Skip to main content
Erschienen in: Molecular Cancer 1/2018

Open Access 01.12.2018 | Review

Nuclear functions of mammalian MicroRNAs in gene regulation, immunity and cancer

verfasst von: Hongyu Liu, Cheng Lei, Qin He, Zou Pan, Desheng Xiao, Yongguang Tao

Erschienen in: Molecular Cancer | Ausgabe 1/2018

Abstract

MicroRNAs (miRNAs) are endogenous non-coding RNAs that contain approximately 22 nucleotides. They serve as key regulators in various biological processes and their dysregulation is implicated in many diseases including cancer and autoimmune disorders. It has been well established that the maturation of miRNAs occurs in the cytoplasm and miRNAs exert post-transcriptional gene silencing (PTGS) via RNA-induced silencing complex (RISC) pathway in the cytoplasm. However, numerous studies reaffirm the existence of mature miRNA in the nucleus, and nucleus-cytoplasm transport mechanism has also been illustrated. Moreover, active regulatory functions of nuclear miRNAs were found including PTGS, transcriptional gene silencing (TGS), and transcriptional gene activation (TGA), in which miRNAs bind nascent RNA transcripts, gene promoter regions or enhancer regions and exert further effects via epigenetic pathways. Based on existing interaction rules, some miRNA binding sites prediction software tools are developed, which are evaluated in this article. In addition, we attempt to explore and review the nuclear functions of miRNA in immunity, tumorigenesis and invasiveness of tumor. As a non-canonical aspect of miRNA action, nuclear miRNAs supplement miRNA regulatory networks and could be applied in miRNA based therapies.
MicroRNA (miRNA) is a group of small non-coding RNA that plays significant roles in multiple metabolic processes. Since its discovery in 1993 [1], numerous studies have postulated and established a set of theories concerning miRNA biogenesis and functions, with cross-species researches initially focusing on translational repression in cytoplasm. After transcription, cleavage, and processing, mature miRNA is transported from the nucleus to cytoplasm to be loaded into RNA induced silencing complex (RISC). MiRNA base-pairs with the mRNA, mediating mRNA decay or detachment of ribosomes. In addition to potent inhibitory functions in the cytoplasm, in 2008, research demonstrated that the introduction of miR-373 and its precursor (pre-miR-373) induced the expression of cold-shock domain-containing protein C2 (CSDC2) and E-cadherin [2]. This is attributed to the sequence complementarity of miR-373 and promoters of those genes. In 2004, another member of small non-coding RNA, small interfering RNA (siRNA) was observed to inhibit the transcription of elongation factor 1alpha (EF1A) though promoter interaction [3]. Following these, research interest in promoter-targeting siRNA has increased substantially [4]. With the introduction of newly developed techniques like microarray and RNA-seq, numerous mature miRNAs were found enriched in nucleus, which demonstrates that nuclear miRNAs are more prevalent than what we had thought. Meanwhile, several models elaborating transcriptional gene silencing (TGS) and transcriptional gene activation (TGA) were established involving promoter interaction, non-coding RNA binding, RNA-DNA triplex and enhancer interaction. In addition, recently, several proteins that mediate nucleus-cytoplasm shuttling of key participants in RNA interference (RNAi) were confirmed [5].
This review summarizes nuclear miRNA’s evidence of existence, prevailing models of nuclear miRNA functional mechanisms, practical prediction software tools and associated applications in immunity and cancer. Generally, although different in origin and maturation processes, mature miRNA and siRNA are chemically the same and function similarly when loaded into RISC [6]. Hereby, several researches utilizing siRNA are quoted as analogous examples.

Canonical biogenesis and functions of MicroRNAs

Canonically, the biogenesis of miRNA is a multi-step process involving both nuclear and cytoplasmic machineries. First, the miRNA gene is transcribed by RNA polymerase II to produce a long pri-miRNA [7], which is then bound to the micro-processing complex consisting of RNA binding protein DGCR8 and the RNase III Drosha [8]. Drosha initiates miRNA maturation by cleaving the pri-miRNA to form the hairpin-structured pre-miRNA [9]. Then the pre-miRNA produced is exported to the cytoplasm via Exportin 5 where maturation is completed [10]. In the cytoplasm, pre-miRNA is recognized with its characteristic 2-nt 3′ overhang by Dicer [11], which cleaves off the terminal loop of the hairpin of the pre-miRNA and generates a miRNA duplex. The protein TRBP stabilizes Dicer and chaperones it with dicing functions [12]. Finally, the miRNA duplex is accommodated and unwound by cytoplasmic Argonaute protein (Ago). One strand is retained to form the functional miRNA-induced silencing complex (miRISC), while the other strand is degraded [13].
Post-transcriptional gene silencing (PTGS) in cytoplasm is the classic function mediated by miRNA via miRISC. For example, miR-139-5p and miR-144 are able to reduce the expression of TET2 and TET3 on both mRNA and protein level [14]. The first step of PTGS is recognition. Some basic principles of base-paring include canonical Watson-Crick A-U, G-C pairing and non-canonical G-U pairing. There is a special sequence on the target mRNA for miRNA recognition and binding called miRNA response element (MRE). The MRE is mostly located at the 3’-UTR of the mRNA, just like TET2 and TET3 mRNA [14]. But some studies suggest that it also occurs in 5’-UTR and even in the protein-coding sequences [1518]. For mammals, the base-pairing is always imperfect. One example is the base-pairing between let-7 and lin-41. There are two MREs in lin-41, nevertheless, neither of which has perfect complementarity with the 5′-end of let-70 [15]. In addition, recent studies pointed out that translation will be blocked via three pathways: (i) Deadenylation and degradation mediated by CAF1/CCR4/NOT1 complex; (ii) 5′-decapping facilitated by Dcp1/2 decapping complex; (iii) Ribosome detachment from target mRNA (Fig. 1).

Evidence of MicroRNA in the nucleus

Accumulating evidence suggests that there are miRNAs in the nucleus, though it is putative that miRNA remains in the cytoplasm after its biogenesis [1924]. Since microRNA was first identified in Hela cell nucleus [25], the existence of nuclear mature miRNAs has been further supported by several studies differentiating microRNA profiles into cytoplasmic and nuclear fractions. With high-throughput profiling technologies such as microarray and deep sequencing, hundreds of nuclei-enriched microRNAs have been identified in a variety of cell lines (Table 1) [2632]. Some of these results are reaffirmed with Northern Blot, RT-qPCR, RT-PCR and in situ hybridization (ISH) to eliminate precursor signals. It is interesting to note that while nuclear localization of microRNA is a relatively general phenomenon, the microRNA profile in the nucleus varies across tissue types. For example, the nuclear enrichment of human miR-29b has been reported in HeLa cells [33] but not in other cell lines [28]. Notably, the miRNA nuclear-cytoplasmic ratio is identified as a significant feature to distinguish three different breast cancer cell lines [31]. In addition, a web-accessible database RNALocate (http://​www.​rna-society.​org/​rnalocate/​) provides RNA subcellular localization information which was manually obtained from articles published in the PubMed database before May 2016. Some miRNAs with a nuclear localization can be found in RNALocate [34].
Table 1
High-throughput profiling of nuclear microRNAs
Cell line
Method
Result
Year
L6 rat myoblast
(nucleolus)
Microarray
One third of the detected miRNAs exhibited nucleolar expression at least as high as those observed in the cytoplasm
2009 [26]
In situ hybridization
MiR-351, miR-494, miR-664, miR-1, miR-206 are concentrated in the nucleolus
MiR-199a-3p, miR-21, miR-125a-5p, and let-7a are more concentrated in the nucleoplasm and cytoplasm
RT-qPCR
MiR-351, miR-1, miR-206, miR-21 are concentrated in the nucleolus
MiR-494, miR-664 are more concentrated in the nucleoplasm and cytoplasm
Human nasopharyngeal carcinoma (NPC) 5-8F cell line
Deep sequencing
Among 339 nuclear and 324 cytoplasmic miRNAs, 300 of them overlap
2010 [27]
HCT116 human colorectal carcinoma cell
Microarray
The overall average of nuclear ratio of miRNAs is 0.471 ± 0.15
2010 [28]
RT-PCR
MiR-16, miR-19b, miR-200b, miR-222, miR-29b, miR-29c are highly expressed in the nucleus
Northern blot
MiR-19b, miR-195 are highly expressed in the nucleus
Human monocytic leukemia cell line (THP-1)
Deep sequencing
MiR-16, miR-15b and miR-374b are all over 2-fold enriched in the nucleus;
Nuclear/cytoplasmic ratios of 16 microRNAs are over 1.
2010 [134]
Northern blot
MiR-15 (both a and b) and miR-16 are over 2-fold enriched in the nucleus
C57BL/6 J mouse liver cell
Microarray
MiR-709, miR-805, miR-690 and miR-122 are enriched in the nucleus
2012 [49]
RT-qPCR
MiR-709, miR-690 and miR-30e are highly expressed in the nucleus
The human breast cancer cell MDA-MB-231
High-throughput sequencing
Almost one-fifth of nuclear small RNAs are annotated as piRNAs
2012 [31]
The human breast cancer cell line MCF-7(noninvasive breast cancer cells), MDA-MB-231(invasive breast cancer cell) and the human mammary epithelial cell line MCF-10A (normal breast cells)
Microarray
Nuclear/cytoplasmic ratios of numerous miRNAs vary considerably across different cell lines
Rat primary cortical neuron
Microarray
87 (32.6%) miRNAs are dominant in the cytoplasm, while only (1.5%) miR-133b*, miR-365*, miR-328a* and miR-92a are in the nucleus
2013 [29]
Deep sequencing
MiR-143 and miR-126* are enriched in the nucleus
Northern blot
MiR-25, miR-92a, miR-27a, miR-92b are highly expressed in the nucleus
MiR-138, miR-19b are highly expressed in the cytoplasm
RT-qPCR
MiR-25 and miR-92a are highly expressed in the nucleus
Fluorescence in situ hybridization
MiR-25, miR-92 are highly expressed in the nucleus
MiR-9 is highly expressed in the cytoplasm
HeLa cell
(nucleolus)
RT-qPCR array
11 miRNAs are highly expressed in the nucleolus
2013 [30]
HeLa cell, lung cancer cell H1299, liver cancer cell Huh7, RPE cells, human adult fibroblast AG06858 and primary mouse adult fibroblast (nucleolus)
In situ Hybridization
MiR191, miR-484, miR-574-3p and miR-193b are highly expressed in the nucleolus
Four murine myeloid cell lines (LSK, promyelocyte, myelocyte and granulocyte)
RT-qPCR array
Nuclear/cytoplasmic ratios of miR-706, miR-467a*, miR-709, miR-690, miR-135a* (now miR-135a-1-3p) and miR-142-3p are over 0.1 in one or more cell lines;
Nuclear/cytoplasmic ratios of miR-706 and miR-467a* (now miR-467a-3p) are over 1 in promyelocytes;
2014 [32]
Individual RT-qPCR
MiR-706, miR-709 and miR-690 are enriched in the nucleus;
MiR-467a* is enriched only in the nucleus of LSK and promyelocyte

Shuttle pathways of RISC components

As with nuclear RNA interference [35], many RISC components have been identified that are functional in the nucleus, including Argonaute 2 (Ago2) and trinucleotide repeat containing 6 (TNRC6, also known as GW182) [3638]. Importin 8, a member of karyopherin β family, has been proven to be the mediator in the nuclear import process of Ago2. Specifically, Ago2 can only be transported when loaded with miRNA [39, 40]. The subcellular distribution of Ago2 varies across cell and tissue. For example, the nuclei of Hela and HaCaT cells present with a minimal level of Ago2 [41]. With both nuclear localization signal (NLS) and nuclear export signal (NES), TNRC6A can be transported from nucleus to cytoplasm with the assistance of Exportin 1 (XPO1, also referred to as CRM1) [42] and inversely with Importin α/β [43, 44].
The nuclear RISC is quite different from its cytoplasmic counterpart: under fluorescence correlation and cross-correlation spectroscopy, RISC presents as an approximately 158 kDa complex in the nucleus whereas 20-fold larger complex of nearly 3 MDa in the cytoplasm [45].When imported into the nucleus, cytoplasmic cofactors such as Dicer and TRBP are not attached to the RISC [45]. Consistently, recent research demonstrated that Ago2 and TNRC6, the core components of RNAi, are conserved in the nucleus and cytoplasm [46].
Given that miRNA is colocalized with Argonaute 2 (Ago2) and TNRC6 in the nucleus and cytoplasm, it is hypothetical that RISC associated proteins serve as not only the executors of RNAi but also agents in the miRNA nuclear import [42] (Fig. 1). Ago2 loaded with miRNA can be transported into nucleus with the mediation of Importin 8, while TNRC6 can be independently transported via Importin α/β. Ago2 and TNRC bind together in the nucleus carrying miRNA, forming a complex, which can be exported via XPO1. This explains why miRNA accumulates in the nucleus with reduction of XPO1 in the previous study [47].

