Skip to main content
Erschienen in: Endocrine 1/2019

20.07.2019 | Mini Review

Novel thyroid hormones

verfasst von: Riccardo Zucchi, Grazia Rutigliano, Federica Saponaro

Erschienen in: Endocrine | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

The field of thyroid hormone signaling has grown more complex in recent years. In particular, it has been suggested that some thyroid hormone derivatives, tentatively named “novel thyroid hormones” or “active thyroid hormone metabolites”, may act as independent chemical messengers. They include 3,5-diiodothyronine (T2), 3-iodothyronamine (T1AM), and several iodothyroacetic acids, i.e., 3,5,3’,5’-thyroacetic acid (TA4), 3,5,3’-thyroacetic acid (TA3), and 3-thyroacetic acid (TA1). We summarize the present knowledge on these compounds, namely their biosynthetic pathways, endogenous levels, molecular targets, and the functional effects elicited in experimental preparations or intact animals after exogenous administration. Their physiological and pathophysiological role is discussed, and potential therapeutic applications are outlined. The requirements needed to qualify these substances as chemical messengers must still be validated, although promising evidence has been collected. At present, the best candidate to the role of independent chemical messenger appears to be T1AM, and its most interesting effects concern metabolism and brain function. The responses elicited in experimental animals have suggested potential therapeutic applications. TA3 has an established role in thyroid hormone resistance syndromes, and is under investigation in Allen–Herndon–Dudley syndrome. Other potential targets are represented by obesity and dyslipidemia (for T2 and T1AM); dementia and degenerative brain disease (for T1AM and TA1); cancer (for T1AM and TA4). Another intriguing and unexplored question is the potential relevance of these metabolites in the clinical picture of hypothyroidism and in the response to replacement therapy.
Literatur
3.
Zurück zum Zitat H. Meinhold, P. Schurnbrand, A radioimmunoassay for 3,5-diiodothyronine. Clin. Endocrinol. 8(6), 493–497 (1978)CrossRef H. Meinhold, P. Schurnbrand, A radioimmunoassay for 3,5-diiodothyronine. Clin. Endocrinol. 8(6), 493–497 (1978)CrossRef
4.
5.
6.
Zurück zum Zitat L. Lorenzini, N.M. Nguyen, G. Sacripanti, E. Serni, M. Borso, F. Saponaro, E. Cecchi, T. Simoncini, S. Ghelardoni, R. Zucchi, A. Saba, Assay of endogenous 3,5-diiodo-L-thyronine (3,5-T2) and 3,3’-diiodo-L-thyronine (3,3’-T2) in human serum: a feasibility study. Front Endocrinol. (Lausanne) 10, 88 (2019). https://doi.org/10.3389/fendo.2019.00088 CrossRef L. Lorenzini, N.M. Nguyen, G. Sacripanti, E. Serni, M. Borso, F. Saponaro, E. Cecchi, T. Simoncini, S. Ghelardoni, R. Zucchi, A. Saba, Assay of endogenous 3,5-diiodo-L-thyronine (3,5-T2) and 3,3’-diiodo-L-thyronine (3,3’-T2) in human serum: a feasibility study. Front Endocrinol. (Lausanne) 10, 88 (2019). https://​doi.​org/​10.​3389/​fendo.​2019.​00088 CrossRef
8.
Zurück zum Zitat Z.M. Li, F. Giesert, D. Vogt-Weisenhorn, K.M. Main, N.E. Skakkebaek, H. Kiviranta, J. Toppari, U. Feldt-Rasmussen, H. Shen, K.W. Schramm, M. De Angelis, Determination of thyroid hormones in placenta using isotope-dilution liquid chromatography quadrupole time-of-flight mass spectrometry. J. Chromatogr. A 1534, 85–92 (2018). https://doi.org/10.1016/j.chroma.2017.12.048 CrossRefPubMed Z.M. Li, F. Giesert, D. Vogt-Weisenhorn, K.M. Main, N.E. Skakkebaek, H. Kiviranta, J. Toppari, U. Feldt-Rasmussen, H. Shen, K.W. Schramm, M. De Angelis, Determination of thyroid hormones in placenta using isotope-dilution liquid chromatography quadrupole time-of-flight mass spectrometry. J. Chromatogr. A 1534, 85–92 (2018). https://​doi.​org/​10.​1016/​j.​chroma.​2017.​12.​048 CrossRefPubMed
10.
