Skip to main content
Erschienen in: Current Hypertension Reports 6/2012

01.12.2012 | Hot Topic

Neurogenic Hypertension: Revelations from Genome-Wide Gene Expression Profiling

verfasst von: Francine Z. Marques, Brian J. Morris

Erschienen in: Current Hypertension Reports | Ausgabe 6/2012

Einloggen, um Zugang zu erhalten

Abstract

There is now good evidence for a role of the sympathetic nervous system in the etiology of essential hypertension in humans. Although genetic variation is expected to underlie the elevated sympathetic outflow in this complex polygenic condition, only limited information has emerged from classic molecular genetic studies. Recently, progress has been made in understanding neurogenic aspects by determination of global alterations in gene expression in key brain regions of animal models of neurogenic hypertension. Such genome-wide expression studies in the hypothalamus and brainstem support roles for factors such as neuronal nitric oxide synthase, inflammation and reactive oxygen species. A role for non-coding RNAs such as microRNAs, and epigenetic alterations await exploration. Ongoing novel approaches should provide a better understanding of the processes responsible for the increased sympathetic outflow in animal models, as well as essential hypertension in humans. Such information may lead to better therapies for neurogenic hypertension in humans.
Literatur
1.
Zurück zum Zitat •• Ehret GB, Munroe PB, Rice KM, et al.: Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 2011, 478:103–109. This was the largest meta-analysis, combining genome-wide association studies for blood pressure and essential hypertension. CrossRefPubMed •• Ehret GB, Munroe PB, Rice KM, et al.: Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 2011, 478:103–109. This was the largest meta-analysis, combining genome-wide association studies for blood pressure and essential hypertension. CrossRefPubMed
2.
Zurück zum Zitat Coffman TM. Under pressure: the search for the essential mechanisms of hypertension. Nat Med. 2011;17:1402–9.CrossRefPubMed Coffman TM. Under pressure: the search for the essential mechanisms of hypertension. Nat Med. 2011;17:1402–9.CrossRefPubMed
3.
Zurück zum Zitat Grassi G, Seravalle G, Quarti-Trevano F. The ‘neuroadrenergic hypothesis’ in hypertension: current evidence. Exp Physiol. 2010;95:581–6.CrossRefPubMed Grassi G, Seravalle G, Quarti-Trevano F. The ‘neuroadrenergic hypothesis’ in hypertension: current evidence. Exp Physiol. 2010;95:581–6.CrossRefPubMed
4.
Zurück zum Zitat • Fisher JP, Paton JF: The sympathetic nervous system and blood pressure in humans: implications for hypertension. J Hum Hypertens 2011: in press. This paper is a concise review of the role of the sympathetic nervous system in hypertension. • Fisher JP, Paton JF: The sympathetic nervous system and blood pressure in humans: implications for hypertension. J Hum Hypertens 2011: in press. This paper is a concise review of the role of the sympathetic nervous system in hypertension.
5.
Zurück zum Zitat Davern PJ, Nguyen-Huu TP, La Greca L, et al. Role of the sympathetic nervous system in Schlager genetically hypertensive mice. Hypertension. 2009;54:852–9.CrossRefPubMed Davern PJ, Nguyen-Huu TP, La Greca L, et al. Role of the sympathetic nervous system in Schlager genetically hypertensive mice. Hypertension. 2009;54:852–9.CrossRefPubMed
6.