Functions of nuclear MicroRNAs

Regulation of RNAs

It has long been observed that nuclear RISC could mediate post-transcriptional gene silencing (PTGS) with miRNA in the nucleus, as well as in cytoplasm. In such a pathway, other endonuclear non-coding RNAs or miRNA precursors could be degraded. In 2005, researchers efficiently degraded nuclear-localized 7SK snRNA with transfection of perfectly complementary siRNA [35]. Long non-coding RNA (lncRNA), a group of non-coding RNAs over 200 nucleotide in length, is also demonstrated to be subject to endonuclear PTGS control. For example, metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is a target of miR-9 in an Ago2-dependent manner in the nucleus [48]. In the nucleus, the maturation of miR-15a/16–1 is inhibited by miR-709 through binding between pri-miR-15a/16–1 and miR-709 [49], which suggests that expression and maturation of one miRNA could be subject to another miRNA.

Transcriptional regulation by interaction with promoters

There are three models for MicroRNA-promoter interaction based on observation of siRNA directed transcriptional regulation [17, 50] (Fig. 2). All of these three models are associated with the Ago protein, although there are some contradictory results as to whether Ago1 or Ago2 is involved [51]. The regulation can be either activation or suppression, and which mode of action occurs is sensitive to the location of target region (such as TATA box motif and CpG island region) and epigenetic status (such as DNA methylation) of the promoter [52]. Moreover, the target region can be far away from the transcription initiation site. For example, the most effective small activating RNA targeting site is located to 1611-bp upstream of the transcription start site (TSS) [53]. Some histone modifiers have been proven to be recruited to the promoter region. Histone methyltransferase euchromatic histone lysine methyltransferase 2 (EHMT2), which suppresses the expression of fumarate hydratase in nasopharyngeal carcinoma [54], is recruited with enhancer of zeste homolog 2 (EZH2) by miR-584-3p in an Ago2-dependent manner to reduce matrix metalloproteinase 14 (MMP-14) expression in gastric cancer [55]. A recently published study indicated that the genome targeting RNA-induced transcriptional activation complex comprises at least three elements: small RNA-loaded Ago2, RHA (a nuclear DNA helicase II), and CTR9 (a component of PAF1 complex that is involved in transcription initiation and elongation). The complex which targets to the p21 promoter interacts with RNA polymerase II to stimulate transcription initiation and induce mRNA elongation, accompanied by ubiquitination of histone H2B in the p21 gene. This ubiquitination is regarded as a prerequisite for H3K4 methylation and acetylation and followed by histone modification [56]. However, along with the complexity of the epigenetic modifications involved in the regulation process [35], whether miRNA can mediate DNA methylation remains dubious [3, 51, 57].

RNA-RNA model

In this model, the microRNA-Ago complex directly targets to noncoding transcripts (either sense or antisense) and serves as a molecular scaffold to recruit additional epigenetic factors, altering epigenetic modifications (such as H3K4me3 and H3K27me3) [5861]. This complex can also induce enrichment of RNA polymerase II at the promoter region [58, 59, 62].
The transcriptional regulation of siRNA can be different in different cellular contexts. For example, the expression of progesterone receptor (PR) is low in MCF7 breast cancer cells, but higher in T47D cells. Promoter-directed siRNA which activates PR expression in MCF7 cells has no effect or even inhibits PR expression in T47D cells [59, 63]. Some antisense transcripts exist within the PR promoter. Solely reduction of the antisense transcript disrupts the effect of siRNA, but basal expression of PR is not changed in MCF7 cells. They also observed the direct interaction between siRNAs and the antisense transcript by biotin labeling. However, the mechanism through which siRNAs are able to activate or inhibit gene expression is poorly understood [59].
However, another model is suggested for miRNA-promoter interaction based on the data of bidirectional gene regulation [62]. At steady state, endogenous p21 contains comparable levels of both sense and antisense transcripts. Decreased antisense RNA induces loss of H3K27me3 and Ago1 at the p21 promoter, thus downregulating the promoter-associated RNA and upregulating the sense RNA. Decreased sense RNA can also alter the epigenetic modifications.
By targeting the promoter, miRNA can also activate another gene that is located at the upstream of the promoter. The underlying mechanism is related to the noncoding RNA overlapping the promoter and gene looping rendering two linearly distant promoter region spatially proximal [60, 64].

RNA-DNA hybrid model

MiRNAs guide Ago protein to promoter targets such as TATA-box motif or the regions associated with transcript factors. Then, transcription preinitiation complex (PIC) is formed, altering histone epigenetic modification as well as binding of transcript factors. Small RNAs might interact with single-stranded DNA while the DNA double helix unwinds during transcription initiation [53, 55, 6567].

RNA-DNA triplex model

In this model, purine or pyrimidine rich (> 75%) miRNAs form triple-helical structures with purine-rich duplex DNA via Hoogsteen or reverse Hoogsteen interaction in the major groove of the duplex DNA. This interaction may alter the DNA topography and allow binding of transcription factors, resulting in transcriptional activation or suppression [68, 69]. Paugh et al. developed an algorithm (Trident) to search for potential triplex-formation sites. Meanwhile, they detected a transient interaction between hsa-miR-5p (a miRNA rich in purine content) with a double-stranded DNA (an identified Hoogsteen binding site screened in genome) in vitro via some methods that are more sensitive and effective in detection of stable triplexes than electrophoretic mobility shift assay (EMSA). Moreover, in primary leukemia cells, largely, the expression of miRNAs that are predicted by Trident are positively correlated with the expression of their target [68]. However, as few evidence exists for triplex formation of miRNAs in vivo [69, 70], this model still needs to be validated upon further study.

MicroRNAs serve as enhancer trigger in the nucleus

Enhancers are genomic cis-regulatory elements able to upregulate gene transcription. Some markers of enhancer including H3K27ac are found in the microRNA genes (MIRs), which means some MIRs and enhancers overlap. Some miRNAs, including miR-26a-1, miR-339, miR-3179, miR-24-1, miR-24-2, had been proven to be able to induce expression of neighboring genes [71]. For example, miR-26a-1 gene is surrounded by protein-coding genes ITGA9, CTDSPL, VILL and PLCD1. The overexpression of miR-26a-1 will lead to transcriptional activation of ITGA9 and VILL in HEK293T. The activation is disrupted when the seed region of miRNA is deleted or mutated or when the enhancer locus is deleted, which suggests that this function relies on miRNA-enhancer base-pairing. Another miRNA, miR-24-1, also increases the expression of its neighboring genes, FBP1 and FANC. Increased miR-24-1 will lead to enrichment of RNA polymerase II, p300/CBP, enhancer RNAs, all of which indicate active regulatory functions. Interestingly, ChIP-qPCR demonstrates that there is Ago2 at the enhancer locus. Furthermore, no transcriptional activation of neighboring genes of miR-24-1 will occur if Ago2 is knocked down [71]. So, it could be argued that enhancer activation induced by miRNAs requires Ago2 to function directly at the locus or carry mature miRNA from cytoplasm to the nucleus.

Similarities and differences between the nuclear and Cytoplasmic functions of MicroRNA

In accordance to those high-throughput profiling results, a large part of miRNAs shuttle between nucleus and cytoplasm, which indicates that they may have both nuclear and cytoplasmic functions. Current knowledge of similarities and differences between miRNA nuclear and cytoplasmic functions are presented as follows (Table 2).
Table 2
Similarities and differences between MicroRNA nuclear and cytoplasmic functions
 
Cytoplasmic
Nuclear
Regulation Level
Post-transcriptional
Post-transcriptional or Transcriptional
Target
mRNA
Non-coding RNA, pri-miRNA, promoter, enhancer
Mechanism
RNA-RNA hybrid
RNA-RNA hybrid, RNA-DNA hybrid, RNA-DNA triplex
Effect
Silencing
Activation or Silencing
Table 3
Nuclear microRNA in cancer
miRNA
Cancer Type
Gene
Tumorigenesis and apoptosis
 miR-423 [73]
Breast cancer
Human progesterone receptor(PR)
 miR-211 [101]
Mammary carcinoma, B cell lymphoma
CHOP
 miR-370, miR-1180, and miR-1236 [100]
Bladder cancer
p21
 miR-205 [86]
Prostate cancer
IL24 IL32
 miR-124 [102]
Breast and ovarian cancer
P27
 miR-2478 [135]
Breast cancer
TGFβ1
 miR-138 [99]
Prostate cancer
β-catenin
 miR-877 [104]
Bladder cancer
p16
 miR-6734 [103]
Colon Cancer
p21
Metastasis and angiogenesis
 miR-10a [136]
Breast cancer
Hoxd4
 miR-9 [48]
Non-small-cell lung carcinoma
MALAT-1
 miR-205 [86]
Prostate cancer
IL24 IL32
 miR-337 [108]
Neuroblastoma
Matrix metalloproteinase
 miR-584 [137]
Human neuroblastoma
Matrix metalloproteinase
 miR-558 [107]
Neuroblastoma
Heparanase
 miR-337 [109]
Gastric cancer
Matrix metalloproteinase
 miR-215 [138]
Malignant gliomas
PCDH9
 miR-2478 [135]
Breast cancer
TGFβ1
Both functions are potent in regulation of multiple processes and mediators of miRNA nuclear and cytoplasmic functions partially overlap. Though there is evidence indicating that nuclear RISC is smaller than cytoplasmic RISC [45]. The nuclear localization of Ago2 and TNRC6, as the core RISC, have been proven. Therefore, PTGS can be induced both in nucleus and cytoplasm.
Other than similarities, however, differences are obvious between cytoplasmic and nuclear miRNAs due to their different localization, targets and mechanisms. MiRNAs in cytoplasm only have the access to mature mRNA but not DNA. Hereby, cytoplasmic functions involve only post-transcriptional modification via miRNA-mRNA hybrid interaction. Translation repression is mediated though cleavage, de-adenylation, 5′-decapping or ribosome detachment. Whereas, miRNA in nucleus have the chance to interact with DNA and RNA in nucleoplasm. Therefore, both transcriptional and post-transcriptional regulation exist in nucleus. However, nuclear miRNA shares the same post-transcriptional gene silencing (PTGS) mechanism with cytoplasmic miRNA. Targets in nucleus are endonuclear RNAs including non-coding RNAs and precursors of miRNAs. Transcription regulation is mainly mediated via miRNA-promoter interaction. Three miRNA-promoter interaction models are, as reviewed above, RNA-RNA hybrid, RNA-DNA hybrid and RNA-DNA triplex. For the RNA-RNA hybrid model, miRNA-Ago complex targets non-coding transcripts and recruits epigenetic factors to alter epigenetic modification at the promoter region [59]. MiRNA can also directly target promoter facilitated by transcription preinitiation complex to alter histone modification [56]. In the RNA-DNA triplex model, miRNA forms triple-helical structure with DNA to activate or suppress transcription via altering DNA topography [68, 69]. Recently, enhancer associated mechanism has also been discovered [71]. In conclusion, there are differences of target and mechanisms between nuclear and cytoplasmic functions.

Nuclear MicroRNA target prediction software tools

Computational prediction of nuclear miRNA target is a critical initial step. Some traditional tools were exploited, while some new ones were developed based on new mechanisms. Target prediction is generally based on sequential characteristics. There are some differences between nuclear and cytoplasmic miRNA target prediction. Here, we summarize some principles of nuclear target recognition and some public software tools.

