Skip to main content
Erschienen in: Current Hypertension Reports 6/2012

01.12.2012 | Mediators, Mechanisms, and Pathways in Tissue Injury (B Rothermel, Section Editor)

Striking a Balance: Autophagy, Apoptosis, and Necrosis in a Normal and Failing Heart

verfasst von: Wajihah Mughal, Rimpy Dhingra, Lorrie A. Kirshenbaum

Erschienen in: Current Hypertension Reports | Ausgabe 6/2012

Einloggen, um Zugang zu erhalten

Abstract

Despite the progress that has been made over the past two decades in cardiovascular research, heart failure remains a major cause of morbidity and mortality worldwide. Insight into the cellular and molecular mechanisms that underlie the heart failure in individuals with ischemic heart disease have identified defects in cellular processes that govern autophagy, apoptosis and necrosis as a prevailing underlying cause. Indeed, programmed cell death of cardiac cells by apoptosis or necrosis is believed to involve the intrinsic mitochondrial pathway and/or extrinsic death receptor pathway by certain Bcl-2 family members as well as components of the TNFα signaling pathway. In this review, we discuss recent advances in the molecular signaling factors that govern cardiac cell fate under normal and disease conditions.
Literatur
1.
Zurück zum Zitat Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2–220.PubMedCrossRef Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2–220.PubMedCrossRef
2.
Zurück zum Zitat Statistics Canada. Morality, Summary List of Causes 2008. 2011. Statistics Canada. Morality, Summary List of Causes 2008. 2011.
3.
Zurück zum Zitat Kirshenbaum LA, Schneider MD. Adenovirus E1A represses cardiac gene transcription and reactivates DNA synthesis in ventricular myocytes, via alternative pocket protein- and p300-binding domains. J Biol Chem. 1995;270:7791–4.PubMedCrossRef Kirshenbaum LA, Schneider MD. Adenovirus E1A represses cardiac gene transcription and reactivates DNA synthesis in ventricular myocytes, via alternative pocket protein- and p300-binding domains. J Biol Chem. 1995;270:7791–4.PubMedCrossRef
4.
Zurück zum Zitat Kirshenbaum LA, Abdellatif M, Chakraborty S, Schneider MD. Human E2F-1 reactivates cell cycle progression in ventricular myocytes and represses cardiac gene transcription. Dev Biol. 1996;179(2):402–11.PubMedCrossRef Kirshenbaum LA, Abdellatif M, Chakraborty S, Schneider MD. Human E2F-1 reactivates cell cycle progression in ventricular myocytes and represses cardiac gene transcription. Dev Biol. 1996;179(2):402–11.PubMedCrossRef
5.
Zurück zum Zitat Kirshenbaum LA, Schneider MD. The cardiac cell cycle, pocket proteins, and p300. Trends Cardiovasc Med. 1995;5(6):230–5.PubMedCrossRef Kirshenbaum LA, Schneider MD. The cardiac cell cycle, pocket proteins, and p300. Trends Cardiovasc Med. 1995;5(6):230–5.PubMedCrossRef
6.
Zurück zum Zitat Leri A, Kajstura J, Anversa P. Mechanisms of myocardial regeneration. Trends Cardiovasc Med. 2011;21(2):52–8.PubMedCrossRef Leri A, Kajstura J, Anversa P. Mechanisms of myocardial regeneration. Trends Cardiovasc Med. 2011;21(2):52–8.PubMedCrossRef
7.
Zurück zum Zitat Regula KM, Kirshenbaum LA. Apoptosis of ventricular myocytes: a means to an end. J Mol Cell Cardiol. 2005;38(1):3–13.PubMedCrossRef Regula KM, Kirshenbaum LA. Apoptosis of ventricular myocytes: a means to an end. J Mol Cell Cardiol. 2005;38(1):3–13.PubMedCrossRef