Zurück zum Zitat Davern PJ, Jackson KL, Nguyen-Huu TP, et al. Cardiovascular responses to aversive and non-aversive stressors in Schlager genetically hypertensive mice. Am J Hypertens. 2010;23:838–44.CrossRefPubMed Davern PJ, Jackson KL, Nguyen-Huu TP, et al. Cardiovascular responses to aversive and non-aversive stressors in Schlager genetically hypertensive mice. Am J Hypertens. 2010;23:838–44.CrossRefPubMed
7.
Zurück zum Zitat Davern PJ, Jackson KL, Nguyen-Huu TP, et al. Cardiovascular reactivity and neuronal activation to stress in Schlager genetically hypertensive mice. Neuroscience. 2010;170:551–8.CrossRefPubMed Davern PJ, Jackson KL, Nguyen-Huu TP, et al. Cardiovascular reactivity and neuronal activation to stress in Schlager genetically hypertensive mice. Neuroscience. 2010;170:551–8.CrossRefPubMed
8.
Zurück zum Zitat Palma-Rigo K, Jackson KL, Davern PJ, et al. Renin-angiotensin and sympathetic nervous system contribution to high blood pressure in Schlager mice. J Hypertens. 2011;29:2156–66.CrossRefPubMed Palma-Rigo K, Jackson KL, Davern PJ, et al. Renin-angiotensin and sympathetic nervous system contribution to high blood pressure in Schlager mice. J Hypertens. 2011;29:2156–66.CrossRefPubMed
9.
Zurück zum Zitat Dampney RA, Horiuchi J, Killinger S, et al. Long-term regulation of arterial blood pressure by hypothalamic nuclei: some critical questions. Clin Exp Pharmacol Physiol. 2005;32:419–25.CrossRefPubMed Dampney RA, Horiuchi J, Killinger S, et al. Long-term regulation of arterial blood pressure by hypothalamic nuclei: some critical questions. Clin Exp Pharmacol Physiol. 2005;32:419–25.CrossRefPubMed
10.
11.
Zurück zum Zitat Davern PJ, Head GA. Role of the medial amygdala in mediating responses to aversive stimuli leading to hypertension. Clin Exp Pharmacol Physiol. 2011;38:136–43.CrossRefPubMed Davern PJ, Head GA. Role of the medial amygdala in mediating responses to aversive stimuli leading to hypertension. Clin Exp Pharmacol Physiol. 2011;38:136–43.CrossRefPubMed
12.
Zurück zum Zitat •• Marques FZ, Campain AE, Davern PJ, et al.: Global identification of the genes and pathways differentially expressed in hypothalamus in early and established neurogenic hypertension. Physiol Genomics 2011,43:766–771. This paper describes all the genes differentially expressed in the hypothalamus during the development and maintenance phases of hypertension in a mouse model of neurogenic hypertension. CrossRefPubMed •• Marques FZ, Campain AE, Davern PJ, et al.: Global identification of the genes and pathways differentially expressed in hypothalamus in early and established neurogenic hypertension. Physiol Genomics 2011,43:766–771. This paper describes all the genes differentially expressed in the hypothalamus during the development and maintenance phases of hypertension in a mouse model of neurogenic hypertension. CrossRefPubMed
13.
Zurück zum Zitat Jaffrey SR, Snyder SH. PIN: an associated protein inhibitor of neuronal nitric oxide synthase. Science. 1996;274:774–7.CrossRefPubMed Jaffrey SR, Snyder SH. PIN: an associated protein inhibitor of neuronal nitric oxide synthase. Science. 1996;274:774–7.CrossRefPubMed
14.
Zurück zum Zitat Fan JS, Zhang Q, Li M, et al. Protein inhibitor of neuronal nitric-oxide synthase, PIN, binds to a 17-amino acid residue fragment of the enzyme. J Biol Chem. 1998;273:33472–81.CrossRefPubMed Fan JS, Zhang Q, Li M, et al. Protein inhibitor of neuronal nitric-oxide synthase, PIN, binds to a 17-amino acid residue fragment of the enzyme. J Biol Chem. 1998;273:33472–81.CrossRefPubMed
15.