Principles of target recognition

The basic principle of microRNA target prediction algorithms is the complement of 5′ end of miRNA and target sequence. As the validation of experimental miRNA-mRNA interaction, several empirical miRNA seed sequence models have been proposed, such as nucleotides from position 2 to 8 in the 5′ end of the miRNA [72]. There is possibly an analogous seed model to be exploited for nuclear miRNA target prediction, as some study shows that the mutation or deletion of seed sequence disrupt the activity of nuclear miRNAs [71, 73].
Additionally, the thermodynamic stability will be measured to evaluate the binding between miRNA and target. A lower free energy indicate a more stable interaction. A widely used software tool to calculate the binding energy is RNAhybrid [74]. There are diverse calculation formula for thermodynamic stability of miRNA-mRNA, miRNA-ssDNA and miRNA-dsDNA interaction, so different algorithms will be used for cytoplasmic miRNA and nuclear miRNA target predicting [68].
Another valuable trait of sequences is their evolutionary conservation. There is more possibility a sequence is vital if it is more conserved. Conserved regions in promoters largely overlap open chromatin regions and TF binding sites [75]. In some prediction software tools, conservation of seed sequences will be measured to prevent some false positive results. However, sequence conservation of the promoter is generally lower than that of gene coding regions. Hereby, non-conserved regions should not be ignored. To score the conservation of the sequences independently is an alternative way to solve this problem [72].
With the development of high-throughput sequencing, some public experimental data can be incorporated to identify the miRNA-target interaction. For example, paired expression profiles of miRNAs and mRNAs have been used to identify functional miRNA-target [76]. Ago binding sequences and nuclear/cytoplasmic localization data from previous deep sequencing experiment have been incorporated for miRNA-promoter interaction prediction [77].

Public software tools

MicroPIR2 (http://​www4a.​biotec.​or.​th/​micropir2/​) predicts miRNA target of mouse and human promoter region with related genomic and experimental information. The nuclear/cytoplasmic localization and data obtained from some studies and experimentally verified binding sites of Ago proteins are also incorporated into the database [77].
MiRwalk2 (http://​zmf.​umm.​uni-heidelberg.​de/​apps/​zmf/​mirwalk2/​) provides predicted and validated information of miRNA-target interaction. The binding sites of miRNA can be set to be within all regions of a gene (promoter, 5’-UTR, CDS and 3’-UTR). Results of other 12 miRNA-target prediction programs are also combined and analyzed in miRwalk2 [78, 79].
Trident (http://​trident.​stjude.​org) is a computational algorithm to identify Hoogsteen and reverse Hoogsteen interactions between single-stranded oligonucleotides (microRNA) and double-stranded oligonucleotides (double-stranded DNA). The thermodynamic binding score and heuristic score are measured to evaluate the interaction of miRNA and DNA. Higher heuristic score and lower thermodynamic energy indicate a stronger interaction [63].
Other traditional miRNA target prediction software tools or algorithms can also be used for nuclear miRNA analysis. In order to prevent false positive results, some miRNA target prediction algorithms require conservation of seed sequence and limit the target site in the 3' UTR of mRNA. However, the nuclear miRNAs-targeted promoters are always poorly conserved. There are useful software tools with less limitations or more optional parameters such as TargetS (http://​liubioinfolab.​org/​targetS/​mirna.​html) [72], RegRNA 2.0 (http://​regrna2.​mbc.​nctu.​edu.​tw/​index.​html) [80], and some downloadable applications such as miRanda [81] and RNAhybrid (https://​bibiserv.​cebitec.​uni-bielefeld.​de/​rnahybrid) [74].

MicroRNA nuclear functions in immunity

Granulopoiesis

Some microRNAs have been identified as key modulators of granulopoiesis through detection of the miRNA expression profiles at different stages of hematopoietic differentiation [32, 82, 83]. Several miRNAs predominantly localize in the nucleus in murine myeloid cells, such as miR-223, miR-706, miR-690, miR-709 and miR-467a* [32, 84]. In the cytoplasm of myeloid progenitor cells, miR-223 targets transcription factors MEF2C and NF1A, resulting in increased granulopoiesis. However, in the nucleus, miR-223 also targets the NF1A promoter, recruiting the polycomb repressive complex and increasing the DNA methylation and repressive histone markers [84]. Thus, miR-223 could be an essential determination factor of hematopoietic proliferation and differentiation.

Cytokine

Nuclear microRNAs have the ability to regulate the activation of immune cells via expression regulation of cellular cytokines. For example, let7i binds to the TATA-box and activates the transcription of interleukin-2 (IL-2) in CD4+ T-lymphocytes [60], which is an early landmark critical in the activation of CD4+ T cells [85]. In prostate carcinoma cells, miR-205 activates IL-24 and IL-32 by targeting their promoters. IL-24 and IL-32 are members of cytokine family both serving as tumor suppressor [86]. IL-24 is also known as melanoma differentiation-associated-7 because of its tumor suppression function. It is mainly expressed and functions in non-hematopoietic tissues as an inducer of cell death [87]. Moreover, IL-32 is a proinflammatory cytokine, which also functions in cell differentiation, activation of NK and NKT cells, maturation and activation of immature DCs and infection control, etc. [88]. Thus, nuclear microRNA may play an important role in the pathway of immune response and signal transduction by targeting the promoter of cytokine genes.

Inflammation

Two adjacent inflammatory genes, cyclooxygenase-2 (COX-2) and phospholipase A2 (PLA2G4A) are both activated by miR-589. The targets of miR-589 are located in the promoter of COX-2, and gene looping facilitates the interaction between promoters of COX-2 and PLA2G4A. PLA2G4A encodes an enzyme which catalyzes hydrolysis of membrane phospholipids to release arachidonic acid. COX-2 catalyzes the conversion of arachidonic acid to prostaglandins, an inflammatory factor which plays an important role in vasodilation [60].

Asthma

CD44, a transmembrane glycoprotein, plays a vital role in a variety of immune processes including lymphocyte activation, cell proliferation and assembly of inflammatory cells. Recently, some studies [89, 90] demonstrated that CD44 is associated with airway inflammation, particularly asthma, where Li et al. [91] found high expression level of miR-31 in asthma patients. Further study revealed that miR-31 can directly bind to the promoter of CD44 gene and upregulate its expression. Overexpressed CD44 could further induce the expression of asthma-associated molecules, including IL-6, IL-8 and intercellular adhesion molecule 1 (ICAM), which promote progression of asthma.

MicroRNA nuclear functions in cancer

Cancer progression is a metabolically dynamic process that involves tumor initiation, promotion, progression, angiogenesis and metastasis. In a classic cytoplasmic manner, numerous studies illustrate the significant role miRNAs play in cancer. For example, In glioma, miR-200c represses tumor growth and metastasis via interaction with moesin (MSN) mRNA [92]. MiR-4260 serves as a oncopromoter in the colorectal cancer by targeting tumor suppressor colorectal mutant cancer protein (MCC) and SMAD4 [93].
Additionally, nuclear miRNAs have been reported to be involved in the transcriptional regulation of a variety of tumor promoter/repressor genes or genes that are cancer-related by acting upon the promoter of the respective gene loci. Intriguingly, other acting mechanisms of miRNA have also been reported [94]. Over the recent years, a burgeoning literature has been focused on nuclear miRNAs and cancer. Despite ongoing challenges, sizable results have been achieved. Here we attempt to review the current progress of this research endeavor (Table 3).

Tumor initiation, self-sustenance and apoptosis

It is of general consensus that cancer initiation and progression results from aberrant control and integration of growth, differentiation and apoptosis regulatory signals, which could lead to immortalized cell groups capable of self-sustenance and auto-renewal [95]. Apoptosis is an orchestrated and ordered cellular process in which cells experience programmed cell death under physiological and pathological conditions. Defects can occur at any point along apoptotic pathways, leading to malignant transformation of the affected cells, tumor metastasis and drug resistance [96]. Recent researches in nuclear miRNA and transcriptional gene silencing/activation mechanisms have provided insights that could enrich our understanding in tumorigenesis and apoptosis processes.
Studies using chromatin immunoprecipitation and RNA mimicking reveal that miR-423-5p decreases RNA polymerase II occupancy and increases histone H3 lysine 9 dimethylation (H3K9me2) at the progesterone receptor (PR) promoter of human breast cancer cells, indicating a chromatin-level silencing mechanism for the regulation of expression of PR, which mediates endocrinal effects in the development of the mammary gland and breast cancer [97].
MiR-483, an oncogenic intronic miRNA, is reported to bind to the most upstream imprinted insulin-like growth factor 2 (IGF2) gene promoter P2. Ectopic expression of miR-483 induces upregulation of IGF2 expression, as well as an increase in tumor cell proliferation, migration, invasion, and tumor colony formation [98].
Alpha-methylacyl-CoA racemase (AMACR) is highly overexpressed in prostate cancer (PCa) and its transcriptional regulators include various transcription factors and CTNNB1/β-catenin. Studies conducted in vitro in PCacells by Erdmann K et al. [99] revealed that miR-138 indirectly up-regulates AMACR via transcriptional induction of CTNNB1.
Three miRNAs (miR-370, miR-1180 and miR-1236) induce nuclear p21 expression through p21-promoter binding. The expression levels of three miRNAs decrease in bladder cancer tissues compared to healthy controls. Meanwhile, expression of these miRNAs positively correlate with p21 mRNA expression. Overexpression of these three miRNAs inhibits the proliferation of bladder cancer cells mainly by regulating p21 [100].
MiR-211 is a pro-survival microRNA that down-regulates the pro-apoptotic transcription factor C/EBP-homologous protein (CHOP) in a stress and PERK-dependent manner. This permits the cell to prevent premature accumulation of CHOP and rebuild homeostasis prior to apoptotic activation [101]. Studies using functional proteomics demonstrated a RNA-activation function of miR-124 resulting in direct induction of p27 protein expression by binding to and inducing transcription on the p27 promoter region, leading to a subsequent G1 arrest. Ensuing in vivo studies utilizing a xenograft model demonstrated that nanoparticle-mediated delivery of miR-124 could reduce tumor growth and sensitize cells to etoposide to increase apoptosis [102]. Similarly, miR-6734 was found to inhibit the growth of colon cancer cells by up-regulating p21 gene expression and subsequent induction of cell cycle arrest and apoptosis [103]. The binding site of miR-877-3p was also found on the promoter site of tumor suppressor gene p16. P16 exerts a similar function on inhibiting the proliferation and tumorigenesis of bladder cancer through induction of G1 arrest [104]. P16/INK4a is hypothesized to modulate EPCs senescence with telomerase [105].
Overall, nuclear miRNAs, which mainly act upon the promoter regions, are observed to affect the expression profile of oncogenes, tumor suppressors or other cancer-related genes in the cancer initiation process.

Metastasis and angiogenesis

Tumor metastasis involves development of genetic and epigenetic alterations in malignant cells, which could result in global dissemination of cancer cells and life-threatening conditions in patients. Angiogenesis in a key step in the metastatic cascade and provides the primary tumor the main route for transport through the vasculature [106]. A number of metastasis regulators have been discovered in recent years that are targets of miRNA endonuclear mechanisms, including matrix metalloproteinase (MMP) [107109], protocadherin 9 (PCDH9) [110], E-cadherin [2], cold shock domain containing C2 (CSDC2) [2], etc., many of which are involved in the regulation of extracellular matrix (ECM) integrity or effectors of the epithelial–mesenchymal transition.
E-cadherin belongs to cadherin superfamily and functions as adhesion regulator between cells. This gene is considered a tumor repression gene, the loss of which is observed in many malignant tumors. MiR-373 induces expression of E-cadherin and CSDC2 through promoter binding [2]. MiR-205 increases the expression of tumor suppressor genes IL24 and IL32 in prostate cancer. Transfection of miR-205 leads to decrease of cell growth, metastasis and invasiveness of prostate cancer cells [86].
Matrix metalloproteinase 14 (MMP-14) is a membrane-anchored MMP that promotes migration and invasiveness in various tumors. Both miR-337-3p and miR-584-5p inhibit the transcription of MMP-14 in human neuroblastoma. Overexpression of both miRNAs leads to decrease of growth, metastasis and angiogenesis of human neuroblastoma in vitro and in vivo [108, 111]. In gastric cancer, miR-337-3p inhibit myeloid zinc finger 1 (MZF1) induced transcriptional activation of MMP-14 through recruiting Ago2 and inducing repressive chromatin remodeling. MiR-337-3p attenuates growth, migration, and angiogenesis of gastric cancer cells in vitro and in vivo [109].
MiR-558 can bind to the promoter of Heparanase (HPSE) and enhance its expression activity in an Ago-1-dependent manner. Heparanase is an endoglycosidase which degrades polymeric heparan sulfate molecules and is associated with migration and invasiveness of tumor, like in choriocarcinoma [112]. Consistently, knockdown and over-expression of miR-558 indicate its positive function on tumorigenesis and aggressiveness in neuroblastoma cells [107].
Protocadherin 9 (PCDH9), a member of cadherin superfamily, facilitates cell-cell adhesion and is downregulated in glioma. MiR-215-5p binds to both promoter and 3’ UTR of PCDH9 and inhibits the expression of PCDH9 in glioma [110].
Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT-1), a nuclear long non-coding RNA, plays an important role in the metastasis in non-small-cell lung carcinoma (NSCLC). In previous studies, miR-9 post-transcriptionally regulate MALAT1 in an Ago2-dependent manner in the nucleus [48].