8.
Zurück zum Zitat de Moissac D, Zheng H, Kirshenbaum LA. Linkage of the BH4 domain of Bcl-2 and the nuclear factor kappaB signaling pathway for suppression of apoptosis. J Biol Chem. 1999;274(41):29505–9.PubMedCrossRef de Moissac D, Zheng H, Kirshenbaum LA. Linkage of the BH4 domain of Bcl-2 and the nuclear factor kappaB signaling pathway for suppression of apoptosis. J Biol Chem. 1999;274(41):29505–9.PubMedCrossRef
9.
Zurück zum Zitat Shaw J, Kirshenbaum LA. Molecular regulation of autophagy and apoptosis during ischemic and non-ischemic cardiomyopathy. Autophagy. 2008;4(4):427–34.PubMed Shaw J, Kirshenbaum LA. Molecular regulation of autophagy and apoptosis during ischemic and non-ischemic cardiomyopathy. Autophagy. 2008;4(4):427–34.PubMed
11.
Zurück zum Zitat Mattson MP. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol. 2000;1(2):120–9.PubMedCrossRef Mattson MP. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol. 2000;1(2):120–9.PubMedCrossRef
12.
Zurück zum Zitat • Singh SS, Kang PM. Mechanisms and inhibitors of apoptosis in cardiovascular diseases. Curr Pharm Des. 2011;17(18):1783–93. Recent review highlighting the apoptotic pathways associated with heart failure.PubMedCrossRef • Singh SS, Kang PM. Mechanisms and inhibitors of apoptosis in cardiovascular diseases. Curr Pharm Des. 2011;17(18):1783–93. Recent review highlighting the apoptotic pathways associated with heart failure.PubMedCrossRef
13.
Zurück zum Zitat Goljan E. Rapid review pathology. 3rd ed. Philadelphia: Mosby/Elsevier; 2010. Goljan E. Rapid review pathology. 3rd ed. Philadelphia: Mosby/Elsevier; 2010.
14.
Zurück zum Zitat Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251–306.PubMedCrossRef Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251–306.PubMedCrossRef
15.
Zurück zum Zitat McCall K. Genetic control of necrosis - another type of programmed cell death. Curr Opin Cell Biol. 2010;22:882–8.PubMedCrossRef McCall K. Genetic control of necrosis - another type of programmed cell death. Curr Opin Cell Biol. 2010;22:882–8.PubMedCrossRef
16.
Zurück zum Zitat Inoue Y, Klionsky DJ. Regulation of macroautophagy in Saccharomyces cerevisiae. Semin Cell Dev Biol. 2010;21(7):664–70.PubMedCrossRef Inoue Y, Klionsky DJ. Regulation of macroautophagy in Saccharomyces cerevisiae. Semin Cell Dev Biol. 2010;21(7):664–70.PubMedCrossRef
17.
Zurück zum Zitat Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol. 2009;10(7):458–67.PubMedCrossRef Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol. 2009;10(7):458–67.PubMedCrossRef
18.
Zurück zum Zitat Luzio JP, Pryor PR, Bright NA. Lysosomes: fusion and function. Nat Rev Mol Cell Biol. 2007;8(8):622–32.PubMedCrossRef Luzio JP, Pryor PR, Bright NA. Lysosomes: fusion and function. Nat Rev Mol Cell Biol. 2007;8(8):622–32.PubMedCrossRef
19.
Zurück zum Zitat Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 1993;333(1–2):169–74.PubMedCrossRef Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 1993;333(1–2):169–74.PubMedCrossRef
20.
Zurück zum Zitat Kuma A, Hatano M, Matsui M, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004;32(7020):1032–6.CrossRef Kuma A, Hatano M, Matsui M, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004;32(7020):1032–6.CrossRef
21.