16.
Zurück zum Zitat •• Marques FZ, Campain AE, Yang YH, Morris BJ: Meta-analysis of genome-wide gene expression differences in onset and maintenance phases of genetic hypertension. Hypertension 2010,56:319–324. This paper identifies genes that are differentially expressed during the waking surge of blood pressure, well known to be a risk factor for cardiovascular events. CrossRefPubMed •• Marques FZ, Campain AE, Yang YH, Morris BJ: Meta-analysis of genome-wide gene expression differences in onset and maintenance phases of genetic hypertension. Hypertension 2010,56:319–324. This paper identifies genes that are differentially expressed during the waking surge of blood pressure, well known to be a risk factor for cardiovascular events. CrossRefPubMed
17.
Zurück zum Zitat Marques FZ, Campain AE, Davern PJ, et al. Genes influencing circadian differences in blood pressure in hypertensive mice. PLoS One. 2011;6:e19203.CrossRefPubMed Marques FZ, Campain AE, Davern PJ, et al. Genes influencing circadian differences in blood pressure in hypertensive mice. PLoS One. 2011;6:e19203.CrossRefPubMed
18.
Zurück zum Zitat Pravenec M, Kurtz TW. Recent advances in genetics of the spontaneously hypertensive rat. Curr Hypertens Rep. 2010;12:5–9.CrossRefPubMed Pravenec M, Kurtz TW. Recent advances in genetics of the spontaneously hypertensive rat. Curr Hypertens Rep. 2010;12:5–9.CrossRefPubMed
19.
Zurück zum Zitat Okamoto K, Nosaka S, Yamori Y, Matsumoto M. Participation of neural factor in the pathogenesis of hypertension in the spontaneously hypertensive rat. Jpn Heart J. 1967;8:168–80.CrossRefPubMed Okamoto K, Nosaka S, Yamori Y, Matsumoto M. Participation of neural factor in the pathogenesis of hypertension in the spontaneously hypertensive rat. Jpn Heart J. 1967;8:168–80.CrossRefPubMed
20.
Zurück zum Zitat Iriuchijima J. Sympathetic discharge rate in spontaneously hypertensive rats. Jpn Heart J. 1973;14:350–6.CrossRefPubMed Iriuchijima J. Sympathetic discharge rate in spontaneously hypertensive rats. Jpn Heart J. 1973;14:350–6.CrossRefPubMed
21.
Zurück zum Zitat Judy WV, Watanabe AM, Henry DP, et al. Sympathetic nerve activity: role in regulation of blood pressure in the spontaneously hypertensive rat. Circ Res. 1976;38:21–9.CrossRefPubMed Judy WV, Watanabe AM, Henry DP, et al. Sympathetic nerve activity: role in regulation of blood pressure in the spontaneously hypertensive rat. Circ Res. 1976;38:21–9.CrossRefPubMed
22.
Zurück zum Zitat Collis MG, de May C, Vanhoutte PM. Enhanced release of noradrenaline in the kidney of the young spontaneously hypertensive rat. Clin Sci (Lond). 1979;57 Suppl 5:233s–4. Collis MG, de May C, Vanhoutte PM. Enhanced release of noradrenaline in the kidney of the young spontaneously hypertensive rat. Clin Sci (Lond). 1979;57 Suppl 5:233s–4.
23.
Zurück zum Zitat Collis MG, DeMey C, Vanhoutte PM. Renal vascular reactivity in the young spontaneously hypertensive rat. Hypertension. 1980;2:45–52.CrossRefPubMed Collis MG, DeMey C, Vanhoutte PM. Renal vascular reactivity in the young spontaneously hypertensive rat. Hypertension. 1980;2:45–52.CrossRefPubMed
24.
Zurück zum Zitat Winternitz SR, Katholi RE, Oparil S. Role of the renal sympathetic nerves in the development and maintenance of hypertension in the spontaneously hypertensive rat. J Clin Invest. 1980;66:971–8.CrossRefPubMed Winternitz SR, Katholi RE, Oparil S. Role of the renal sympathetic nerves in the development and maintenance of hypertension in the spontaneously hypertensive rat. J Clin Invest. 1980;66:971–8.CrossRefPubMed