Application of RNAa in cancer therapeutics

In addition to RNA activation (RNAa) triggered by endogenous miRNAs as previously described [2, 86, 100, 102, 107, 113], RNAa has also been exploited and applied in researches of cancer therapeutics and tumorigenesis. Tumorigenesis is a complex process that often entails underexpression of a variety of tumor suppressor genes involved in multiple signal transduction pathways. RNAa, which is highly specific and poses far less danger to genome integrity than viral vectors, could be utilized to upregulate a cohort of tumor suppressors and thus relieve tumor progression. In vivo and in vitro studies have been conducted with effective tumor inhibitory outcomes [114119].
P21 (also referred to as cyclin-dependent kinase inhibitor 1 or CDK-interacting protein 1) is a tumor suppressor and an important cell cycle regulator which relays the upstream effect of p53 gene and inhibits cyclin-dependent kinase (CDK). Overexpression of p21 results in inhibition of cell-cycle progression and G1 arrest, thus could potentially repress tumor progress [120]. In vivo and in vitro studies of p21 RNAa have been conducted in researches where inhibition of proliferation in prostate, lung, hepatocellular, pancreatic and bladder cancer cells was observed [118, 121124]. In another study, hepatocellular carcinoma cells were transfected with dsRNA by liposomes targeting the Wilms’ tumor 1 (WT1) gene promoter, which upregulated WT1, a potent tumor suppressor, and resulted in increased apoptosis of malignant cells [125]. The selected small activating RNA (saRNA) also inhibited the growth, invasion and migration of GC cells by specially reactivating vezatin (VEZT), which resulted in an obvious decrease in the proliferative, invasive and migratory abilities of cancer cells [126]. Moreover, RNAa has been used to promote E-cadherin expression and repress tumor invasion and metastasis in vivo and in vitro in breast, prostate and bladder cancer [116, 127, 128].
Additionally, RNAa has been studied in sensitizing tumor cells to chemotherapy. Innate or acquired resistance to chemotherapy is a formidable challenge that confronts oncologists. Recently, cisplatin nanoparticles co-loaded with miR-375 was developed as a promising treatment for the hepatocellular carcinoma (HCC) based on classic theory of interaction between miRNA and mRNA [129]. Moreover, in one study, saRNA targeting to p21 was transfected in lung cancer cells that are simultaneously treated with cisplatin. Both in vitro and in vivo experimentations showed transfected groups with enhanced chemosensitivity to cisplatin [118], indicating that saRNA based approaches could be potentially applied to relieve chemotherapy resistance under clinical settings.

Conclusion

Since its discovery in 1993, miRNAs had been assumed as post-transcriptional gene regulators that function by base-pairing with mRNAs to inhibit the translation process. However, in more recent years, it has been demonstrated that miRNA could also play a regulatory role in the nucleus [2, 130]. Meanwhile, shuttling mediators of key proteins in the microRNA pathway have also been found. There is some evidence pointing out that miRNA could direct traditional RISC-mediated post-transcriptional gene silencing (PTGS) activities endonuclearly. MiRNA mainly targets specific nucleotide sequences in the promoter region, recruiting epigenetic remodelers and altering gene expression profiles. MiRNA is also shown to serve as enhancer triggers [66] in the nucleus. Disturbances of nuclear miRNA activities could be implicated in a number of diseases and disorders as well as normal physiological processes in immunity and tumor [60, 88, 98].
Based on different targeting prediction principles, many algorithms have been designed. However, because of the deficiency in sensitivity and specificity, no program is proven superior to the others. Results from 12 different miRNA-target prediction programs are integrated into the miRwalk2 database. This database also provides validated target information by an automated text-mining search in the titles/abstracts of the PubMed articles. As research continues to reveal miRNA regulatory mechanisms, the algorithms will become more sensitive and accurate [78, 79, 131].
However, some early results are not repeatable and even conflict with later results. One example is the hexanucleotide element for miR-29b nuclear entrance [33]. MiR-29a without this element will be retained in cytoplasm. However, enrichment of miR-29b is not observed in other cell lines [28]. One explanation is that localization varies among different cell lines. Another explanation is error due to technique. Purity of nuclear abstraction is hard to guarantee. Recently, a protocol for nucleus-cytoplasm division was developed to solve this problem [132].
Nowadays, miRNA therapy and related researches are in a trend to becoming more and more common, but most of them are based on cytoplasmic functions rather than nuclear functions [133]. Accumulating evidence urge us to consider the yet not-too-familiar effect miRNA exerts on the transcription level. As our understanding of its function and dysregulation deepens, nuclear miRNA promises to have applications in a number of clinical settings in the future [4].

Funding

This work was supported by the National Natural Science Foundation of China [81372427 and 81672787(Y.Tao), 81772927(D. Xiao), the National Basic Research Program of China [2015CB553903 (Y.Tao)], and the Fundamental Research Funds for the Central Universities [201710533337 (H.Liu)].