Zurück zum Zitat Valentim L, Laurence KM, Townsend PA, et al. Urocortin inhibits Beclin1-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury. J Mol Cell Cardiol. 2006;40(6):846–52.PubMedCrossRef Valentim L, Laurence KM, Townsend PA, et al. Urocortin inhibits Beclin1-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury. J Mol Cell Cardiol. 2006;40(6):846–52.PubMedCrossRef
22.
Zurück zum Zitat Hariharan N, Zhai P, Sadoshima J. Oxidative stress stimulates autophagic flux during ischemia/reperfusion. Antioxid Redox Signal. 2011;14(11):2179–90.PubMedCrossRef Hariharan N, Zhai P, Sadoshima J. Oxidative stress stimulates autophagic flux during ischemia/reperfusion. Antioxid Redox Signal. 2011;14(11):2179–90.PubMedCrossRef
23.
Zurück zum Zitat Takemura G, Miyata S, Kawase Y, et al. Autophagic degeneration and death of cardiomyocytes in heart failure. Autophagy. 2006;2(3):212–4.PubMed Takemura G, Miyata S, Kawase Y, et al. Autophagic degeneration and death of cardiomyocytes in heart failure. Autophagy. 2006;2(3):212–4.PubMed
24.
Zurück zum Zitat Zeng X, Overmeyer JH, Maltese WA. Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J Cell Sci. 2006;19(Pt 2):259–70.CrossRef Zeng X, Overmeyer JH, Maltese WA. Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J Cell Sci. 2006;19(Pt 2):259–70.CrossRef
25.
Zurück zum Zitat Pattingre S, Tassa A, Qu X, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122(6):927–39.PubMedCrossRef Pattingre S, Tassa A, Qu X, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122(6):927–39.PubMedCrossRef
26.
Zurück zum Zitat Zalckvar E, Berissi H, Mizrachy L, et al. DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep. 2009;10(3):285–92.PubMedCrossRef Zalckvar E, Berissi H, Mizrachy L, et al. DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep. 2009;10(3):285–92.PubMedCrossRef
27.
Zurück zum Zitat Criollo A, Niso-Santano M, Malik SA, et al. Inhibition of autophagy by TAB2 and TAB3. EMBO J. 2011;30(24):4908–20.PubMedCrossRef Criollo A, Niso-Santano M, Malik SA, et al. Inhibition of autophagy by TAB2 and TAB3. EMBO J. 2011;30(24):4908–20.PubMedCrossRef
28.
Zurück zum Zitat •• Zhu Y, Zhao L, Liu L, et al. Beclin 1 cleavage by caspase-3 inactivates autophagy and promotes apoptosis. Protein Cell. 2010;1(5):468–77. Recent study highlighting the cross talk between autophagy and apoptosis.PubMedCrossRef •• Zhu Y, Zhao L, Liu L, et al. Beclin 1 cleavage by caspase-3 inactivates autophagy and promotes apoptosis. Protein Cell. 2010;1(5):468–77. Recent study highlighting the cross talk between autophagy and apoptosis.PubMedCrossRef
29.
Zurück zum Zitat Kerr JFR. History of the events leading to the formulation of the apoptosis concept. Toxicology. 2002;181–182:471–4.PubMedCrossRef Kerr JFR. History of the events leading to the formulation of the apoptosis concept. Toxicology. 2002;181–182:471–4.PubMedCrossRef
30.
Zurück zum Zitat Kinchen JM. A model to die for: signaling to apoptotic cell removal in worm, fly and mouse. Apoptosis. 2010;15(9):998–1006.PubMedCrossRef Kinchen JM. A model to die for: signaling to apoptotic cell removal in worm, fly and mouse. Apoptosis. 2010;15(9):998–1006.PubMedCrossRef
31.
Zurück zum Zitat Crocoll A, Herzer U, Ghyselinck NB, et al. Interdigital apoptosis and downregulation of BAG-1 expression in mouse autopods. Mech Dev. 2002;111(1–2):149–52.PubMedCrossRef Crocoll A, Herzer U, Ghyselinck NB, et al. Interdigital apoptosis and downregulation of BAG-1 expression in mouse autopods. Mech Dev. 2002;111(1–2):149–52.PubMedCrossRef