25.
Zurück zum Zitat Allen AM. Inhibition of the hypothalamic paraventricular nucleus in spontaneously hypertensive rats dramatically reduces sympathetic vasomotor tone. Hypertension. 2002;39:275–80.CrossRefPubMed Allen AM. Inhibition of the hypothalamic paraventricular nucleus in spontaneously hypertensive rats dramatically reduces sympathetic vasomotor tone. Hypertension. 2002;39:275–80.CrossRefPubMed
26.
Zurück zum Zitat Reja V, Goodchild AK, Phillips JK, Pilowsky PM. Upregulation of angiotensin AT1 receptor and intracellular kinase gene expression in hypertensive rats. Clin Exp Pharmacol Physiol. 2006;33:690–5.CrossRefPubMed Reja V, Goodchild AK, Phillips JK, Pilowsky PM. Upregulation of angiotensin AT1 receptor and intracellular kinase gene expression in hypertensive rats. Clin Exp Pharmacol Physiol. 2006;33:690–5.CrossRefPubMed
27.
Zurück zum Zitat Waki H, Gouraud SS, Maeda M, et al. Contributions of vascular inflammation in the brainstem for neurogenic hypertension. Respir Physiol Neurobiol. 2011;178:422–8.CrossRefPubMed Waki H, Gouraud SS, Maeda M, et al. Contributions of vascular inflammation in the brainstem for neurogenic hypertension. Respir Physiol Neurobiol. 2011;178:422–8.CrossRefPubMed
28.
Zurück zum Zitat Waki H, Liu B, Miyake M, et al. Junctional adhesion molecule-1 is upregulated in spontaneously hypertensive rats: evidence for a prohypertensive role within the brain stem. Hypertension. 2007;49:1321–7.CrossRefPubMed Waki H, Liu B, Miyake M, et al. Junctional adhesion molecule-1 is upregulated in spontaneously hypertensive rats: evidence for a prohypertensive role within the brain stem. Hypertension. 2007;49:1321–7.CrossRefPubMed
29.
Zurück zum Zitat Waki H, Gouraud SS, Maeda M, Paton JF. Evidence of specific inflammatory condition in nucleus tractus solitarii of spontaneously hypertensive rats. Exp Physiol. 2010;95:595–600.CrossRefPubMed Waki H, Gouraud SS, Maeda M, Paton JF. Evidence of specific inflammatory condition in nucleus tractus solitarii of spontaneously hypertensive rats. Exp Physiol. 2010;95:595–600.CrossRefPubMed
30.
Zurück zum Zitat Ferrari MF, Reis EM, Matsumoto JP, Fior-Chadi DR. Gene expression profiling of cultured cells from brainstem of newborn spontaneously hypertensive and Wistar Kyoto rats. Cell Mol Neurobiol. 2009;29:287–308.CrossRefPubMed Ferrari MF, Reis EM, Matsumoto JP, Fior-Chadi DR. Gene expression profiling of cultured cells from brainstem of newborn spontaneously hypertensive and Wistar Kyoto rats. Cell Mol Neurobiol. 2009;29:287–308.CrossRefPubMed
31.
Zurück zum Zitat Li Y, Zhang W, Stern JE. Nitric oxide inhibits the firing activity of hypothalamic paraventricular neurons that innervate the medulla oblongata: role of GABA. Neuroscience. 2003;118:585–601.CrossRefPubMed Li Y, Zhang W, Stern JE. Nitric oxide inhibits the firing activity of hypothalamic paraventricular neurons that innervate the medulla oblongata: role of GABA. Neuroscience. 2003;118:585–601.CrossRefPubMed
32.
Zurück zum Zitat Rossi NF, Maliszewska-Scislo M, Chen H, et al. Neuronal nitric oxide synthase within paraventricular nucleus: blood pressure and baroreflex in two-kidney, one-clip hypertensive rats. Exp Physiol. 2010;95:845–57.CrossRefPubMed Rossi NF, Maliszewska-Scislo M, Chen H, et al. Neuronal nitric oxide synthase within paraventricular nucleus: blood pressure and baroreflex in two-kidney, one-clip hypertensive rats. Exp Physiol. 2010;95:845–57.CrossRefPubMed
