Skip to main content
Erschienen in: Archives of Virology 2/2020

Open Access 11.12.2019 | Brief Report

Nonstructural p26 proteins encoded by the 3’-proximal genes of velariviruses and criniviruses are orthologs

verfasst von: I. B. Rogozin, A. A. Agranovsky

Erschienen in: Archives of Virology | Ausgabe 2/2020

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

The 3’-most genes in RNA-2 of the Crinivirus genus members (family Closteroviridae) code for non-structural p26 proteins that share amino acid sequence similarity [Stewart LR, Hwang MS, Falk BW (2009) Virus Res 145:293-299]. In this study, sensitive bioinformatic tools have been used to identify the homologous p26 proteins encoded by the 3’ genes in monopartite genomes of the members of Velarivirus, another Closteroviridae genus, and mint vein banding-associated virus, an unassigned member of the family. The p26 proteins showed similarity in their predicted secondary structures, but an amino acid sequence alignment showed no strictly conserved positions, thus indicating a high plasticity of these non-structural proteins. The implications of the sequence analysis for possible functions of the crinivirus and velarivirus p26 proteins are discussed.
Hinweise
Handling Editor: Jesús Navas-Castillo.

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s00705-019-04491-8) contains supplementary material, which is available to authorized users.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The family Closteroviridae includes about 50 filamentous plant viruses with large positive-sense RNA genomes that show numerous traces of recombination events, such as gene duplication and gene capture [13]. Closteroviruses contain up to 12 genes, most of which are arranged in two conserved modules: the replicative module, which encodes proteins responsible for RNA synthesis and membrane modification, and the five-gene block, which encodes proteins involved in particle formation and cell-to-cell movement [24] (Fig. 1). In addition, closteroviruses carry variable accessory genes in the 3’ part of their genome (Fig. 1). Some products of the 3’ genes are conserved in some members of the Closteroviridae [3, 5], whereas others have no apparent homologs and are species-specific.
The members of the genus Crinivirus have bipartite genomes with RNA-1 and RNA-2 bearing the replicase module and the five-gene block, respectively, plus some additional 3’ ORFs [6, 7] (Fig. 1). The 3’ genes in RNA-2 of criniviruses code for proteins with a molecular weight of about 26 kDa (p26) that have certain similarity in amino acid sequence and predicted secondary structure [3, 5] (Fig. 1). In this study, our purpose was to identify the p26-related proteins in members of the other genera and unassigned virus species of the family Closteroviridae.
The p26 protein sequences (Supplementary Table S1) were downloaded from the Refseq database using BLASTp and PSI-BLAST searches (www.​ncbi.​nlm.​nih.​gov) [8]. Multiple alignments were produced with the T-Coffee program [9]. HMMER2.0 toolbox [10] was used for Hidden Markov Model (HMM) reconstruction and sequence comparisons, HHpred [11] for HMM profile comparisons, and JPRED4 [12] for secondary structure predictions.
Initial BLAST and PSI-BLAST searches did not reveal any putative p26 protein homologs outside the genus Crinivirus when the crinivirus p26 sequences were used as a query (Supplementary Table S1). At the next step, we used HMMER 2.0, a sensitive tool for detecting remote protein homologs [10]. The hidden Markov model for the crinivirus p26 proteins was constructed and used for directed search for the 3’ ORF products in members of other Closteroviridae genera (Velarivirus, Closterovirus, and Ampelovirus). Low probability values (indicating a statistically significant similarity) were obtained for the 27- to 29-kDa proteins encoded by the 3’-most ORFs of velariviruses (below, also referred to as p26 proteins) (Table 1). Figure 2 shows a sequence alignment of the p26 proteins of criniviruses and velariviruses. Although some positions in the alignment are occupied by similar amino acid residues, none of them is strictly conserved (Fig. 2). Analysis of secondary structure suggests that the p26 proteins of velariviruses and criniviruses are alpha-helical with a few beta-strands (Fig. 2), which corroborates the previous data for the crinivirus proteins [5]. Six alpha-helices in the p26 proteins have a similar location (Fig. 2), suggesting that these proteins share a common three-dimensional structure.
Table 1
Significance of similarities between the crinivirus p26 hidden Markov model and the velarivirus p26 proteins
Sequence ID
Score
E-value
Cordyline virus 1
ADU03662
-141.2
0.066
Cordyline virus 2
AFJ05053
-138.7
0.049
Cordyline virus 3 AGF73886
-126.8
0.012
Cordyline virus 4
AGF73893
-136.9
0.04
Grapevine leafroll-associated virus 7 AEQ59451
-130.0
0.018
Little cherry virus-1 CEO12417
-125.1
0.0098
We also performed an additional HMM database search using the combined multiple alignment of crinivirus and velarivirus p26 proteins (Fig. 2) as a query for HMMER2.0. The 24-kDa protein of mint vein banding-associated virus (MVBaV), an unassigned member of the family Closteroviridae [13], was detected as a possible remote homolog (Fig. 3). A significant probability value (0.009) was obtained, supporting the relatedness of the MVBaV p24 to the p26 of criniviruses and velariviruses (Fig. 3). Attempts to include the MVBaV p24 into the multiple alignment using T-Coffee [9] were not successful due to the lack of detectable similarity in the C-terminal regions (Fig. 3). Additional HHPred database searches did not reveal any putative homologs of crinivirus/velarivirus p26 proteins among the available HMM profiles [11].
The data presented here indicate that the p26 genes are not Crinivirus taxon-specific as has been thought but are conserved across the monopartite genomes of Velarivirus members and mint vein banding-associated virus. Taking into account the 3’-proximal location of the p26 genes (Fig. 1), similarity of the predicted secondary structures, and statistically significant similarity of the amino acid sequences (Table 1, Fig. 2), it is likely that the p26 proteins of criniviruses and velariviruses are orthologs that may perform the same or similar function(s). It should be noted that members of the genera Crinivirus and Velarivirus are markedly different from each other in their biological properties and the genome structure. Criniviruses have divided genomes, are transmitted by whiteflies, and infect herbaceous hosts, whereas velariviruses possess monopartite genomes, have no known vectors, and infect woody hosts [2] (Fig. 1). The absence of conserved amino acid positions in the p26 alignment suggests high plasticity of these non-structural proteins, which may indicate their involvement in the response of virus systems to rapidly changing environmental conditions. On the other hand, the p26 protein of lettuce infectious yellows virus (LIYV), the type member of the genus Crinivirus, induces specific ultrastructures in the infected cells – conical plasmalemma deposits over plasmadesmata – that are thought to be associated with the vascular transport of the virus [7, 14, 15]. In support of this, a knockout LIYV p26 mutant proved to be unable to spread systemically in a Nicotiana benthamiana host [15]. Although the Closteroviridae members other than LIYV do not induce plasmalemma deposits, the involvement of crinivirus and velarivirus p26 proteins in systemic transport cannot be excluded and needs to be tested experimentally.