Competing interests

The authors declare no conflict of interest. This manuscript has been read and approved by all authors, and is not submitted or under consideration for publication elsewhere.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Lee RC, Feinbaum RL, Ambros V. The C. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.PubMedCrossRef Lee RC, Feinbaum RL, Ambros V. The C. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.PubMedCrossRef
2.
Zurück zum Zitat Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci U S A. 2008;105:1608.PubMedPubMedCentralCrossRef Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci U S A. 2008;105:1608.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Morris KV, Chan SWL, Jacobsen SE, Looney DJ. Small interfering RNA-induced transcriptional gene silencing in human cells. Science. 2004;305:1289–92.PubMedCrossRef Morris KV, Chan SWL, Jacobsen SE, Looney DJ. Small interfering RNA-induced transcriptional gene silencing in human cells. Science. 2004;305:1289–92.PubMedCrossRef
4.
5.
Zurück zum Zitat Schraivogel D, Meister G. Import routes and nuclear functions of Argonaute and other small RNA-silencing proteins. Trends Biochem Sci. 2014;39:420–31.PubMedCrossRef Schraivogel D, Meister G. Import routes and nuclear functions of Argonaute and other small RNA-silencing proteins. Trends Biochem Sci. 2014;39:420–31.PubMedCrossRef
8.
Zurück zum Zitat Kwon SC, Nguyen TA, Choi YG, Jo MH, Hohng S, Kim VN, Woo JS. Structure of human DROSHA. Cell. 2016;164:81–90.PubMedCrossRef Kwon SC, Nguyen TA, Choi YG, Jo MH, Hohng S, Kim VN, Woo JS. Structure of human DROSHA. Cell. 2016;164:81–90.PubMedCrossRef
9.
Zurück zum Zitat Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415–9.PubMedCrossRef Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415–9.PubMedCrossRef
10.
11.
Zurück zum Zitat Park JE, Heo I, Tian Y, Simanshu DK, Chang H, Jee D, Patel DJ, Kim VN. Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature. 2011;475:201–5.PubMedPubMedCentralCrossRef Park JE, Heo I, Tian Y, Simanshu DK, Chang H, Jee D, Patel DJ, Kim VN. Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature. 2011;475:201–5.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Wilson RC, Tambe A, Kidwell MA, Noland CL, Schneider CP, Doudna JA. Dicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis. Mol Cell. 2015;57:397–407.PubMedCrossRef Wilson RC, Tambe A, Kidwell MA, Noland CL, Schneider CP, Doudna JA. Dicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis. Mol Cell. 2015;57:397–407.PubMedCrossRef
13.
Zurück zum Zitat Kwak PB, Tomari Y. The N domain of Argonaute drives duplex unwinding during RISC assembly. Nat Struct Mol Biol. 2012;19:145–51.PubMedCrossRef Kwak PB, Tomari Y. The N domain of Argonaute drives duplex unwinding during RISC assembly. Nat Struct Mol Biol. 2012;19:145–51.PubMedCrossRef
14.
Zurück zum Zitat Jia J, Shi Y, Chen L, Lai W, Yan B, Jiang Y, Xiao D, Xi S, Cao Y, Liu S. Decrease in lymphoid specific Helicase and 5-hydroxymethylcytosine is associated with metastasis and genome instability. Theranostics. 2017; https://doi.org/10.7150/thno.21389. Jia J, Shi Y, Chen L, Lai W, Yan B, Jiang Y, Xiao D, Xi S, Cao Y, Liu S. Decrease in lymphoid specific Helicase and 5-hydroxymethylcytosine is associated with metastasis and genome instability. Theranostics. 2017; https://​doi.​org/​10.​7150/​thno.​21389.
16.
Zurück zum Zitat Orom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell. 2008;30:460-71. Orom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell. 2008;30:460-71.
17.
Zurück zum Zitat Subramanian S Ajay, Brian D Athey, Inhan Lee. Unified translation repression mechanism for microRNAs and upstream AUGs. BMC Genomics. 2010;11(1):155. Subramanian S Ajay, Brian D Athey, Inhan Lee. Unified translation repression mechanism for microRNAs and upstream AUGs. BMC Genomics. 2010;11(1):155.
18.
Zurück zum Zitat Yvonne Tay, Jinqiu Zhang, Andrew M. Thomson, Bing Lim, Isidore Rigoutsos. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature. 2008;455(7216):1124-1128 Yvonne Tay, Jinqiu Zhang, Andrew M. Thomson, Bing Lim, Isidore Rigoutsos. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature. 2008;455(7216):1124-1128
20.
Zurück zum Zitat Catalanotto C, Cogoni C, Zardo G. MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci. 2016;17:1712.PubMedCentralCrossRef Catalanotto C, Cogoni C, Zardo G. MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci. 2016;17:1712.PubMedCentralCrossRef
21.
23.
Zurück zum Zitat Huang, V. Endogenous miRNAa: miRNA-Mediated Gene Upregulation. RNA Activation. Singapore: Springer; 2017. p. 65–79. Huang, V. Endogenous miRNAa: miRNA-Mediated Gene Upregulation. RNA Activation. Singapore: Springer; 2017. p. 65–79.
24.
Zurück zum Zitat Ramchandran, Ramani, and Pradeep Chaluvally-Raghavan. miRNA-mediated RNA activation in mammalian cells. RNA Activation. Singapore: Springer; 2017. p. 81–89. Ramchandran, Ramani, and Pradeep Chaluvally-Raghavan. miRNA-mediated RNA activation in mammalian cells. RNA Activation. Singapore: Springer; 2017. p. 81–89.
25.
Zurück zum Zitat Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell. 2004;15:185–97.PubMedCrossRef Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell. 2004;15:185–97.PubMedCrossRef
26.
Zurück zum Zitat Politz JCR, Hogan EM, Pederson T. MicroRNAs with a nucleolar location. RNA. 2009;15:1705–15.PubMedCrossRef Politz JCR, Hogan EM, Pederson T. MicroRNAs with a nucleolar location. RNA. 2009;15:1705–15.PubMedCrossRef
27.
Zurück zum Zitat Liao J-Y, Ma L-M, Guo Y-H, Zhang Y-C, Zhou H, Shao P, Chen Y-Q, Qu L-H. Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3′ trailers. PLoS One. 2010;5:e10563.PubMedPubMedCentralCrossRef Liao J-Y, Ma L-M, Guo Y-H, Zhang Y-C, Zhou H, Shao P, Chen Y-Q, Qu L-H. Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3′ trailers. PLoS One. 2010;5:e10563.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Park CW, Zeng Y, Zhang X, Subramanian S, Steer CJ. Mature microRNAs identified in highly purified nuclei from HCT116 colon cancer cells. RNA Biol. 2010;7:606–14.PubMedPubMedCentralCrossRef Park CW, Zeng Y, Zhang X, Subramanian S, Steer CJ. Mature microRNAs identified in highly purified nuclei from HCT116 colon cancer cells. RNA Biol. 2010;7:606–14.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Li ZF, Liang YM, Lau PN, Shen W, Wang DK, Cheung WT, Xue CJ, Poon LM, Lam YW. Dynamic localisation of mature microRNAs in human nucleoli is influenced by exogenous genetic materials. PLoS One. 2013;8:e70869.PubMedPubMedCentralCrossRef Li ZF, Liang YM, Lau PN, Shen W, Wang DK, Cheung WT, Xue CJ, Poon LM, Lam YW. Dynamic localisation of mature microRNAs in human nucleoli is influenced by exogenous genetic materials. PLoS One. 2013;8:e70869.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat B. Chen, B. Zhang, H. Luo, J. Yuan, G. Skogerbø, R. Chen. Distinct microRNA subcellular size and expression patterns in human cancer cells. Int J Cell Biol. 2012;2012:672462. B. Chen, B. Zhang, H. Luo, J. Yuan, G. Skogerbø, R. Chen. Distinct microRNA subcellular size and expression patterns in human cancer cells. Int J Cell Biol. 2012;2012:672462.
32.
Zurück zum Zitat Wong JJ, Ritchie W, Gao D, Lau KA, Gonzalez M, Choudhary A, Taft RJ, Rasko JE, Holst J. Identification of nuclear-enriched miRNAs during mouse granulopoiesis. J Hematol Oncol. 2014;7:42.PubMedPubMedCentralCrossRef Wong JJ, Ritchie W, Gao D, Lau KA, Gonzalez M, Choudhary A, Taft RJ, Rasko JE, Holst J. Identification of nuclear-enriched miRNAs during mouse granulopoiesis. J Hematol Oncol. 2014;7:42.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Hwang H-W, Wentzel EA, Mendell JT. A hexanucleotide element directs microRNA nuclear import. Science. 2007;315:97–100.PubMedCrossRef Hwang H-W, Wentzel EA, Mendell JT. A hexanucleotide element directs microRNA nuclear import. Science. 2007;315:97–100.PubMedCrossRef
34.
Zurück zum Zitat RNALocate: a resource for RNA subcellular localizations. Nucleic Acids Research. 2017. RNALocate: a resource for RNA subcellular localizations. Nucleic Acids Research. 2017.
35.
Zurück zum Zitat Robb GB, Brown KM, Khurana J, Rana TM. Specific and potent RNAi in the nucleus of human cells. Nat Struct Mol Biol. 2005;12:133–7.PubMedCrossRef Robb GB, Brown KM, Khurana J, Rana TM. Specific and potent RNAi in the nucleus of human cells. Nat Struct Mol Biol. 2005;12:133–7.PubMedCrossRef
36.
37.
Zurück zum Zitat Janowski BA, Huffman KE, Schwartz JC, Ram R, Nordsell R, Shames DS, Minna JD, Corey DR. Involvement of AGO1 and AGO2 in mammalian transcriptional silencing. Nat Struct Mol Biol. 2006;13:787–92.PubMedCrossRef Janowski BA, Huffman KE, Schwartz JC, Ram R, Nordsell R, Shames DS, Minna JD, Corey DR. Involvement of AGO1 and AGO2 in mammalian transcriptional silencing. Nat Struct Mol Biol. 2006;13:787–92.PubMedCrossRef
38.
Zurück zum Zitat Hicks JA, Li L, Matsui M, Chu Y, Volkov O, Johnson KC, Corey DR. Human GW182 Paralogs are the central organizers for RNA-mediated control of transcription. Cell Rep. 2017;20:1543–52.PubMedPubMedCentralCrossRef Hicks JA, Li L, Matsui M, Chu Y, Volkov O, Johnson KC, Corey DR. Human GW182 Paralogs are the central organizers for RNA-mediated control of transcription. Cell Rep. 2017;20:1543–52.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Wei Y, Li L, Wang D, Zhang C-Y, Zen K. Importin 8 regulates the transport of mature microRNAs into the cell nucleus. J Biol Chem. 2014;289:10270–5.PubMedPubMedCentralCrossRef Wei Y, Li L, Wang D, Zhang C-Y, Zen K. Importin 8 regulates the transport of mature microRNAs into the cell nucleus. J Biol Chem. 2014;289:10270–5.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Weinmann L, Hock J, Ivacevic T, Ohrt T, Mutze J, Schwille P, Kremmer E, Benes V, Urlaub H, Meister G. Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell. 2009;136:496–507.PubMedCrossRef Weinmann L, Hock J, Ivacevic T, Ohrt T, Mutze J, Schwille P, Kremmer E, Benes V, Urlaub H, Meister G. Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell. 2009;136:496–507.PubMedCrossRef
41.
Zurück zum Zitat Sharma NR, Wang X, Majerciak V, Ajiro M, Kruhlak M, Meyers C, Zheng ZM. Cell type- and tissue context-dependent nuclear distribution of human Ago2. J Biol Chem. 2016;291:2302–9.PubMedCrossRef Sharma NR, Wang X, Majerciak V, Ajiro M, Kruhlak M, Meyers C, Zheng ZM. Cell type- and tissue context-dependent nuclear distribution of human Ago2. J Biol Chem. 2016;291:2302–9.PubMedCrossRef
42.
Zurück zum Zitat Nishi K, Nishi A, Nagasawa T, Ui-Tei K. Human TNRC6A is an Argonaute-navigator protein for microRNA-mediated gene silencing in the nucleus. RNA. 2013;19:17–35.PubMedPubMedCentralCrossRef Nishi K, Nishi A, Nagasawa T, Ui-Tei K. Human TNRC6A is an Argonaute-navigator protein for microRNA-mediated gene silencing in the nucleus. RNA. 2013;19:17–35.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat D. Schraivogel, S.G. Schindler, J. Danner, E. Kremmer, J. Pfaff, S. Hannus, R. Depping, G. Meister. Importin-β facilitates nuclear import of human GW proteins and balances cytoplasmic gene silencing protein levels, Nucleic Acids Res. 2015;43:7447-7461. D. Schraivogel, S.G. Schindler, J. Danner, E. Kremmer, J. Pfaff, S. Hannus, R. Depping, G. Meister. Importin-β facilitates nuclear import of human GW proteins and balances cytoplasmic gene silencing protein levels, Nucleic Acids Res. 2015;43:7447-7461.