33.
Zurück zum Zitat Shi P, Diez-Freire C, Jun JY, et al. Brain microglial cytokines in neurogenic hypertension. Hypertension. 2010;56:297–303.CrossRefPubMed Shi P, Diez-Freire C, Jun JY, et al. Brain microglial cytokines in neurogenic hypertension. Hypertension. 2010;56:297–303.CrossRefPubMed
34.
Zurück zum Zitat Harrison DG, Guzik TJ, Lob HE, et al. Inflammation, immunity, and hypertension. Hypertension. 2011;57:132–40.CrossRefPubMed Harrison DG, Guzik TJ, Lob HE, et al. Inflammation, immunity, and hypertension. Hypertension. 2011;57:132–40.CrossRefPubMed
35.
Zurück zum Zitat Datla SR, Griendling KK. Reactive oxygen species, NADPH oxidases, and hypertension. Hypertension. 2010;56:325–30.CrossRefPubMed Datla SR, Griendling KK. Reactive oxygen species, NADPH oxidases, and hypertension. Hypertension. 2010;56:325–30.CrossRefPubMed
36.
Zurück zum Zitat Shokoji T, Nishiyama A, Fujisawa Y, et al. Renal sympathetic nerve responses to Tempol in spontaneously hypertensive rats. Hypertension. 2003;41:266–73.CrossRefPubMed Shokoji T, Nishiyama A, Fujisawa Y, et al. Renal sympathetic nerve responses to Tempol in spontaneously hypertensive rats. Hypertension. 2003;41:266–73.CrossRefPubMed
37.
Zurück zum Zitat Lob HE, Marvar PJ, Guzik TJ, et al. Induction of hypertension and peripheral inflammation by reduction of extracellular superoxide dismutase in the central nervous system. Hypertension. 2010;55:277–83.CrossRefPubMed Lob HE, Marvar PJ, Guzik TJ, et al. Induction of hypertension and peripheral inflammation by reduction of extracellular superoxide dismutase in the central nervous system. Hypertension. 2010;55:277–83.CrossRefPubMed
38.
Zurück zum Zitat Harrison DG, Gongora MC. Oxidative stress and hypertension. Med Clin North Am. 2009;93:621–35.CrossRefPubMed Harrison DG, Gongora MC. Oxidative stress and hypertension. Med Clin North Am. 2009;93:621–35.CrossRefPubMed
39.
Zurück zum Zitat Marvar PJ, Lob H, Vinh A, et al. The central nervous system and inflammation in hypertension. Curr Opin Pharmacol. 2011;11:156–61.CrossRefPubMed Marvar PJ, Lob H, Vinh A, et al. The central nervous system and inflammation in hypertension. Curr Opin Pharmacol. 2011;11:156–61.CrossRefPubMed
40.
Zurück zum Zitat Levy D, Ehret GB, Rice K, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41:677–87.CrossRefPubMed Levy D, Ehret GB, Rice K, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41:677–87.CrossRefPubMed
41.
Zurück zum Zitat Lee C, Scherer SW. The clinical context of copy number variation in the human genome. Expert Rev Mol Med. 2010;12:e8.CrossRefPubMed Lee C, Scherer SW. The clinical context of copy number variation in the human genome. Expert Rev Mol Med. 2010;12:e8.CrossRefPubMed
42.
Zurück zum Zitat Craddock N, Hurles ME, Cardin N, et al. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature. 2010;464:713–20.CrossRefPubMed Craddock N, Hurles ME, Cardin N, et al. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature. 2010;464:713–20.CrossRefPubMed
43.
Zurück zum Zitat Charchar FJ, Kaiser M, Bingham AJ, et al. Whole genome survey of copy number variation in the spontaneously hypertensive rat: relationship to quantitative trait loci, gene expression, and blood pressure. Hypertension. 2010;55:1231–8.CrossRefPubMed Charchar FJ, Kaiser M, Bingham AJ, et al. Whole genome survey of copy number variation in the spontaneously hypertensive rat: relationship to quantitative trait loci, gene expression, and blood pressure. Hypertension. 2010;55:1231–8.CrossRefPubMed