32.
Zurück zum Zitat de Moissac D, Gurevich RM, Zheng H, et al. Caspase activation and mitochondrial cytochrome C release during hypoxia-mediated apoptosis of adult ventricular myocytes. J Mol Cell Cardiol. 2000;32:53–63.PubMedCrossRef de Moissac D, Gurevich RM, Zheng H, et al. Caspase activation and mitochondrial cytochrome C release during hypoxia-mediated apoptosis of adult ventricular myocytes. J Mol Cell Cardiol. 2000;32:53–63.PubMedCrossRef
33.
Zurück zum Zitat Prech M, Marszalek A, Marszalek J, et al. Apoptosis as a mechanism for the elimination of cardiomyocytes after acute myocardial infarction. Am J Cardiol. 2010;105:1240–5.PubMedCrossRef Prech M, Marszalek A, Marszalek J, et al. Apoptosis as a mechanism for the elimination of cardiomyocytes after acute myocardial infarction. Am J Cardiol. 2010;105:1240–5.PubMedCrossRef
34.
Zurück zum Zitat Weidman D, Shaw J, Bednarczyk J, et al. Dissecting apoptosis and intrinsic death pathways in the heart. Methods Enzymol. 2008;446:277–85.PubMedCrossRef Weidman D, Shaw J, Bednarczyk J, et al. Dissecting apoptosis and intrinsic death pathways in the heart. Methods Enzymol. 2008;446:277–85.PubMedCrossRef
35.
Zurück zum Zitat Du C, Fang M, Li Y, et al. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 2000;102(1):33–42.PubMedCrossRef Du C, Fang M, Li Y, et al. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 2000;102(1):33–42.PubMedCrossRef
36.
Zurück zum Zitat Suzuki Y, Imai Y, Nakayama H, et al. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell. 2001;8(3):613–21.PubMedCrossRef Suzuki Y, Imai Y, Nakayama H, et al. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell. 2001;8(3):613–21.PubMedCrossRef
37.
Zurück zum Zitat Whelan RS, Konstantinidis K, Wei A-C, et al. Bax regulates primary necrosis through mitochondrial dynamics. Proc Natl Acad Sci USA. 2012;109(17):6566–71.PubMedCrossRef Whelan RS, Konstantinidis K, Wei A-C, et al. Bax regulates primary necrosis through mitochondrial dynamics. Proc Natl Acad Sci USA. 2012;109(17):6566–71.PubMedCrossRef
38.
Zurück zum Zitat Zamorano S, Rojas-Rivera D, Lisbona F, et al. A BAX/BAK and Cyclophilin D-Independent Intrinsic Apoptosis Pathway. PLoS One. 2012;7(6):e37782.PubMedCrossRef Zamorano S, Rojas-Rivera D, Lisbona F, et al. A BAX/BAK and Cyclophilin D-Independent Intrinsic Apoptosis Pathway. PLoS One. 2012;7(6):e37782.PubMedCrossRef
39.
Zurück zum Zitat Robaye B, Mosselmans R, Fiers W, et al. Tumor necrosis factor induces apoptosis (programmed cell death) in normal endothelial cells in vitro. Am J Pathol. 1991;38(2):447–53. Robaye B, Mosselmans R, Fiers W, et al. Tumor necrosis factor induces apoptosis (programmed cell death) in normal endothelial cells in vitro. Am J Pathol. 1991;38(2):447–53.
40.
Zurück zum Zitat Suda T, Takahashi T, Golstein P, Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell. 1993;75(6):1169–78.PubMedCrossRef Suda T, Takahashi T, Golstein P, Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell. 1993;75(6):1169–78.PubMedCrossRef
41.
Zurück zum Zitat Pollard T. Cell biology. 2nd ed. Philadelphia: Saunders/Elsevier; 2008. Pollard T. Cell biology. 2nd ed. Philadelphia: Saunders/Elsevier; 2008.
42.