44.
Zurück zum Zitat Chaston JJ, Stewart AG, Christie M. Structural characterisation of TNRC6A nuclear localisation signal in complex with importin-alpha. PLoS One. 2017;12:e0183587.PubMedPubMedCentralCrossRef Chaston JJ, Stewart AG, Christie M. Structural characterisation of TNRC6A nuclear localisation signal in complex with importin-alpha. PLoS One. 2017;12:e0183587.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Ohrt T, Mütze J, Staroske W, Weinmann L, Höck J, Crell K, Meister G, Schwille P. Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells. Nucleic Acids Res. 2008;36:6439–49.PubMedPubMedCentralCrossRef Ohrt T, Mütze J, Staroske W, Weinmann L, Höck J, Crell K, Meister G, Schwille P. Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells. Nucleic Acids Res. 2008;36:6439–49.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Kalantari R, Hicks JA, Li L, Gagnon KT, Sridhara V, Lemoff A, Mirzaei H, Corey DR. Stable association of RNAi machinery is conserved between the cytoplasm and nucleus of human cells. RNA. 2016;22:1085–98.PubMedPubMedCentralCrossRef Kalantari R, Hicks JA, Li L, Gagnon KT, Sridhara V, Lemoff A, Mirzaei H, Corey DR. Stable association of RNAi machinery is conserved between the cytoplasm and nucleus of human cells. RNA. 2016;22:1085–98.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Castanotto D, Lingeman R, Riggs AD, Rossi JJ. CRM1 mediates nuclear-cytoplasmic shuttling of mature microRNAs. Proc Natl Acad Sci. 2009;106:21655–9.PubMedPubMedCentralCrossRef Castanotto D, Lingeman R, Riggs AD, Rossi JJ. CRM1 mediates nuclear-cytoplasmic shuttling of mature microRNAs. Proc Natl Acad Sci. 2009;106:21655–9.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Leucci E, Patella F, Waage J, Holmstrøm K, Lindow M, Porse B, Kauppinen S, Lund AH. microRNA-9 targets the long non-coding RNA MALAT1 for degradation in the nucleus. Sci Rep. 2013;3:2535. Leucci E, Patella F, Waage J, Holmstrøm K, Lindow M, Porse B, Kauppinen S, Lund AH. microRNA-9 targets the long non-coding RNA MALAT1 for degradation in the nucleus. Sci Rep. 2013;3:2535.
49.
Zurück zum Zitat Tang R, Li L, Zhu D, Hou D, Cao T, Gu H, Zhang J, Chen J, Zhang C-Y, Zen K. Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system. Cell Res. 2012;22:504.PubMedCrossRef Tang R, Li L, Zhu D, Hou D, Cao T, Gu H, Zhang J, Chen J, Zhang C-Y, Zen K. Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system. Cell Res. 2012;22:504.PubMedCrossRef
50.
Zurück zum Zitat Li, L-C. Small RNA-Guided Transcriptional Gene Activation (RNAa) in Mammalian Cells. RNA Activation. Singapore: Springer; 2017. p. 1-20. Li, L-C. Small RNA-Guided Transcriptional Gene Activation (RNAa) in Mammalian Cells. RNA Activation. Singapore: Springer; 2017. p. 1-20.
51.
Zurück zum Zitat Li L-C. Chromatin remodeling by the small RNA machinery in mammalian cells. Epigenetics. 2014;9:45–52.PubMedCrossRef Li L-C. Chromatin remodeling by the small RNA machinery in mammalian cells. Epigenetics. 2014;9:45–52.PubMedCrossRef
52.
Zurück zum Zitat Li L-C, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, Enokida H, Dahiya R. Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci. 2006;103:17337–42.PubMedPubMedCentralCrossRef Li L-C, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, Enokida H, Dahiya R. Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci. 2006;103:17337–42.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Meng X, Jiang Q, Chang N, Wang X, Liu C, Xiong J, Cao H, Liang Z. Small activating RNA binds to the genomic target site in a seed-region-dependent manner. Nucleic Acids Res. 2016;44:2274–82.PubMedPubMedCentralCrossRef Meng X, Jiang Q, Chang N, Wang X, Liu C, Xiong J, Cao H, Liang Z. Small activating RNA binds to the genomic target site in a seed-region-dependent manner. Nucleic Acids Res. 2016;44:2274–82.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat He X, Yan B, Liu S, Jia J, Lai W, Xin X, Tang C-e, Luo D, Tan T, Jiang Y. Chromatin remodeling factor LSH drives cancer progression by suppressing the activity of fumarate hydratase. Cancer Res. 2016;76:5743–55.PubMedCrossRef He X, Yan B, Liu S, Jia J, Lai W, Xin X, Tang C-e, Luo D, Tan T, Jiang Y. Chromatin remodeling factor LSH drives cancer progression by suppressing the activity of fumarate hydratase. Cancer Res. 2016;76:5743–55.PubMedCrossRef
55.
Zurück zum Zitat Zheng L, Chen Y, Ye L, Jiao W, Song H, Mei H, Li D, Yang F, Li H, Huang K, Tong Q. miRNA-584-3p inhibits gastric cancer progression by repressing Yin Yang 1- facilitated MMP-14 expression. Scientific reports. 2017;7:8967 Zheng L, Chen Y, Ye L, Jiao W, Song H, Mei H, Li D, Yang F, Li H, Huang K, Tong Q. miRNA-584-3p inhibits gastric cancer progression by repressing Yin Yang 1- facilitated MMP-14 expression. Scientific reports. 2017;7:8967
56.
Zurück zum Zitat Portnoy V, Lin SHS, Li KH, Burlingame A, Hu Z-H, Li H, Li L-C. saRNA-guided Ago2 targets the RITA complex to promoters to stimulate transcription. Cell Res. 2016;26:320.PubMedPubMedCentralCrossRef Portnoy V, Lin SHS, Li KH, Burlingame A, Hu Z-H, Li H, Li L-C. saRNA-guided Ago2 targets the RITA complex to promoters to stimulate transcription. Cell Res. 2016;26:320.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Ting AH, Schuebel KE, Herman JG, Baylin SB. Short dsRNA induces transcriptional gene silencing in human cancer cells in the absence of DNA methylation. Nat Genet. 2005;37:906.PubMedPubMedCentralCrossRef Ting AH, Schuebel KE, Herman JG, Baylin SB. Short dsRNA induces transcriptional gene silencing in human cancer cells in the absence of DNA methylation. Nat Genet. 2005;37:906.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Huang V, Place RF, Portnoy V, Wang J, Qi Z, Jia Z, Yu A, Shuman M, Yu J, Li L-C. Upregulation of Cyclin B1 by miRNA and its implications in cancer. Nucleic Acids Res. 2011;40:1695–707.PubMedPubMedCentralCrossRef Huang V, Place RF, Portnoy V, Wang J, Qi Z, Jia Z, Yu A, Shuman M, Yu J, Li L-C. Upregulation of Cyclin B1 by miRNA and its implications in cancer. Nucleic Acids Res. 2011;40:1695–707.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Schwartz JC, Younger ST, Nguyen N-B, Hardy DB, Monia BP, Corey DR, Janowski BA. Antisense transcripts are targets for activating small RNAs. Nat Struct Mol Biol. 2008;15:842–8.PubMedPubMedCentralCrossRef Schwartz JC, Younger ST, Nguyen N-B, Hardy DB, Monia BP, Corey DR, Janowski BA. Antisense transcripts are targets for activating small RNAs. Nat Struct Mol Biol. 2008;15:842–8.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Matsui M, Chu Y, Zhang H, Gagnon KT, Shaikh S, Kuchimanchi S, Manoharan M, Corey DR, Janowski BA. Promoter RNA links transcriptional regulation of inflammatory pathway genes. Nucleic Acids Res. 2013;41:10086–109.PubMedPubMedCentralCrossRef Matsui M, Chu Y, Zhang H, Gagnon KT, Shaikh S, Kuchimanchi S, Manoharan M, Corey DR, Janowski BA. Promoter RNA links transcriptional regulation of inflammatory pathway genes. Nucleic Acids Res. 2013;41:10086–109.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Pisignano G, Napoli S, Magistri M, Mapelli SN, Pastori C, Di Marco S, Civenni G, Albino D, Enriquez C, Allegrini S. A promoter-proximal transcript targeted by genetic polymorphism controls E-cadherin silencing in human cancers. Nat Commun. 2017;8:15622 Pisignano G, Napoli S, Magistri M, Mapelli SN, Pastori C, Di Marco S, Civenni G, Albino D, Enriquez C, Allegrini S. A promoter-proximal transcript targeted by genetic polymorphism controls E-cadherin silencing in human cancers. Nat Commun. 2017;8:15622
62.
Zurück zum Zitat Morris KV, Santoso S, Turner A-M, Pastori C, Hawkins PG. Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. PLoS Genet. 2008;4:e1000258.PubMedPubMedCentralCrossRef Morris KV, Santoso S, Turner A-M, Pastori C, Hawkins PG. Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. PLoS Genet. 2008;4:e1000258.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Bethany A Janowski, Kenneth E Huffman, Jacob C Schwartz, Rosalyn Ram, Daniel Hardy, David S Shames, John D Minna, David R Corey. Inhibiting gene expression at transcription start sites in chromosomal DNA with antigene RNAs. Nature Chemical Biology. 2005;1(4):216-222 Bethany A Janowski, Kenneth E Huffman, Jacob C Schwartz, Rosalyn Ram, Daniel Hardy, David S Shames, John D Minna, David R Corey. Inhibiting gene expression at transcription start sites in chromosomal DNA with antigene RNAs. Nature Chemical Biology. 2005;1(4):216-222
64.
Zurück zum Zitat Yue X, Schwartz JC, Chu Y, Younger ST, Gagnon KT, Elbashir S, Janowski BA, Corey DR. Transcriptional regulation by small RNAs at sequences downstream from 3′ gene termini. Nat Chem Biol. 2010;6:621–9.PubMedPubMedCentralCrossRef Yue X, Schwartz JC, Chu Y, Younger ST, Gagnon KT, Elbashir S, Janowski BA, Corey DR. Transcriptional regulation by small RNAs at sequences downstream from 3′ gene termini. Nat Chem Biol. 2010;6:621–9.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Zhang Y, Fan M, Zhang X, Huang F, Wu K, Zhang J, Liu J, Huang Z, Luo H, Tao L. Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs. RNA. 2014;20:1878–89.PubMedPubMedCentralCrossRef Zhang Y, Fan M, Zhang X, Huang F, Wu K, Zhang J, Liu J, Huang Z, Luo H, Tao L. Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs. RNA. 2014;20:1878–89.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Li Z, Lan X, Han R, Wang J, Huang Y, Sun J, Guo W, Chen H. miR-2478 inhibits TGFβ1 expression by targeting the transcriptional activation region downstream of the TGFβ1 promoter in dairy goats. Sci Rep. 2017;7:42627. Li Z, Lan X, Han R, Wang J, Huang Y, Sun J, Guo W, Chen H. miR-2478 inhibits TGFβ1 expression by targeting the transcriptional activation region downstream of the TGFβ1 promoter in dairy goats. Sci Rep. 2017;7:42627.
67.
Zurück zum Zitat Zhang Y, Zhang H. RNAa Induced by TATA Box-Targeting MicroRNAs. RNA Activation. Singapore: Springer; 2017. p. 91-111. Zhang Y, Zhang H. RNAa Induced by TATA Box-Targeting MicroRNAs. RNA Activation. Singapore: Springer; 2017. p. 91-111.
68.
Zurück zum Zitat Paugh SW, Coss DR, Bao J, Laudermilk LT, Grace CR, Ferreira AM, Waddell MB, Ridout G, Naeve D, Leuze M. MicroRNAs form triplexes with double stranded DNA at sequence-specific binding sites; a eukaryotic mechanism via which microRNAs could directly alter gene expression. PLoS Comput Biol. 2016;12:e1004744.PubMedPubMedCentralCrossRef Paugh SW, Coss DR, Bao J, Laudermilk LT, Grace CR, Ferreira AM, Waddell MB, Ridout G, Naeve D, Leuze M. MicroRNAs form triplexes with double stranded DNA at sequence-specific binding sites; a eukaryotic mechanism via which microRNAs could directly alter gene expression. PLoS Comput Biol. 2016;12:e1004744.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Toscano-Garibay JD, Aquino-Jarquin G. Transcriptional regulation mechanism mediated by miRNA–DNA• DNA triplex structure stabilized by Argonaute. Bioch Biophys Acta, Gene Regul Mech. 2014;1839:1079–83.CrossRef Toscano-Garibay JD, Aquino-Jarquin G. Transcriptional regulation mechanism mediated by miRNA–DNA• DNA triplex structure stabilized by Argonaute. Bioch Biophys Acta, Gene Regul Mech. 2014;1839:1079–83.CrossRef
70.