44.
Zurück zum Zitat Batkai S, Thum T. MicroRNAs in hypertension: mechanisms and therapeutic targets. Curr Hypertens Rep. 2012;14:79–87.CrossRefPubMed Batkai S, Thum T. MicroRNAs in hypertension: mechanisms and therapeutic targets. Curr Hypertens Rep. 2012;14:79–87.CrossRefPubMed
45.
Zurück zum Zitat Wang X, Snieder H. Genome-wide association studies and beyond: what’s next in blood pressure genetics? Hypertension. 2010;56:1035–7.CrossRefPubMed Wang X, Snieder H. Genome-wide association studies and beyond: what’s next in blood pressure genetics? Hypertension. 2010;56:1035–7.CrossRefPubMed
46.
Zurück zum Zitat • Huntzinger E, Izaurralde E: Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 2011,12:99–110. This is a good review describing how microRNAs regulate mRNA levels. CrossRefPubMed • Huntzinger E, Izaurralde E: Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 2011,12:99–110. This is a good review describing how microRNAs regulate mRNA levels. CrossRefPubMed
47.
Zurück zum Zitat Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature. 2011;469:336–42.CrossRefPubMed Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature. 2011;469:336–42.CrossRefPubMed
48.
Zurück zum Zitat Latronico MV, Condorelli G. microRNAs in hypertrophy and heart failure. Exp Biol Med (Maywood). 2011;236:125–31.CrossRef Latronico MV, Condorelli G. microRNAs in hypertrophy and heart failure. Exp Biol Med (Maywood). 2011;236:125–31.CrossRef
49.
50.
Zurück zum Zitat Topkara VK, Mann DL. Role of microRNAs in cardiac remodeling and heart failure. Cardiovasc Drugs Ther. 2011;25:171–82.CrossRefPubMed Topkara VK, Mann DL. Role of microRNAs in cardiac remodeling and heart failure. Cardiovasc Drugs Ther. 2011;25:171–82.CrossRefPubMed
51.
52.
Zurück zum Zitat Hansen KF, Sakamoto K, Obrietan K. microRNAs: a potential interface between the circadian clock and human health. Genome Med. 2011;3:10.CrossRefPubMed Hansen KF, Sakamoto K, Obrietan K. microRNAs: a potential interface between the circadian clock and human health. Genome Med. 2011;3:10.CrossRefPubMed
53.
Zurück zum Zitat Sethupathy P, Borel C, Gagnebin M, et al. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3′ untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet. 2007;81:405–13.CrossRefPubMed Sethupathy P, Borel C, Gagnebin M, et al. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3′ untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet. 2007;81:405–13.CrossRefPubMed
54.
Zurück zum Zitat Ceolotto G, Papparella I, Bortoluzzi A, et al. Interplay between miR-155, AT1R A1166C polymorphism, and AT1R expression in young untreated hypertensives. Am J Hypertens. 2011;24:241–6.CrossRefPubMed Ceolotto G, Papparella I, Bortoluzzi A, et al. Interplay between miR-155, AT1R A1166C polymorphism, and AT1R expression in young untreated hypertensives. Am J Hypertens. 2011;24:241–6.CrossRefPubMed
55.
Zurück zum Zitat Fan ZD, Zhang L, Shi Z, et al.: Artificial microRNA interference targeting AT(1a) receptors in paraventricular nucleus attenuates hypertension in rats. Gene Ther 2011 Fan ZD, Zhang L, Shi Z, et al.: Artificial microRNA interference targeting AT(1a) receptors in paraventricular nucleus attenuates hypertension in rats. Gene Ther 2011
56.