Zurück zum Zitat Marchetti P, Castedo M, Susin SA, et al. Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med. 1996;184(3):1155–60.PubMedCrossRef Marchetti P, Castedo M, Susin SA, et al. Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med. 1996;184(3):1155–60.PubMedCrossRef
43.
Zurück zum Zitat Chan FK-M, Shisler J, Bixby JG, et al. A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J Biol Chem. 2003;278:51613–21.PubMedCrossRef Chan FK-M, Shisler J, Bixby JG, et al. A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J Biol Chem. 2003;278:51613–21.PubMedCrossRef
44.
Zurück zum Zitat • Cho YS, Park SY, Shin HS, Chan FK-M. Physiological consequences of programmed necrosis, an alternative form of cell demise. Mol Cells. 2010;29(4):327–32. Recent review highlighting advances in programmed necrosis.PubMedCrossRef • Cho YS, Park SY, Shin HS, Chan FK-M. Physiological consequences of programmed necrosis, an alternative form of cell demise. Mol Cells. 2010;29(4):327–32. Recent review highlighting advances in programmed necrosis.PubMedCrossRef
45.
Zurück zum Zitat Vande Velde C, Cizeau J, Dubik D, et al. BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol. 2000;20(15):5454–68.PubMedCrossRef Vande Velde C, Cizeau J, Dubik D, et al. BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol. 2000;20(15):5454–68.PubMedCrossRef
46.
Zurück zum Zitat Krysko DV, Vanden Berghe T, D’Herde K, Vandenabeele P. Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods. 2008;44:205–21.PubMedCrossRef Krysko DV, Vanden Berghe T, D’Herde K, Vandenabeele P. Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods. 2008;44:205–21.PubMedCrossRef
47.
Zurück zum Zitat •• Kung G, Konstantinidis K, Kitsis RN. Programmed necrosis, not apoptosis, in the heart. Circ Res. 2011;108(8):1017–36. Most recent systematic review about programmed cell death in the myocardium.PubMedCrossRef •• Kung G, Konstantinidis K, Kitsis RN. Programmed necrosis, not apoptosis, in the heart. Circ Res. 2011;108(8):1017–36. Most recent systematic review about programmed cell death in the myocardium.PubMedCrossRef
48.
Zurück zum Zitat Lemasters JJ, Qian T, Bradham CA, et al. Mitochondrial dysfunction in the pathogenesis of necrotic and apoptotic cell death. J Bioenerg Biomembr. 1999;31:305–19.PubMedCrossRef Lemasters JJ, Qian T, Bradham CA, et al. Mitochondrial dysfunction in the pathogenesis of necrotic and apoptotic cell death. J Bioenerg Biomembr. 1999;31:305–19.PubMedCrossRef
49.
Zurück zum Zitat • Dhingra R, Shaw JA, Aviv Y, Kirshenbaum LA. Dichotomous actions of NF-kappaB signaling pathways in heart. J Cardiovasc Transl Res. 2010;3:344–54. Recent review highlighting cell survival signaling in the heart.PubMedCrossRef • Dhingra R, Shaw JA, Aviv Y, Kirshenbaum LA. Dichotomous actions of NF-kappaB signaling pathways in heart. J Cardiovasc Transl Res. 2010;3:344–54. Recent review highlighting cell survival signaling in the heart.PubMedCrossRef
50.
Zurück zum Zitat Ea C-K, Deng L, Xia ZP, et al. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell. 2006;22:245–57.PubMedCrossRef Ea C-K, Deng L, Xia ZP, et al. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell. 2006;22:245–57.PubMedCrossRef
51.