Zurück zum Zitat Kanak M, Alseiari M, Balasubramanian P, Addanki K, Aggarwal M, Noorali S, Kalsum A, Mahalingam K, Pace G, Panasik N. Triplex-forming MicroRNAs form stable complexes with HIV-1 provirus and inhibit its replication. Appl Immunohistochem Mol Morphol. 2010;18:532–45.PubMedCrossRef Kanak M, Alseiari M, Balasubramanian P, Addanki K, Aggarwal M, Noorali S, Kalsum A, Mahalingam K, Pace G, Panasik N. Triplex-forming MicroRNAs form stable complexes with HIV-1 provirus and inhibit its replication. Appl Immunohistochem Mol Morphol. 2010;18:532–45.PubMedCrossRef
71.
Zurück zum Zitat Xiao M, Li J, Li W, Wang Y, Wu F, Xi Y, Zhang L, Ding C, Luo H, Li Y. MicroRNAs activate gene transcription epigenetically as an enhancer trigger. RNA Biol. 2016:00–0. Xiao M, Li J, Li W, Wang Y, Wu F, Xi Y, Zhang L, Ding C, Luo H, Li Y. MicroRNAs activate gene transcription epigenetically as an enhancer trigger. RNA Biol. 2016:00–0.
72.
Zurück zum Zitat Xu W, San Lucas A, Wang Z, Liu Y. Identifying microRNA targets in different gene regions. BMC Bioinf. 2014;15:S4.CrossRef Xu W, San Lucas A, Wang Z, Liu Y. Identifying microRNA targets in different gene regions. BMC Bioinf. 2014;15:S4.CrossRef
73.
Zurück zum Zitat Younger ST, Corey DR. Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters. Nucleic Acids Res. 2011;39:5682–91.PubMedPubMedCentralCrossRef Younger ST, Corey DR. Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters. Nucleic Acids Res. 2011;39:5682–91.PubMedPubMedCentralCrossRef
74.
75.
Zurück zum Zitat De Witte D, Van de Velde J, Decap D, Van Bel M, Audenaert P, Demeester P, Dhoedt B, Vandepoele K, Fostier J. BLSSpeller: exhaustive comparative discovery of conserved cis-regulatory elements. Bioinformatics. 2015;31:3758–66.PubMedPubMedCentral De Witte D, Van de Velde J, Decap D, Van Bel M, Audenaert P, Demeester P, Dhoedt B, Vandepoele K, Fostier J. BLSSpeller: exhaustive comparative discovery of conserved cis-regulatory elements. Bioinformatics. 2015;31:3758–66.PubMedPubMedCentral
76.
Zurück zum Zitat Huang JC, Babak T, Corson TW, Chua G, Khan S, Gallie BL, Hughes TR, Blencowe BJ, Frey BJ, Morris QD. Using expression profiling data to identify human microRNA targets. Nat Methods. 2007;4:1045–9.PubMedCrossRef Huang JC, Babak T, Corson TW, Chua G, Khan S, Gallie BL, Hughes TR, Blencowe BJ, Frey BJ, Morris QD. Using expression profiling data to identify human microRNA targets. Nat Methods. 2007;4:1045–9.PubMedCrossRef
77.
Zurück zum Zitat Piriyapongsa J, Bootchai C, Ngamphiw C, Tongsima S. microPIR2: a comprehensive database for human–mouse comparative study of microRNA–promoter interactions. Database. 2014;2014:bau115. Piriyapongsa J, Bootchai C, Ngamphiw C, Tongsima S. microPIR2: a comprehensive database for human–mouse comparative study of microRNA–promoter interactions. Database. 2014;2014:bau115.
78.
Zurück zum Zitat Dweep H, Gretz N. miRWalk2. 0: a comprehensive atlas of microRNA-target interactions. Nat Methods. 2015;12:697.PubMedCrossRef Dweep H, Gretz N. miRWalk2. 0: a comprehensive atlas of microRNA-target interactions. Nat Methods. 2015;12:697.PubMedCrossRef
79.
Zurück zum Zitat Parveen A, Gretz N, Dweep H. Obtaining miRNA-Target Interaction Information from miRWalk2. 0. Cur Prot Bioinformatics. 2016;55:12.15.1-12.15.27. Parveen A, Gretz N, Dweep H. Obtaining miRNA-Target Interaction Information from miRWalk2. 0. Cur Prot Bioinformatics. 2016;55:12.15.1-12.15.27.
80.
Zurück zum Zitat Chang T-H, Huang H-Y, Hsu JB-K, Weng S-L, Horng J-T, Huang H-D. An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs. BMC Bioinf. 2013;14:S4. Chang T-H, Huang H-Y, Hsu JB-K, Weng S-L, Horng J-T, Huang H-D. An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs. BMC Bioinf. 2013;14:S4.
82.
Zurück zum Zitat Larsen MT, Hother C, Häger M, Pedersen CC, Theilgaard-Mönch K, Borregaard N, et al. MicroRNA Profiling in Human Neutrophils during Bone Marrow Granulopoiesis and In Vivo Exudation. PLoS ONE. 2013;8:e58454. Larsen MT, Hother C, Häger M, Pedersen CC, Theilgaard-Mönch K, Borregaard N, et al. MicroRNA Profiling in Human Neutrophils during Bone Marrow Granulopoiesis and In Vivo Exudation. PLoS ONE. 2013;8:e58454. 
83.
Zurück zum Zitat Sun SM, Dijkstra MK, Bijkerk AC, Brooimans RA, Valk PJ, Erkeland SJ, Löwenberg B, Jongen-Lavrencic M. Transition of highly specific microRNA expression patterns in association with discrete maturation stages of human granulopoiesis. Br J Haematol. 2011;155:395–8.PubMedCrossRef Sun SM, Dijkstra MK, Bijkerk AC, Brooimans RA, Valk PJ, Erkeland SJ, Löwenberg B, Jongen-Lavrencic M. Transition of highly specific microRNA expression patterns in association with discrete maturation stages of human granulopoiesis. Br J Haematol. 2011;155:395–8.PubMedCrossRef
84.
Zurück zum Zitat Zardo G, Ciolfi A, Vian L, Starnes LM, Billi M, Racanicchi S, Maresca C, Fazi F, Travaglini L, Noguera N. Polycombs and microRNA-223 regulate human granulopoiesis by transcriptional control of target gene expression. Blood. 2012;119:4034–46.PubMedCrossRef Zardo G, Ciolfi A, Vian L, Starnes LM, Billi M, Racanicchi S, Maresca C, Fazi F, Travaglini L, Noguera N. Polycombs and microRNA-223 regulate human granulopoiesis by transcriptional control of target gene expression. Blood. 2012;119:4034–46.PubMedCrossRef
85.
Zurück zum Zitat Sojka DK, Bruniquel D, Schwartz RH, Singh NJ. IL-2 secretion by CD4+ T cells in vivo is rapid, transient, and influenced by TCR-specific competition. J Immunol. 2004;172:6136–43.PubMedCrossRef Sojka DK, Bruniquel D, Schwartz RH, Singh NJ. IL-2 secretion by CD4+ T cells in vivo is rapid, transient, and influenced by TCR-specific competition. J Immunol. 2004;172:6136–43.PubMedCrossRef
86.
Zurück zum Zitat Majid S, Dar AA, Saini S, Yamamura S, Hirata H, Tanaka Y, Deng G, Dahiya R. MicroRNA-205–directed transcriptional activation of tumor suppressor genes in prostate cancer. Cancer. 2010;116:5637–49.PubMedPubMedCentralCrossRef Majid S, Dar AA, Saini S, Yamamura S, Hirata H, Tanaka Y, Deng G, Dahiya R. MicroRNA-205–directed transcriptional activation of tumor suppressor genes in prostate cancer. Cancer. 2010;116:5637–49.PubMedPubMedCentralCrossRef
87.
88.
Zurück zum Zitat Ribeiro-Dias F, Gomes RS, de Lima Silva LL, dos Santos JC, Joosten LA. Interleukin 32: a novel player in the control of infectious diseases. J Leukoc Biol. 2017;101:39–52.PubMedCrossRef Ribeiro-Dias F, Gomes RS, de Lima Silva LL, dos Santos JC, Joosten LA. Interleukin 32: a novel player in the control of infectious diseases. J Leukoc Biol. 2017;101:39–52.PubMedCrossRef
89.
Zurück zum Zitat Kumar S, Lanckacker E, Dentener M, Bracke K, Provoost S, De Grove K, Brusselle G, Wouters E, Maes T, Joos G. Aggravation of allergic airway inflammation by cigarette smoke in mice is CD44-dependent. PLoS One. 2016;11:e0151113.PubMedPubMedCentralCrossRef Kumar S, Lanckacker E, Dentener M, Bracke K, Provoost S, De Grove K, Brusselle G, Wouters E, Maes T, Joos G. Aggravation of allergic airway inflammation by cigarette smoke in mice is CD44-dependent. PLoS One. 2016;11:e0151113.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Johansson MW. Eosinophil activation status in separate compartments and association with asthma. Front Med. 2017;4:75.CrossRef Johansson MW. Eosinophil activation status in separate compartments and association with asthma. Front Med. 2017;4:75.CrossRef
91.
Zurück zum Zitat Li L, Hui Y, Xing C, Guo Y, Wang Q, Shu J, Qian J, Zhou G. MicroRNA-31 affects the expression of asthma-related cytokines via regulation of CD44. Int. J Clin Exp Med. 2016;9:11. Li L, Hui Y, Xing C, Guo Y, Wang Q, Shu J, Qian J, Zhou G. MicroRNA-31 affects the expression of asthma-related cytokines via regulation of CD44. Int. J Clin Exp Med. 2016;9:11.
92.
Zurück zum Zitat Qin Y, Chen W, Liu B, Zhou L, Deng L, Niu W, Bao D, Cheng C, Li D, Liu S. MiR-200c inhibits the tumor progression of Glioma via targeting Moesin. Theranostics. 2017;7:1663.PubMedPubMedCentralCrossRef Qin Y, Chen W, Liu B, Zhou L, Deng L, Niu W, Bao D, Cheng C, Li D, Liu S. MiR-200c inhibits the tumor progression of Glioma via targeting Moesin. Theranostics. 2017;7:1663.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Xiao J, Lv D, Zhou J, Bei Y, Chen T, Hu M, Zhou Q, Fu S, Huang Q. Therapeutic inhibition of miR-4260 suppresses colorectal cancer via targeting MCC and SMAD4. Theranostics. 2017;7:1901.PubMedPubMedCentralCrossRef Xiao J, Lv D, Zhou J, Bei Y, Chen T, Hu M, Zhou Q, Fu S, Huang Q. Therapeutic inhibition of miR-4260 suppresses colorectal cancer via targeting MCC and SMAD4. Theranostics. 2017;7:1901.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Cui C, Yu J, Huang S, Zhu H, Huang Z. Transcriptional regulation of gene expression by microRNAs as endogenous decoys of transcription factors. Cell Physiol Biochem. 2014;33:1698–714.PubMedCrossRef Cui C, Yu J, Huang S, Zhu H, Huang Z. Transcriptional regulation of gene expression by microRNAs as endogenous decoys of transcription factors. Cell Physiol Biochem. 2014;33:1698–714.PubMedCrossRef
95.
Zurück zum Zitat Scott RE, Wille JJ Jr, Wier ML. Mechanisms for the initiation and promotion of carcinogenesis: a review and a new concept. Mayo Clin Proc. 1984;59:107–17.PubMedCrossRef Scott RE, Wille JJ Jr, Wier ML. Mechanisms for the initiation and promotion of carcinogenesis: a review and a new concept. Mayo Clin Proc. 1984;59:107–17.PubMedCrossRef
96.
Zurück zum Zitat Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi N. Apoptosis and molecular targeting therapy in cancer. Biomed Res Int. 2014;2014:150845.PubMedPubMedCentral Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi N. Apoptosis and molecular targeting therapy in cancer. Biomed Res Int. 2014;2014:150845.PubMedPubMedCentral
97.
Zurück zum Zitat Conneely OM, Jericevic BM, Lydon JP. Progesterone receptors in mammary gland development and tumorigenesis. J Mammary Gland Biol Neoplasia. 2003;8:205–14.PubMedCrossRef Conneely OM, Jericevic BM, Lydon JP. Progesterone receptors in mammary gland development and tumorigenesis. J Mammary Gland Biol Neoplasia. 2003;8:205–14.PubMedCrossRef
98.
Zurück zum Zitat Zhang Y, Hu JF, Wang H, Cui J, Gao S, Hoffman AR, Li W. CRISPR Cas9-guided chromatin immunoprecipitation identifies miR483 as an epigenetic modulator of IGF2 imprinting in tumors. Oncotarget. 2017;8:34177–90.PubMed Zhang Y, Hu JF, Wang H, Cui J, Gao S, Hoffman AR, Li W. CRISPR Cas9-guided chromatin immunoprecipitation identifies miR483 as an epigenetic modulator of IGF2 imprinting in tumors. Oncotarget. 2017;8:34177–90.PubMed
99.
Zurück zum Zitat Erdmann K, Kaulke K, Rieger C, Wirth MP, Fuessel S. Induction of alpha-methylacyl-CoA racemase by miR-138 via up-regulation of beta-catenin in prostate cancer cells. Journal of cancer research and clinical oncology. 2017;143:2201-2210. Erdmann K, Kaulke K, Rieger C, Wirth MP, Fuessel S. Induction of alpha-methylacyl-CoA racemase by miR-138 via up-regulation of beta-catenin in prostate cancer cells. Journal of cancer research and clinical oncology. 2017;143:2201-2210.
100.
Zurück zum Zitat Wang C, Chen Z, Ge Q, Hu J, Li F, Hu J, Xu H, Ye Z, Li LC. Up-regulation of p21(WAF1/CIP1) by miRNAs and its implications in bladder cancer cells. FEBS Lett. 2014;588:4654–64.PubMedCrossRef Wang C, Chen Z, Ge Q, Hu J, Li F, Hu J, Xu H, Ye Z, Li LC. Up-regulation of p21(WAF1/CIP1) by miRNAs and its implications in bladder cancer cells. FEBS Lett. 2014;588:4654–64.PubMedCrossRef
101.