Zurück zum Zitat •• Marques FZ, Campain AE, Tomaszewski M, et al.: Gene expression profiling reveals renin mRNA overexpression in human hypertensive kidneys and a role for microRNAs. Hypertension 2011,58:1093–1098. This genome-wide study identified the genes and microRNAs that were differentially expressed in human hypertensive kidneys; it also showed how two microRNAs are able to regulate renin mRNA, so a reduction in these could explain why levels of renin mRNA were higher. CrossRefPubMed •• Marques FZ, Campain AE, Tomaszewski M, et al.: Gene expression profiling reveals renin mRNA overexpression in human hypertensive kidneys and a role for microRNAs. Hypertension 2011,58:1093–1098. This genome-wide study identified the genes and microRNAs that were differentially expressed in human hypertensive kidneys; it also showed how two microRNAs are able to regulate renin mRNA, so a reduction in these could explain why levels of renin mRNA were higher. CrossRefPubMed
57.
Zurück zum Zitat •• Schlaich MP, Sobotka PA, Krum H, et al.: Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med 2009,361:932–934. This paper showed that renal sympathetic denervation is an effective treatment for uncontrolled hypertension. CrossRefPubMed •• Schlaich MP, Sobotka PA, Krum H, et al.: Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med 2009,361:932–934. This paper showed that renal sympathetic denervation is an effective treatment for uncontrolled hypertension. CrossRefPubMed
59.
Zurück zum Zitat Paralkar VR, Weiss MJ. A new ‘Linc’ between noncoding RNAs and blood development. Genes Dev. 2011;25:2555–8.CrossRefPubMed Paralkar VR, Weiss MJ. A new ‘Linc’ between noncoding RNAs and blood development. Genes Dev. 2011;25:2555–8.CrossRefPubMed
60.
Zurück zum Zitat Pauli A, Rinn JL, Schier AF. Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet. 2011;12:136–49.CrossRefPubMed Pauli A, Rinn JL, Schier AF. Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet. 2011;12:136–49.CrossRefPubMed
61.
Zurück zum Zitat Ng SY, Johnson R, Stanton LW. Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J. 2012;31:522–33.CrossRef Ng SY, Johnson R, Stanton LW. Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J. 2012;31:522–33.CrossRef
62.
Zurück zum Zitat Niland CN, Merry CR, Khalil AM. Emerging roles for long non-coding RNAs in cancer and neurological disorders. Front Genet. 2012;3:25.PubMed Niland CN, Merry CR, Khalil AM. Emerging roles for long non-coding RNAs in cancer and neurological disorders. Front Genet. 2012;3:25.PubMed
63.
Zurück zum Zitat •• Cabili MN, Trapnell C, Goff L, et al.: Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 2011,25:1915–1927. This paper describes all of the long intergenic non-coding RNAs in humans. CrossRefPubMed •• Cabili MN, Trapnell C, Goff L, et al.: Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 2011,25:1915–1927. This paper describes all of the long intergenic non-coding RNAs in humans. CrossRefPubMed
65.
Zurück zum Zitat Esler M, Eikelis N, Schlaich M, et al. Human sympathetic nerve biology: parallel influences of stress and epigenetics in essential hypertension and panic disorder. Ann N Y Acad Sci. 2008;1148:338–48.CrossRefPubMed Esler M, Eikelis N, Schlaich M, et al. Human sympathetic nerve biology: parallel influences of stress and epigenetics in essential hypertension and panic disorder. Ann N Y Acad Sci. 2008;1148:338–48.CrossRefPubMed
66.
Zurück zum Zitat Guan J, Mao C, Xu F, et al. Prenatal dehydration alters renin-angiotensin system associated with angiotensin-increased blood pressure in young offspring. Hypertens Res. 2009;32:1104–11.CrossRefPubMed Guan J, Mao C, Xu F, et al. Prenatal dehydration alters renin-angiotensin system associated with angiotensin-increased blood pressure in young offspring. Hypertens Res. 2009;32:1104–11.CrossRefPubMed