Zurück zum Zitat Park S-M, Yoon J-B, Lee TH. Receptor interacting protein is ubiquitinated by cellular inhibitor of apoptosis proteins (c-IAP1 and c-IAP2) in vitro. FEBS Lett. 2004;566:151–6.PubMedCrossRef Park S-M, Yoon J-B, Lee TH. Receptor interacting protein is ubiquitinated by cellular inhibitor of apoptosis proteins (c-IAP1 and c-IAP2) in vitro. FEBS Lett. 2004;566:151–6.PubMedCrossRef
52.
Zurück zum Zitat Vince JE, Pantaki D, Feltham R, et al. TRAF2 must bind to cellular inhibitors of apoptosis for tumor necrosis factor (tnf) to efficiently activate nf-{kappa}b and to prevent tnf-induced apoptosis. J Biol Chem. 2009;284:35906–15.PubMedCrossRef Vince JE, Pantaki D, Feltham R, et al. TRAF2 must bind to cellular inhibitors of apoptosis for tumor necrosis factor (tnf) to efficiently activate nf-{kappa}b and to prevent tnf-induced apoptosis. J Biol Chem. 2009;284:35906–15.PubMedCrossRef
53.
Zurück zum Zitat Mahul-Mellier AL, Pazarentzos E, Datler C, et al. De-ubiquitinating protease USP2a targets RIP1 and TRAF2 to mediate cell death by TNF. Cell Death Differ. 2012;19(5):891–9.PubMedCrossRef Mahul-Mellier AL, Pazarentzos E, Datler C, et al. De-ubiquitinating protease USP2a targets RIP1 and TRAF2 to mediate cell death by TNF. Cell Death Differ. 2012;19(5):891–9.PubMedCrossRef
54.
Zurück zum Zitat Wertz IE, O'Rourke KM, Zhou H, et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature. 2004;430:694–9.PubMedCrossRef Wertz IE, O'Rourke KM, Zhou H, et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature. 2004;430:694–9.PubMedCrossRef
55.
Zurück zum Zitat Harhaj EW, Dixit VM. Deubiquitinases in the regulation of NF-κB signaling. Cell Res. 2011;21:22–39.PubMedCrossRef Harhaj EW, Dixit VM. Deubiquitinases in the regulation of NF-κB signaling. Cell Res. 2011;21:22–39.PubMedCrossRef
56.
Zurück zum Zitat Poyet JL, Srinivasula SM, Lin JH, et al. Activation of the Ikappa B kinases by RIP via IKKgamma /NEMO-mediated oligomerization. J Biol Chem. 2000;275:37966–77.PubMedCrossRef Poyet JL, Srinivasula SM, Lin JH, et al. Activation of the Ikappa B kinases by RIP via IKKgamma /NEMO-mediated oligomerization. J Biol Chem. 2000;275:37966–77.PubMedCrossRef
57.
Zurück zum Zitat Kim Y-J, Kim H-C, Ko H, et al. Stercurensin inhibits nuclear factor-κB-dependent inflammatory signals through attenuation of TAK1-TAB1 complex formation. J Cell Biochem. 2010. doi:10.1002/jcb.22945. Kim Y-J, Kim H-C, Ko H, et al. Stercurensin inhibits nuclear factor-κB-dependent inflammatory signals through attenuation of TAK1-TAB1 complex formation. J Cell Biochem. 2010. doi:10.​1002/​jcb.​22945.
58.
Zurück zum Zitat Regula KM, Baetz D, Kirshenbaum LA. Nuclear factor-kappaB represses hypoxia-induced mitochondrial defects and cell death of ventricular myocytes. Circulation. 2004;110:3795–802.PubMedCrossRef Regula KM, Baetz D, Kirshenbaum LA. Nuclear factor-kappaB represses hypoxia-induced mitochondrial defects and cell death of ventricular myocytes. Circulation. 2004;110:3795–802.PubMedCrossRef
59.
Zurück zum Zitat Chang DW, Xing Z, Pan Y, et al. c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J. 2002;21(14):3704–14.PubMedCrossRef Chang DW, Xing Z, Pan Y, et al. c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J. 2002;21(14):3704–14.PubMedCrossRef
60.
Zurück zum Zitat Dillon CP, Oberst A, Weinlich R, et al. Survival function of the FADD-CASPASE-8-cFLIP(L) complex. Cell Rep. 2012;1(5):401–7.PubMedCrossRef Dillon CP, Oberst A, Weinlich R, et al. Survival function of the FADD-CASPASE-8-cFLIP(L) complex. Cell Rep. 2012;1(5):401–7.PubMedCrossRef