Zurück zum Zitat S. da Silva Teixeira, C. Filgueira, D.H. Sieglaff, C. Benod, R. Villagomez, L.J. Minze, A. Zhang, P. Webb, M.T. Nunes, 3,5-diiodothyronine (3,5-T2) reduces blood glucose independently of insulin sensitization in obese mice. Acta Physiol. 220(2), 238–250 (2017). https://doi.org/10.1111/apha.12821 CrossRef S. da Silva Teixeira, C. Filgueira, D.H. Sieglaff, C. Benod, R. Villagomez, L.J. Minze, A. Zhang, P. Webb, M.T. Nunes, 3,5-diiodothyronine (3,5-T2) reduces blood glucose independently of insulin sensitization in obese mice. Acta Physiol. 220(2), 238–250 (2017). https://​doi.​org/​10.​1111/​apha.​12821 CrossRef
13.
Zurück zum Zitat F. Goglia, The effects of 3,5-diiodothyronine on energy balance. Front Physiol. 5, 528 (2015)CrossRef F. Goglia, The effects of 3,5-diiodothyronine on energy balance. Front Physiol. 5, 528 (2015)CrossRef
14.
Zurück zum Zitat A.S. Padron, R.A. Neto, T.U. Pantaleao, M.C. de Souza dos Santos, R.L. Araujo, B.M. de Andrade, M. da Silva Leandro, J.P. de Castro, A.C. Ferreira, D.P. de Carvalho, Administration of 3,5-diiodothyronine (3,5-T2) causes central hypothyroidism and stimulates thyroid-sensitive tissues. J. Endocrinol. 221(3), 415–427 (2014). https://doi.org/10.1530/JOE-13-0502 CrossRefPubMedPubMedCentral A.S. Padron, R.A. Neto, T.U. Pantaleao, M.C. de Souza dos Santos, R.L. Araujo, B.M. de Andrade, M. da Silva Leandro, J.P. de Castro, A.C. Ferreira, D.P. de Carvalho, Administration of 3,5-diiodothyronine (3,5-T2) causes central hypothyroidism and stimulates thyroid-sensitive tissues. J. Endocrinol. 221(3), 415–427 (2014). https://​doi.​org/​10.​1530/​JOE-13-0502 CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat W. Jonas, J. Lietzow, F. Wohlgemuth, C.S. Hoefig, P. Wiedmer, U. Schweizer, J. Kohrle, A. Schurmann, 3,5-Diiodo-L-thyronine (3,5-t2) exerts thyromimetic effects on hypothalamus-pituitary-thyroid axis, body composition, and energy metabolism in male diet-induced obese mice. Endocrinology 156(1), 389–399 (2015). https://doi.org/10.1210/en.2014-1604 CrossRefPubMed W. Jonas, J. Lietzow, F. Wohlgemuth, C.S. Hoefig, P. Wiedmer, U. Schweizer, J. Kohrle, A. Schurmann, 3,5-Diiodo-L-thyronine (3,5-t2) exerts thyromimetic effects on hypothalamus-pituitary-thyroid axis, body composition, and energy metabolism in male diet-induced obese mice. Endocrinology 156(1), 389–399 (2015). https://​doi.​org/​10.​1210/​en.​2014-1604 CrossRefPubMed
16.
Zurück zum Zitat J.W. Dietrich, P. Muller, F. Schiedat, M. Schlomicher, J. Strauch, A. Chatzitomaris, H.H. Klein, A. Mugge, J. Kohrle, E. Rijntjes, I. Lehmphul, Nonthyroidal Illness syndrome in cardiac illness involves elevated concentrations of 3,5-diiodothyronine and correlates with atrial remodeling. Eur. Thyroid J. 4(2), 129–137 (2015). https://doi.org/10.1159/000381543 CrossRefPubMedPubMedCentral J.W. Dietrich, P. Muller, F. Schiedat, M. Schlomicher, J. Strauch, A. Chatzitomaris, H.H. Klein, A. Mugge, J. Kohrle, E. Rijntjes, I. Lehmphul, Nonthyroidal Illness syndrome in cardiac illness involves elevated concentrations of 3,5-diiodothyronine and correlates with atrial remodeling. Eur. Thyroid J. 4(2), 129–137 (2015). https://​doi.​org/​10.​1159/​000381543 CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat A. Antonelli, P. Fallahi, S.M. Ferrari, A. Di Domenicantonio, M. Moreno, A. Lanni, F. Goglia, 3,5-diiodo-L-thyronine increases resting metabolic rate and reduces body weight without undesirable side effects. J. Biol. Regul. Homeost. Agents 25(4), 655–660 (2011)PubMed A. Antonelli, P. Fallahi, S.M. Ferrari, A. Di Domenicantonio, M. Moreno, A. Lanni, F. Goglia, 3,5-diiodo-L-thyronine increases resting metabolic rate and reduces body weight without undesirable side effects. J. Biol. Regul. Homeost. Agents 25(4), 655–660 (2011)PubMed
19.