67.
Zurück zum Zitat Riviere G, Lienhard D, Andrieu T, et al. Epigenetic regulation of somatic angiotensin-converting enzyme by DNA methylation and histone acetylation. Epigenetics. 2011;6:478–89.CrossRefPubMed Riviere G, Lienhard D, Andrieu T, et al. Epigenetic regulation of somatic angiotensin-converting enzyme by DNA methylation and histone acetylation. Epigenetics. 2011;6:478–89.CrossRefPubMed
68.
Zurück zum Zitat Lee HA, Cho HM, Lee DY, et al. Tissue-specific upregulation of angiotensin-converting enzyme 1 in spontaneously hypertensive rats through histone code modifications. Hypertension. 2012;59:621–6.CrossRefPubMed Lee HA, Cho HM, Lee DY, et al. Tissue-specific upregulation of angiotensin-converting enzyme 1 in spontaneously hypertensive rats through histone code modifications. Hypertension. 2012;59:621–6.CrossRefPubMed
69.
Zurück zum Zitat • Moreno C, Hoffman M, Stodola TJ, et al.: Creation and characterization of a renin knockout rat. Hypertension 2011,57:614–619. This paper was the first to make use of zinc finger nuclease technology to generate a knockout animal. CrossRefPubMed • Moreno C, Hoffman M, Stodola TJ, et al.: Creation and characterization of a renin knockout rat. Hypertension 2011,57:614–619. This paper was the first to make use of zinc finger nuclease technology to generate a knockout animal. CrossRefPubMed
70.
Zurück zum Zitat Premsrirut PK, Dow LE, Kim SY, et al. A rapid and scalable system for studying gene function in mice using conditional RNA interference. Cell. 2011;145:145–58.CrossRefPubMed Premsrirut PK, Dow LE, Kim SY, et al. A rapid and scalable system for studying gene function in mice using conditional RNA interference. Cell. 2011;145:145–58.CrossRefPubMed
71.
Zurück zum Zitat Hudson TJ, Anderson W, Artez A, et al. International network of cancer genome projects. Nature. 2010;464:993–8.CrossRefPubMed Hudson TJ, Anderson W, Artez A, et al. International network of cancer genome projects. Nature. 2010;464:993–8.CrossRefPubMed
Metadaten
Titel
Neurogenic Hypertension: Revelations from Genome-Wide Gene Expression Profiling
verfasst von
Francine Z. Marques
Brian J. Morris
Publikationsdatum
01.12.2012
Verlag
Current Science Inc.
Erschienen in
Current Hypertension Reports / Ausgabe 6/2012
Print ISSN: 1522-6417
Elektronische ISSN: 1534-3111
DOI
https://doi.org/10.1007/s11906-012-0282-7

Weitere Artikel der Ausgabe 6/2012

Current Hypertension Reports 6/2012 Zur Ausgabe

Special Situations in the Management of Hypertension (T Kotchen, Section Editor)

Novel Antihypertensive Therapies: Renal Sympathetic Nerve Ablation and Carotid Baroreceptor Stimulation

Mediators, Mechanisms, and Pathways in Tissue Injury (B Rothermel, Section Editor)

Circulating miRNAs: Reflecting or Affecting Cardiovascular Disease?

Mediators, Mechanisms, and Pathways in Tissue Injury (B Rothermel, Section Editor)

Cytoskeletal Regulation of TRPC Channels in the Cardiorenal System

Mediators, Mechanisms, and Pathways in Tissue Injury (B Rothermel, Section Editor)

Striking a Balance: Autophagy, Apoptosis, and Necrosis in a Normal and Failing Heart

Mediators, Mechanisms, and Pathways in Tissue Injury (B Rothermel, Section Editor)

Mechanisms of Lipotoxicity in the Cardiovascular System

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.