61.
Zurück zum Zitat O’Donnell MA, Perez-Jimenez E, Oberst A, et al. Caspase 8 inhibits programmed necrosis by processing CYLD. Nat Cell Biol. 2011;13(12):1437–42.PubMedCrossRef O’Donnell MA, Perez-Jimenez E, Oberst A, et al. Caspase 8 inhibits programmed necrosis by processing CYLD. Nat Cell Biol. 2011;13(12):1437–42.PubMedCrossRef
62.
Zurück zum Zitat •• Oberst A, Dillon CP, Weinlich R, et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature. 2011;471(7338):363–7. Recent study showing the effect of caspase-8 catalytic activity during programmed cell death.PubMedCrossRef •• Oberst A, Dillon CP, Weinlich R, et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature. 2011;471(7338):363–7. Recent study showing the effect of caspase-8 catalytic activity during programmed cell death.PubMedCrossRef
63.
Zurück zum Zitat Holler N, Zaru R, Micheau O, et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol. 2000;1:489–95.PubMedCrossRef Holler N, Zaru R, Micheau O, et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol. 2000;1:489–95.PubMedCrossRef
64.
Zurück zum Zitat Cho YS, Challa S, Moquin D, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 2009;137:1112–23.PubMedCrossRef Cho YS, Challa S, Moquin D, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 2009;137:1112–23.PubMedCrossRef
65.
Zurück zum Zitat He S, Wang L, Miao L, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 2009;137:1100–11.PubMedCrossRef He S, Wang L, Miao L, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 2009;137:1100–11.PubMedCrossRef
66.
Zurück zum Zitat Degterev A, Hitomi J, Germscheid M, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol. 2008;4:313–21.PubMedCrossRef Degterev A, Hitomi J, Germscheid M, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol. 2008;4:313–21.PubMedCrossRef
67.
Zurück zum Zitat Smith CCT, Davidson SM, Lim SY, et al. Necrostatin: a potentially novel cardioprotective agent? Cardiovasc Drugs Ther. 2007;21:227–33.PubMedCrossRef Smith CCT, Davidson SM, Lim SY, et al. Necrostatin: a potentially novel cardioprotective agent? Cardiovasc Drugs Ther. 2007;21:227–33.PubMedCrossRef
68.
Zurück zum Zitat •• Oerlemans MIFJ, Liu J, Arslan F, et al. Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia-reperfusion in vivo. Basic Res Cardiol. 2012;107(4):270. Recent in vivo study showing a positive effect of necrostatin during myocardial ischemia/reperfusion injury.PubMedCrossRef •• Oerlemans MIFJ, Liu J, Arslan F, et al. Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia-reperfusion in vivo. Basic Res Cardiol. 2012;107(4):270. Recent in vivo study showing a positive effect of necrostatin during myocardial ischemia/reperfusion injury.PubMedCrossRef
69.
Zurück zum Zitat Zhu S, Zhang Y, Bai G, Li H. Necrostatin-1 ameliorates symptoms in R6/2 transgenic mouse model of Huntington’s disease. Cell Death Dis. 2011;2:e115.PubMedCrossRef Zhu S, Zhang Y, Bai G, Li H. Necrostatin-1 ameliorates symptoms in R6/2 transgenic mouse model of Huntington’s disease. Cell Death Dis. 2011;2:e115.PubMedCrossRef
70.
