Schizophr Res 162:22–28PubMedCrossRef
77.
Zurück zum Zitat Bopp MHA, Zollner R, Jansen A, Dietsche B, Krug A, Kircher TTJ (2017) White matter integrity and symptom dimensions of schizophrenia: A diffusion tensor imaging study. Schizophr Res 184:59–68PubMedCrossRef Bopp MHA, Zollner R, Jansen A, Dietsche B, Krug A, Kircher TTJ (2017) White matter integrity and symptom dimensions of schizophrenia: A diffusion tensor imaging study. Schizophr Res 184:59–68PubMedCrossRef
78.
Zurück zum Zitat Cheng W, Palaniyappan L, Li M et al (2015) Voxel-based, brain-wide association study of aberrant functional connectivity in schizophrenia implicates thalamocortical circuitry. NPJ Schizophr 1:15016PubMedPubMedCentralCrossRef Cheng W, Palaniyappan L, Li M et al (2015) Voxel-based, brain-wide association study of aberrant functional connectivity in schizophrenia implicates thalamocortical circuitry. NPJ Schizophr 1:15016PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Chen P, Ye E, Jin X, Zhu Y, Wang L (2019) Association between thalamocortical functional connectivity abnormalities and cognitive deficits in schizophrenia. Sci Rep 9:2952PubMedPubMedCentralCrossRef Chen P, Ye E, Jin X, Zhu Y, Wang L (2019) Association between thalamocortical functional connectivity abnormalities and cognitive deficits in schizophrenia. Sci Rep 9:2952PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Martino M, Magioncalda P, Yu H et al (2018) Abnormal resting-state connectivity in a substantia nigra-related striato-thalamo-cortical network in a large sample of first-episode drug-naive patients with schizophrenia. Schizophr Bull 44:419–431PubMedCrossRef Martino M, Magioncalda P, Yu H et al (2018) Abnormal resting-state connectivity in a substantia nigra-related striato-thalamo-cortical network in a large sample of first-episode drug-naive patients with schizophrenia. Schizophr Bull 44:419–431PubMedCrossRef
81.
Zurück zum Zitat Avram M, Brandl F, Bauml J, Sorg C (2018) Cortico-thalamic hypo- and hyperconnectivity extend consistently to basal ganglia in schizophrenia. Neuropsychopharmacology 43:2239–2248PubMedPubMedCentralCrossRef Avram M, Brandl F, Bauml J, Sorg C (2018) Cortico-thalamic hypo- and hyperconnectivity extend consistently to basal ganglia in schizophrenia. Neuropsychopharmacology 43:2239–2248PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Giraldo-Chica M, Rogers BP, Damon SM, Landman BA, Woodward ND (2018) Prefrontal-thalamic anatomical connectivity and executive cognitive function in schizophrenia. Biol Psychiatry 83:509–517PubMedCrossRef Giraldo-Chica M, Rogers BP, Damon SM, Landman BA, Woodward ND (2018) Prefrontal-thalamic anatomical connectivity and executive cognitive function in schizophrenia. Biol Psychiatry 83:509–517PubMedCrossRef
84.
Zurück zum Zitat Jones DK, Knosche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73:239–254PubMedCrossRef Jones DK, Knosche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73:239–254PubMedCrossRef
85.
Zurück zum Zitat Calamuneri A, Arrigo A, Mormina E et al (2018) White matter tissue quantification at low b-values within constrained spherical deconvolution framework. Front Neurol 9:716PubMedPubMedCentralCrossRef Calamuneri A, Arrigo A, Mormina E et al (2018) White matter tissue quantification at low b-values within constrained spherical deconvolution framework. Front Neurol 9:716PubMedPubMedCentralCrossRef
Metadaten
Titel
Negative symptoms are associated with modularity and thalamic connectivity in schizophrenia
verfasst von
Adem Bayrakçı
Nabi Zorlu
Merve Karakılıç
Funda Gülyüksel
Berna Yalınçetin
Elif Oral
Fazıl Gelal
Emre Bora
Publikationsdatum
03.06.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Archives of Psychiatry and Clinical Neuroscience / Ausgabe 3/2023
Print ISSN: 0940-1334
Elektronische ISSN: 1433-8491
DOI
https://doi.org/10.1007/s00406-022-01433-5

Weitere Artikel der Ausgabe 3/2023

European Archives of Psychiatry and Clinical Neuroscience 3/2023 Zur Ausgabe

Wartezeit nicht kürzer, aber Arbeit flexibler

Psychotherapie Medizin aktuell

Fünf Jahren nach der Neugestaltung der Psychotherapie-Richtlinie wurden jetzt die Effekte der vorgenommenen Änderungen ausgewertet. Das Hauptziel der Novellierung war eine kürzere Wartezeit auf Therapieplätze. Dieses Ziel wurde nicht erreicht, es gab jedoch positive Auswirkungen auf andere Bereiche.

Chirurginnen und Chirurgen sind stark suizidgefährdet

07.05.2024 Suizid Nachrichten

Der belastende Arbeitsalltag wirkt sich negativ auf die psychische Gesundheit der Angehörigen ärztlicher Berufsgruppen aus. Chirurginnen und Chirurgen bilden da keine Ausnahme, im Gegenteil.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Update Psychiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.