Zurück zum Zitat T.S. Scanlan, K.L. Suchland, M.E. Hart, G. Chiellini, Y. Huang, P.J. Kruzich, S. Frascarelli, D.A. Crossley, J.R. Bunzow, S. Ronca-Testoni, E.T. Lin, D. Hatton, R. Zucchi, D.K. Grandy, 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat. Med 10(6), 638–642 (2004). https://doi.org/10.1038/nm1051 CrossRefPubMed T.S. Scanlan, K.L. Suchland, M.E. Hart, G. Chiellini, Y. Huang, P.J. Kruzich, S. Frascarelli, D.A. Crossley, J.R. Bunzow, S. Ronca-Testoni, E.T. Lin, D. Hatton, R. Zucchi, D.K. Grandy, 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat. Med 10(6), 638–642 (2004). https://​doi.​org/​10.​1038/​nm1051 CrossRefPubMed
20.
Zurück zum Zitat C.S. Hoefig, R. Zucchi, J. Köhrle, Thyronamines and derivatives: physiological relevance, pharmacological actions and future research directions. Thyroid 26, 1656–1673 (2016)CrossRef C.S. Hoefig, R. Zucchi, J. Köhrle, Thyronamines and derivatives: physiological relevance, pharmacological actions and future research directions. Thyroid 26, 1656–1673 (2016)CrossRef
25.
Zurück zum Zitat G. Chiellini, P. Erba, V. Carnicelli, C. Manfredi, S. Frascarelli, S. Ghelardoni, G. Mariani, R. Zucchi, Distribution of exogenous [125I]-3-iodothyronamine in mouse in vivo: relationship with trace amine-associated receptors. J. Endocrinol. 213(3), 223–230 (2012). https://doi.org/10.1530/JOE-12-0055 CrossRefPubMed G. Chiellini, P. Erba, V. Carnicelli, C. Manfredi, S. Frascarelli, S. Ghelardoni, G. Mariani, R. Zucchi, Distribution of exogenous [125I]-3-iodothyronamine in mouse in vivo: relationship with trace amine-associated receptors. J. Endocrinol. 213(3), 223–230 (2012). https://​doi.​org/​10.​1530/​JOE-12-0055 CrossRefPubMed
27.
Zurück zum Zitat M.T. Ackermans, L.P. Klieverik, P. Ringeling, E. Endert, A. Kalsbeek, E. Fliers, An online solid-phase extraction-liquid chromatography-tandem mass spectrometry method to study the presence of thyronamines in plasma and tissue and their putative conversion from 13C6-thyroxine. J. Endocrinol. 206(3), 327–334 (2010). https://doi.org/10.1677/JOE-10-0060 CrossRefPubMed M.T. Ackermans, L.P. Klieverik, P. Ringeling, E. Endert, A. Kalsbeek, E. Fliers, An online solid-phase extraction-liquid chromatography-tandem mass spectrometry method to study the presence of thyronamines in plasma and tissue and their putative conversion from 13C6-thyroxine. J. Endocrinol. 206(3), 327–334 (2010). https://​doi.​org/​10.​1677/​JOE-10-0060 CrossRefPubMed
28.
Zurück zum Zitat C.S. Hoefig, J. Kohrle, G. Brabant, K. Dixit, B. Yap, C.J. Strasburger, Z. Wu, Evidence for extrathyroidal formation of 3-iodothyronamine in humans as provided by a novel monoclonal antibody-based chemiluminescent serum immunoassay. J. Clin. Endocrinol. Metab. 96(6), 1864–1872 (2011). https://doi.org/10.1210/jc.2010-2680 CrossRefPubMed C.S. Hoefig, J. Kohrle, G. Brabant, K. Dixit, B. Yap, C.J. Strasburger, Z. Wu, Evidence for extrathyroidal formation of 3-iodothyronamine in humans as provided by a novel monoclonal antibody-based chemiluminescent serum immunoassay. J. Clin. Endocrinol. Metab. 96(6), 1864–1872 (2011). https://​doi.​org/​10.​1210/​jc.​2010-2680 CrossRefPubMed
35.