Zurück zum Zitat Davis CW, Hawkins BJ, Ramasamy S, et al. Nitration of the mitochondrial complex I subunit NDUFB8 elicits RIP1- and RIP3-mediated necrosis. Free Radic Biol Med. 2010;48:306–17.PubMedCrossRef Davis CW, Hawkins BJ, Ramasamy S, et al. Nitration of the mitochondrial complex I subunit NDUFB8 elicits RIP1- and RIP3-mediated necrosis. Free Radic Biol Med. 2010;48:306–17.PubMedCrossRef
71.
Zurück zum Zitat Zhang D-W, Shao J, Lin J, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science (New York, NY). 2009;325(5938):332–6.CrossRef Zhang D-W, Shao J, Lin J, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science (New York, NY). 2009;325(5938):332–6.CrossRef
72.
Zurück zum Zitat Nevins JR, Leone G, DeGregori J, Jakoi L. Role of the Rb/E2F pathway in cell growth control. J Cell Physiol. 1997;173:233–6.PubMedCrossRef Nevins JR, Leone G, DeGregori J, Jakoi L. Role of the Rb/E2F pathway in cell growth control. J Cell Physiol. 1997;173:233–6.PubMedCrossRef
73.
Zurück zum Zitat Shan B, Lee WH. Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol Cell Biol. 1994;14:8166–73.PubMed Shan B, Lee WH. Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol Cell Biol. 1994;14:8166–73.PubMed
74.
Zurück zum Zitat Kirshenbaum LA, Abdellatif M, Chakraborty S, Schneider MD. Human E2F-1 reactivates cell cycle progression in ventricular myocytes and represses cardiac gene transcription. Dev Biol. 1996;179:402–11.PubMedCrossRef Kirshenbaum LA, Abdellatif M, Chakraborty S, Schneider MD. Human E2F-1 reactivates cell cycle progression in ventricular myocytes and represses cardiac gene transcription. Dev Biol. 1996;179:402–11.PubMedCrossRef
75.
Zurück zum Zitat Shaw J, Yurkova N, Zhang T, et al. Antagonism of E2F-1 regulated Bnip3 transcription by NF-kappaB is essential for basal cell survival. Proc Natl Acad Sci USA. 2008;105(52):20734–9.PubMedCrossRef Shaw J, Yurkova N, Zhang T, et al. Antagonism of E2F-1 regulated Bnip3 transcription by NF-kappaB is essential for basal cell survival. Proc Natl Acad Sci USA. 2008;105(52):20734–9.PubMedCrossRef
76.
Zurück zum Zitat Yurkova N, Shaw J, Blackie K, et al. The cell cycle factor E2F-1 activates Bnip3 and the intrinsic death pathway in ventricular myocytes. Circ Res. 2008;102(4):472–9.PubMedCrossRef Yurkova N, Shaw J, Blackie K, et al. The cell cycle factor E2F-1 activates Bnip3 and the intrinsic death pathway in ventricular myocytes. Circ Res. 2008;102(4):472–9.PubMedCrossRef
Metadaten
Titel
Striking a Balance: Autophagy, Apoptosis, and Necrosis in a Normal and Failing Heart
verfasst von
Wajihah Mughal
Rimpy Dhingra
Lorrie A. Kirshenbaum
Publikationsdatum
01.12.2012
Verlag
Current Science Inc.
Erschienen in
Current Hypertension Reports / Ausgabe 6/2012
Print ISSN: 1522-6417
Elektronische ISSN: 1534-3111
DOI
https://doi.org/10.1007/s11906-012-0304-5

Weitere Artikel der Ausgabe 6/2012

Current Hypertension Reports 6/2012 Zur Ausgabe

Pediatric Hypertension (JT Flynn, Section Editor)

Birth Weight and Childhood Blood Pressure

Mediators, Mechanisms, and Pathways in Tissue Injury (B Rothermel, Section Editor)

Mechanisms of Lipotoxicity in the Cardiovascular System

Mediators, Mechanisms, and Pathways in Tissue Injury (B Rothermel, Section Editor)

Cytoskeletal Regulation of TRPC Channels in the Cardiorenal System

Special Situations in the Management of Hypertension (T Kotchen, Section Editor)

The Ubiquitous Mineralocorticoid Receptor: Clinical Implications

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.