Acknowledgements

We thank David Karlin for stimulating discussions on the p26 similarities, and Nik Gorgolyuk for critical reading of the manuscript. IBR was supported by the Intramural Research Program of the U.S. National Library of Medicine (Z01 ES065086) at the National Institutes of Health (US Department of Health and Human Services).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

e.Med Allgemeinmedizin

Kombi-Abonnement

Mit e.Med Allgemeinmedizin erhalten Sie Zugang zu allen CME-Fortbildungen und Premium-Inhalten der allgemeinmedizinischen Zeitschriften, inklusive einer gedruckten Allgemeinmedizin-Zeitschrift Ihrer Wahl.

Anhänge

Electronic supplementary material

Below is the link to the electronic supplementary material.
Literatur
1.
Zurück zum Zitat Agranovsky AA (1996) Principles of molecular organization, expression and evolution of closteroviruses: over the barriers. Adv Virus Res 47:119–158CrossRef Agranovsky AA (1996) Principles of molecular organization, expression and evolution of closteroviruses: over the barriers. Adv Virus Res 47:119–158CrossRef
3.
Zurück zum Zitat Dolja VV, Kreuze JF, Valkonen JP (2006) Comparative and functional genomics of closteroviruses. Virus Res 117:38–51CrossRef Dolja VV, Kreuze JF, Valkonen JP (2006) Comparative and functional genomics of closteroviruses. Virus Res 117:38–51CrossRef
4.
Zurück zum Zitat Gushchin VA, Karlin DG, Makhotenko AV, Khromov AV, Erokhina TN, Solovyev AG, Morozov SY, Agranovsky AA (2017) A conserved region in the Closterovirus 1a polyprotein drives extensive remodeling of endoplasmic reticulum membranes and induces motile globules in Nicotiana benthamiana cells. Virology 502:106–113CrossRef Gushchin VA, Karlin DG, Makhotenko AV, Khromov AV, Erokhina TN, Solovyev AG, Morozov SY, Agranovsky AA (2017) A conserved region in the Closterovirus 1a polyprotein drives extensive remodeling of endoplasmic reticulum membranes and induces motile globules in Nicotiana benthamiana cells. Virology 502:106–113CrossRef
5.
Zurück zum Zitat Stewart LR, Hwang MS, Falk BW (2009) Two Crinivirus-specific proteins of Lettuce infectious yellows virus (LIYV), P26 and P9, are self-interacting. Virus Res 145:293–299CrossRef Stewart LR, Hwang MS, Falk BW (2009) Two Crinivirus-specific proteins of Lettuce infectious yellows virus (LIYV), P26 and P9, are self-interacting. Virus Res 145:293–299CrossRef
6.
Zurück zum Zitat Klaassen VA, Boeshore M, Koonin EV, Falk BW (1995) Genome structure and phylogenetic analysis of lettuce infectious yellows virus, a whitefly-transmitted, bipartite closterovirus. Virology 208:99–110CrossRef Klaassen VA, Boeshore M, Koonin EV, Falk BW (1995) Genome structure and phylogenetic analysis of lettuce infectious yellows virus, a whitefly-transmitted, bipartite closterovirus. Virology 208:99–110CrossRef
8.
Zurück zum Zitat Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRef Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRef
9.
Zurück zum Zitat Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217CrossRef Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217CrossRef
10.
Zurück zum Zitat Johnson LS, Eddy SR, Portugaly E (2010) Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinform 11:431CrossRef Johnson LS, Eddy SR, Portugaly E (2010) Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinform 11:431CrossRef
11.
Zurück zum Zitat Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248CrossRef Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248CrossRef
12.
Zurück zum Zitat Drozdetskiy A, Cole C, Procter J, Barton GJ (2015) JPred4: a protein secondary structure prediction server. Nucleic Acids Res 43:W389–W394CrossRef Drozdetskiy A, Cole C, Procter J, Barton GJ (2015) JPred4: a protein secondary structure prediction server. Nucleic Acids Res 43:W389–W394CrossRef
Metadaten
Titel
Nonstructural p26 proteins encoded by the 3’-proximal genes of velariviruses and criniviruses are orthologs
verfasst von
I. B. Rogozin
A. A. Agranovsky
Publikationsdatum
11.12.2019
Verlag
Springer Vienna
Erschienen in
Archives of Virology / Ausgabe 2/2020
Print ISSN: 0304-8608
Elektronische ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-019-04491-8

Weitere Artikel der Ausgabe 2/2020

Archives of Virology 2/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.