Zurück zum Zitat E. Tremmel, S. Hofmann, C. Kuhn, H. Heidegger, S. Heublein, K. Hermelink, R. Wuerstlein, N. Harbeck, D. Mayr, S. Mahner, N. Ditsch, U. Jeschke, A. Vattai, Thyronamine regulation of TAAR1 expression in breast cancer cells and investigation of its influence on viability and migration. Breast Cancer (Dove Med Press) 11, 87–97 (2019). https://doi.org/10.2147/BCTT.S178721 CrossRef E. Tremmel, S. Hofmann, C. Kuhn, H. Heidegger, S. Heublein, K. Hermelink, R. Wuerstlein, N. Harbeck, D. Mayr, S. Mahner, N. Ditsch, U. Jeschke, A. Vattai, Thyronamine regulation of TAAR1 expression in breast cancer cells and investigation of its influence on viability and migration. Breast Cancer (Dove Med Press) 11, 87–97 (2019). https://​doi.​org/​10.​2147/​BCTT.​S178721 CrossRef
38.
Zurück zum Zitat F.M. Assadi-Porter, H. Reiland, M. Sabatini, L. Lorenzini, V. Carnicelli, M. Rogowski, E.S. Selen Alpergin, M. Tonelli, S. Ghelardoni, A. Saba, R. Zucchi, G. Chiellini, Metabolic reprogramming by 3-iodothyronamine (T1AM): a new perspective to reverse obesity through co-regulation of sirtuin 4 and 6 expression. Int. J. Mol. Sci. 19(5) (2018). https://doi.org/10.3390/ijms19051535 F.M. Assadi-Porter, H. Reiland, M. Sabatini, L. Lorenzini, V. Carnicelli, M. Rogowski, E.S. Selen Alpergin, M. Tonelli, S. Ghelardoni, A. Saba, R. Zucchi, G. Chiellini, Metabolic reprogramming by 3-iodothyronamine (T1AM): a new perspective to reverse obesity through co-regulation of sirtuin 4 and 6 expression. Int. J. Mol. Sci. 19(5) (2018). https://​doi.​org/​10.​3390/​ijms19051535
39.
Zurück zum Zitat E.S. Selen Alpergin, Z. Bolandnazar, M. Sabatini, M. Rogowski, G. Chiellini, R. Zucchi, F.M. Assadi-Porter, Metabolic profiling reveals reprogramming of lipid metabolic pathways in treatment of polycystic ovary syndrome with 3-iodothyronamine. Physiol. Rep. 5(1) (2017). https://doi.org/10.14814/phy2.13097 E.S. Selen Alpergin, Z. Bolandnazar, M. Sabatini, M. Rogowski, G. Chiellini, R. Zucchi, F.M. Assadi-Porter, Metabolic profiling reveals reprogramming of lipid metabolic pathways in treatment of polycystic ovary syndrome with 3-iodothyronamine. Physiol. Rep. 5(1) (2017). https://​doi.​org/​10.​14814/​phy2.​13097
40.
Zurück zum Zitat M.E. Manni, G. De Siena, A. Saba, M. Marchini, E. Landucci, E. Gerace, M. Zazzeri, C. Musilli, D. Pellegrini-Giampietro, R. Matucci, R. Zucchi, L. Raimondi, Pharmacological effects of 3-iodothyronamine (T1AM) in mice include facilitation of memory acquisition and retention and reduction of pain threshold. Br. J. Pharm. 168(2), 354–362 (2013). https://doi.org/10.1111/j.1476-5381.2012.02137.x CrossRef M.E. Manni, G. De Siena, A. Saba, M. Marchini, E. Landucci, E. Gerace, M. Zazzeri, C. Musilli, D. Pellegrini-Giampietro, R. Matucci, R. Zucchi, L. Raimondi, Pharmacological effects of 3-iodothyronamine (T1AM) in mice include facilitation of memory acquisition and retention and reduction of pain threshold. Br. J. Pharm. 168(2), 354–362 (2013). https://​doi.​org/​10.​1111/​j.​1476-5381.​2012.​02137.​x CrossRef
41.
Zurück zum Zitat J.A. Haviland, H. Reiland, D.E. Butz, M. Tonelli, W.P. Porter, R. Zucchi, T.S. Scanlan, G. Chiellini, F.M. Assadi-Porter, NMR-based metabolomics and breath studies show lipid and protein catabolism during low dose chronic T(1)AM treatment. Obes. (Silver Spring) 21(12), 2538–2544 (2013). https://doi.org/10.1002/oby.20391 CrossRef J.A. Haviland, H. Reiland, D.E. Butz, M. Tonelli, W.P. Porter, R. Zucchi, T.S. Scanlan, G. Chiellini, F.M. Assadi-Porter, NMR-based metabolomics and breath studies show lipid and protein catabolism during low dose chronic T(1)AM treatment. Obes. (Silver Spring) 21(12), 2538–2544 (2013). https://​doi.​org/​10.​1002/​oby.​20391 CrossRef
43.
Zurück zum Zitat J. Lv, J. Liao, W. Tan, L. Yang, X. Shi, H. Zhang, L. Chen, S. Wang, Q. Li, 3-Iodothyronamine acting through an anti-apoptotic mechanism is neuroprotective against spinal cord injury in rats. Ann. Clin. Lab Sci. 48(6), 736–742 (2018)PubMed J. Lv, J. Liao, W. Tan, L. Yang, X. Shi, H. Zhang, L. Chen, S. Wang, Q. Li, 3-Iodothyronamine acting through an anti-apoptotic mechanism is neuroprotective against spinal cord injury in rats. Ann. Clin. Lab Sci. 48(6), 736–742 (2018)PubMed
54.
Zurück zum Zitat C. Musilli, G. De Siena, M.E. Manni, A. Logli, E. Landucci, R. Zucchi, A. Saba, R. Donzelli, M.B. Passani, G. Provensi, L. Raimondi, Histamine mediates behavioural and metabolic effects of 3-iodothyroacetic acid, an endogenous end product of thyroid hormone metabolism. Br. J. Pharm. 171(14), 3476–3484 (2014). https://doi.org/10.1111/bph.12697 CrossRef C. Musilli, G. De Siena, M.E. Manni, A. Logli, E. Landucci, R. Zucchi, A. Saba, R. Donzelli, M.B. Passani, G. Provensi, L. Raimondi, Histamine mediates behavioural and metabolic effects of 3-iodothyroacetic acid, an endogenous end product of thyroid hormone metabolism. Br. J. Pharm. 171(14), 3476–3484 (2014). https://​doi.​org/​10.​1111/​bph.​12697 CrossRef
55.
Zurück zum Zitat A. Laurino, G. De Siena, A. Saba, G. Chiellini, E. Landucci, R. Zucchi, L. Raimondi, In the brain of mice, 3-iodothyronamine (T1AM) is converted into 3-iodothyroacetic acid (TA1) and it is included within the signaling network connecting thyroid hormone metabolites with histamine. Eur. J. Pharm. 761, 130–134 (2015). https://doi.org/10.1016/j.ejphar.2015.04.038 CrossRef A. Laurino, G. De Siena, A. Saba, G. Chiellini, E. Landucci, R. Zucchi, L. Raimondi, In the brain of mice, 3-iodothyronamine (T1AM) is converted into 3-iodothyroacetic acid (TA1) and it is included within the signaling network connecting thyroid hormone metabolites with histamine. Eur. J. Pharm. 761, 130–134 (2015). https://​doi.​org/​10.​1016/​j.​ejphar.​2015.​04.​038 CrossRef
56.
Zurück zum Zitat F.A. Verhoeven, H.H. Van der Putten, G. Hennemann, J.M. Lamers, T.J. Visser, M.E. Everts, Uptake of triiodothyronine and triiodothyroacetic acid in neonatal rat cardiomyocytes: effects of metabolites and analogs. J. Endocrinol. 173(2), 247–255 (2002) F.A. Verhoeven, H.H. Van der Putten, G. Hennemann, J.M. Lamers, T.J. Visser, M.E. Everts, Uptake of triiodothyronine and triiodothyroacetic acid in neonatal rat cardiomyocytes: effects of metabolites and analogs. J. Endocrinol. 173(2), 247–255 (2002)
57.
Zurück zum Zitat S. Horn, S. Kersseboom, S. Mayerl, J. Muller, C. Groba, M. Trajkovic-Arsic, T. Ackermann, T.J. Visser, H. Heuer, Tetrac can replace thyroid hormone during brain development in mouse mutants deficient in the thyroid hormone transporter mct8. Endocrinology 154(2), 968–979 (2013). https://doi.org/10.1210/en.2012-1628 CrossRefPubMed S. Horn, S. Kersseboom, S. Mayerl, J. Muller, C. Groba, M. Trajkovic-Arsic, T. Ackermann, T.J. Visser, H. Heuer, Tetrac can replace thyroid hormone during brain development in mouse mutants deficient in the thyroid hormone transporter mct8. Endocrinology 154(2), 968–979 (2013). https://​doi.​org/​10.​1210/​en.​2012-1628 CrossRefPubMed
62.
Zurück zum Zitat E. Schoenmakers, B. Carlson, M. Agostini, C. Moran, O. Rajanayagam, E. Bochukova, R. Tobe, R. Peat, E. Gevers, F. Muntoni, P. Guicheney, N. Schoenmakers, S. Farooqi, G. Lyons, D. Hatfield, K. Chatterjee, Mutation in human selenocysteine transfer RNA selectively disrupts selenoprotein synthesis. J. Clin. Invest. 126(3), 992–996 (2016). https://doi.org/10.1172/JCI84747 CrossRefPubMedPubMedCentral E. Schoenmakers, B. Carlson, M. Agostini, C. Moran, O. Rajanayagam, E. Bochukova, R. Tobe, R. Peat, E. Gevers, F. Muntoni, P. Guicheney, N. Schoenmakers, S. Farooqi, G. Lyons, D. Hatfield, K. Chatterjee, Mutation in human selenocysteine transfer RNA selectively disrupts selenoprotein synthesis. J. Clin. Invest. 126(3), 992–996 (2016). https://​doi.​org/​10.​1172/​JCI84747 CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat S.A. Mousa, J.J. Bergh, E. Dier, A. Rebbaa, L.J. O’Connor, M. Yalcin, A. Aljada, E. Dyskin, F.B. Davis, H.Y. Lin, P.J. Davis, Tetraiodothyroacetic acid, a small molecule integrin ligand, blocks angiogenesis induced by vascular endothelial growth factor and basic fibroblast growth factor. Angiogenesis 11(2), 183–190 (2008). https://doi.org/10.1007/s10456-007-9088-7 CrossRefPubMed S.A. Mousa, J.J. Bergh, E. Dier, A. Rebbaa, L.J. O’Connor, M. Yalcin, A. Aljada, E. Dyskin, F.B. Davis, H.Y. Lin, P.J. Davis, Tetraiodothyroacetic acid, a small molecule integrin ligand, blocks angiogenesis induced by vascular endothelial growth factor and basic fibroblast growth factor. Angiogenesis 11(2), 183–190 (2008). https://​doi.​org/​10.​1007/​s10456-007-9088-7 CrossRefPubMed
66.
Zurück zum Zitat M. Yalcin, D.J. Bharali, L. Lansing, E. Dyskin, S.S. Mousa, A. Hercbergs, F.B. Davis, P.J. Davis, S.A. Mousa, Tetraidothyroacetic acid (tetrac) and tetrac nanoparticles inhibit growth of human renal cell carcinoma xenografts. Anticancer Res. 29(10), 3825–3831 (2009)PubMed M. Yalcin, D.J. Bharali, L. Lansing, E. Dyskin, S.S. Mousa, A. Hercbergs, F.B. Davis, P.J. Davis, S.A. Mousa, Tetraidothyroacetic acid (tetrac) and tetrac nanoparticles inhibit growth of human renal cell carcinoma xenografts. Anticancer Res. 29(10), 3825–3831 (2009)PubMed
67.
Zurück zum Zitat J.S. LoPresti, R.S. Dlott, Augmented conversion of T3 to triac (T3AC) is the major regulator of the low T3 state in fasting man. Thyroid 2, S-39 (1992)CrossRef J.S. LoPresti, R.S. Dlott, Augmented conversion of T3 to triac (T3AC) is the major regulator of the low T3 state in fasting man. Thyroid 2, S-39 (1992)CrossRef
Metadaten
Titel
Novel thyroid hormones
verfasst von
Riccardo Zucchi
Grazia Rutigliano
Federica Saponaro
Publikationsdatum
20.07.2019
Verlag
Springer US
Erschienen in
Endocrine / Ausgabe 1/2019
Print ISSN: 1355-008X
Elektronische ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-019-02018-4

Weitere Artikel der Ausgabe 1/2019

Endocrine 1/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.