Zurück zum Zitat Chitnis NS, Pytel D, Bobrovnikova-Marjon E, Pant D, Zheng H, Maas NL, Frederick B, Kushner JA, Chodosh LA, Koumenis C, Fuchs SY, Diehl JA. miR-211 is a prosurvival microRNA that regulates chop expression in a PERK-dependent manner. Mol Cell. 2012;48:353–64.PubMedPubMedCentralCrossRef Chitnis NS, Pytel D, Bobrovnikova-Marjon E, Pant D, Zheng H, Maas NL, Frederick B, Kushner JA, Chodosh LA, Koumenis C, Fuchs SY, Diehl JA. miR-211 is a prosurvival microRNA that regulates chop expression in a PERK-dependent manner. Mol Cell. 2012;48:353–64.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Seviour EG, Sehgal V, Lu Y, Luo Z, Moss T, Zhang F, Hill SM, Liu W, Maiti SN, Cooper L, Azencot R, Lopez-Berestein G, Rodriguez-Aguayo C, Roopaimoole R, Pecot CV, Sood AK, Mukherjee S, Gray JW, Mills GB, Ram PT. Functional proteomics identifies miRNAs to target a p27/Myc/phospho-Rb signature in breast and ovarian cancer. Oncogene. 2016;35:691–701.PubMedCrossRef Seviour EG, Sehgal V, Lu Y, Luo Z, Moss T, Zhang F, Hill SM, Liu W, Maiti SN, Cooper L, Azencot R, Lopez-Berestein G, Rodriguez-Aguayo C, Roopaimoole R, Pecot CV, Sood AK, Mukherjee S, Gray JW, Mills GB, Ram PT. Functional proteomics identifies miRNAs to target a p27/Myc/phospho-Rb signature in breast and ovarian cancer. Oncogene. 2016;35:691–701.PubMedCrossRef
103.
Zurück zum Zitat Kang MR, Park KH, Yang JO, Lee CW, Oh SJ, Yun J, Lee MY, Han SB, Kang JS. miR-6734 up-regulates p21 gene expression and induces cell cycle arrest and apoptosis in colon cancer cells. PLoS One. 2016;11:e0160961.PubMedPubMedCentralCrossRef Kang MR, Park KH, Yang JO, Lee CW, Oh SJ, Yun J, Lee MY, Han SB, Kang JS. miR-6734 up-regulates p21 gene expression and induces cell cycle arrest and apoptosis in colon cancer cells. PLoS One. 2016;11:e0160961.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Li S, Zhu Y, Liang Z, Wang X, Meng S, Xu X, Xu X, Wu J, Ji A, Hu Z, Lin Y, Chen H, Mao Y, Wang W, Zheng X, Liu B, Xie L. Up-regulation of p16 by miR-877-3p inhibits proliferation of bladder cancer. Oncotarget. 2016;7:51773–83.PubMedPubMedCentral Li S, Zhu Y, Liang Z, Wang X, Meng S, Xu X, Xu X, Wu J, Ji A, Hu Z, Lin Y, Chen H, Mao Y, Wang W, Zheng X, Liu B, Xie L. Up-regulation of p16 by miR-877-3p inhibits proliferation of bladder cancer. Oncotarget. 2016;7:51773–83.PubMedPubMedCentral
105.
Zurück zum Zitat Yang DG, Liu L, & Zheng XY. Cyclin-dependent kinase inhibitor p16 ink4a, and telomerase may co-modulate endothelial progenitor cells senescence. Ageing Res Rev. 2008;7(2):137.PubMedCrossRef Yang DG, Liu L, & Zheng XY. Cyclin-dependent kinase inhibitor p16 ink4a, and telomerase may co-modulate endothelial progenitor cells senescence. Ageing Res Rev. 2008;7(2):137.PubMedCrossRef
107.
Zurück zum Zitat Qu H, Zheng L, Pu J, Mei H, Xiang X, Zhao X, Li D, Li S, Mao L, Huang K. miRNA-558 promotes tumorigenesis and aggressiveness of neuroblastoma cells through activating the transcription of heparanase. Hum Mol Genet. 2015;24:2539–51.PubMedCrossRef Qu H, Zheng L, Pu J, Mei H, Xiang X, Zhao X, Li D, Li S, Mao L, Huang K. miRNA-558 promotes tumorigenesis and aggressiveness of neuroblastoma cells through activating the transcription of heparanase. Hum Mol Genet. 2015;24:2539–51.PubMedCrossRef
108.
Zurück zum Zitat Xiang X, Mei H, Zhao X, Pu J, Li D, Qu H, Jiao W, Zhao J, Huang K, Zheng L. miRNA-337-3p suppresses neuroblastoma progression by repressing the transcription of matrix metalloproteinase 14. Oncotarget. 2015;6:22452.PubMedPubMedCentral Xiang X, Mei H, Zhao X, Pu J, Li D, Qu H, Jiao W, Zhao J, Huang K, Zheng L. miRNA-337-3p suppresses neuroblastoma progression by repressing the transcription of matrix metalloproteinase 14. Oncotarget. 2015;6:22452.PubMedPubMedCentral
109.
Zurück zum Zitat Zheng L, Jiao W, Mei H, Song H, Li D, Xiang X, Chen Y, Yang F, Li H, Huang K. miRNA-337-3p inhibits gastric cancer progression through repressing myeloid zinc finger 1-facilitated expression of matrix metalloproteinase 14. Oncotarget. 2016;7:40314.PubMedPubMedCentral Zheng L, Jiao W, Mei H, Song H, Li D, Xiang X, Chen Y, Yang F, Li H, Huang K. miRNA-337-3p inhibits gastric cancer progression through repressing myeloid zinc finger 1-facilitated expression of matrix metalloproteinase 14. Oncotarget. 2016;7:40314.PubMedPubMedCentral
110.
Zurück zum Zitat Wang C, Chen Q, Li S, Li S, Zhao Z, Gao H, Wang X, Li B, Zhang W, Yuan Y. Dual inhibition of PCDH9 expression by miR-215-5p up-regulation in gliomas. Oncotarget. 2017;8:10287.PubMed Wang C, Chen Q, Li S, Li S, Zhao Z, Gao H, Wang X, Li B, Zhang W, Yuan Y. Dual inhibition of PCDH9 expression by miR-215-5p up-regulation in gliomas. Oncotarget. 2017;8:10287.PubMed
111.
Zurück zum Zitat Xiang X, Mei H, Qu H, Zhao X, Li D, Song H, Jiao W, Pu J, Huang K, Zheng L. miRNA-584-5p exerts tumor suppressive functions in human neuroblastoma through repressing transcription of matrix metalloproteinase 14. Biochim Biophy Acta (BBA)-Mol Basis Dis. 2015;1852:1743–54.CrossRef Xiang X, Mei H, Qu H, Zhao X, Li D, Song H, Jiao W, Pu J, Huang K, Zheng L. miRNA-584-5p exerts tumor suppressive functions in human neuroblastoma through repressing transcription of matrix metalloproteinase 14. Biochim Biophy Acta (BBA)-Mol Basis Dis. 2015;1852:1743–54.CrossRef
112.
Zurück zum Zitat Jingting C, et al. Heparanase expression correlates with metastatic capability in human choriocarcinoma. Gynecol Oncol. 2007;107(1):22–9.PubMedCrossRef Jingting C, et al. Heparanase expression correlates with metastatic capability in human choriocarcinoma. Gynecol Oncol. 2007;107(1):22–9.PubMedCrossRef
113.
Zurück zum Zitat Liu M, Roth A, Yu M, Morris R, Bersani F, Rivera MN, Lu J, Shioda T, Vasudevan S, Ramaswamy S, Maheswaran S, Diederichs S, Haber DA. The IGF2 intronic miR-483 selectively enhances transcription from IGF2 fetal promoters and enhances tumorigenesis. Genes Dev. 2013;27:2543–8.PubMedPubMedCentralCrossRef Liu M, Roth A, Yu M, Morris R, Bersani F, Rivera MN, Lu J, Shioda T, Vasudevan S, Ramaswamy S, Maheswaran S, Diederichs S, Haber DA. The IGF2 intronic miR-483 selectively enhances transcription from IGF2 fetal promoters and enhances tumorigenesis. Genes Dev. 2013;27:2543–8.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Chen R, Wang T, Rao K, Yang J, Zhang S, Wang S, Liu J, Ye Z. Up-regulation of VEGF by small activator RNA in human corpus cavernosum smooth muscle cells. J Sex Med. 2011;8:2773–80.PubMedCrossRef Chen R, Wang T, Rao K, Yang J, Zhang S, Wang S, Liu J, Ye Z. Up-regulation of VEGF by small activator RNA in human corpus cavernosum smooth muscle cells. J Sex Med. 2011;8:2773–80.PubMedCrossRef
115.
Zurück zum Zitat Dong Z, Dang Y, Chen Y. Small double-stranded RNA mediates the anti-cancer effects of p21WAF1/ClP1 transcriptional activation in a human glioma cell line. Yonsei Med J. 2014;55:324–30.PubMedPubMedCentralCrossRef Dong Z, Dang Y, Chen Y. Small double-stranded RNA mediates the anti-cancer effects of p21WAF1/ClP1 transcriptional activation in a human glioma cell line. Yonsei Med J. 2014;55:324–30.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Junxia W, Ping G, Yuan H, Lijun Z, Jihong R, Fang L, Min L, Xi W, Ting H, Ke D, Huizhong Z. Double strand RNA-guided endogeneous E-cadherin up-regulation induces the apoptosis and inhibits proliferation of breast carcinoma cells in vitro and in vivo. Cancer Sci. 2010;101:1790–6.PubMedCrossRef Junxia W, Ping G, Yuan H, Lijun Z, Jihong R, Fang L, Min L, Xi W, Ting H, Ke D, Huizhong Z. Double strand RNA-guided endogeneous E-cadherin up-regulation induces the apoptosis and inhibits proliferation of breast carcinoma cells in vitro and in vivo. Cancer Sci. 2010;101:1790–6.PubMedCrossRef
117.
118.
Zurück zum Zitat Wei J, Zhao J, Long M, Han Y, Wang X, Lin F, Ren J, He T, Zhang H. p21WAF1/CIP1 gene transcriptional activation exerts cell growth inhibition and enhances chemosensitivity to cisplatin in lung carcinoma cell. BMC Cancer. 2010;10:632.PubMedPubMedCentralCrossRef Wei J, Zhao J, Long M, Han Y, Wang X, Lin F, Ren J, He T, Zhang H. p21WAF1/CIP1 gene transcriptional activation exerts cell growth inhibition and enhances chemosensitivity to cisplatin in lung carcinoma cell. BMC Cancer. 2010;10:632.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Yang K, Shen J, Xie YQ, Lin YW, Qin J, Mao QQ, Zheng XY, Xie LP. Promoter-targeted double-stranded small RNAs activate PAWR gene expression in human cancer cells. Int J Biochem Cell Biol. 2013;45:1338–46.PubMedCrossRef Yang K, Shen J, Xie YQ, Lin YW, Qin J, Mao QQ, Zheng XY, Xie LP. Promoter-targeted double-stranded small RNAs activate PAWR gene expression in human cancer cells. Int J Biochem Cell Biol. 2013;45:1338–46.PubMedCrossRef
120.
Zurück zum Zitat Hoeferlin LA, Oleinik NV, Krupenko NI, Krupenko SA. Activation of p21-dependent G1/G2 arrest in the absence of DNA damage as an Antiapoptotic response to metabolic stress. Genes Cancer. 2011;2:889–99.PubMedPubMedCentralCrossRef Hoeferlin LA, Oleinik NV, Krupenko NI, Krupenko SA. Activation of p21-dependent G1/G2 arrest in the absence of DNA damage as an Antiapoptotic response to metabolic stress. Genes Cancer. 2011;2:889–99.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Place RF, Wang J, Noonan EJ, Meyers R, Manoharan M, Charisse K, Duncan R, Huang V, Wang X, Li LC. Formulation of small activating RNA into Lipidoid Nanoparticles inhibits Xenograft prostate tumor growth by inducing p21 expression. Mol Ther Nucleic Acids. 2012;1:e15.PubMedPubMedCentralCrossRef Place RF, Wang J, Noonan EJ, Meyers R, Manoharan M, Charisse K, Duncan R, Huang V, Wang X, Li LC. Formulation of small activating RNA into Lipidoid Nanoparticles inhibits Xenograft prostate tumor growth by inducing p21 expression. Mol Ther Nucleic Acids. 2012;1:e15.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Kosaka M, Kang MR, Yang G, Li LC. Targeted p21WAF1/CIP1 activation by RNAa inhibits hepatocellular carcinoma cells. Nucleic Acid Ther. 2012;22:335–43.PubMedPubMedCentral Kosaka M, Kang MR, Yang G, Li LC. Targeted p21WAF1/CIP1 activation by RNAa inhibits hepatocellular carcinoma cells. Nucleic Acid Ther. 2012;22:335–43.PubMedPubMedCentral
123.
Zurück zum Zitat Zhang Z, Wang Z, Liu X, Wang J, Li F, Li C, Shan B. Up-regulation of p21WAF1/CIP1 by small activating RNA inhibits the in vitro and in vivo growth of pancreatic cancer cells. Tumori. 2012;98:804–11.PubMed Zhang Z, Wang Z, Liu X, Wang J, Li F, Li C, Shan B. Up-regulation of p21WAF1/CIP1 by small activating RNA inhibits the in vitro and in vivo growth of pancreatic cancer cells. Tumori. 2012;98:804–11.PubMed
124.
Zurück zum Zitat Yang K, Zheng XY, Qin J, Wang YB, Bai Y, Mao QQ, Wan Q, Wu ZM, Xie LP. Up-regulation of p21WAF1/Cip1 by saRNA induces G1-phase arrest and apoptosis in T24 human bladder cancer cells. Cancer Lett. 2008;265:206-214. Yang K, Zheng XY, Qin J, Wang YB, Bai Y, Mao QQ, Wan Q, Wu ZM, Xie LP. Up-regulation of p21WAF1/Cip1 by saRNA induces G1-phase arrest and apoptosis in T24 human bladder cancer cells. Cancer Lett. 2008;265:206-214.
125.
Zurück zum Zitat Qin Q, Lin Y-W, Zheng X-Y, Chen H, Mao Q-Q, Yang K, Huang S-J, Zhao Z-Y. RNAa-mediated overexpression of WT1 induces apoptosis in HepG2 cells. World J Surg Oncol. 2012;10:11.PubMedPubMedCentralCrossRef Qin Q, Lin Y-W, Zheng X-Y, Chen H, Mao Q-Q, Yang K, Huang S-J, Zhao Z-Y. RNAa-mediated overexpression of WT1 induces apoptosis in HepG2 cells. World J Surg Oncol. 2012;10:11.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Xie D, Shang L, Peng L, Li L. Up-regulation of VEZT by small activating RNA inhibits the proliferation, invasion and migration of gastric cancer cells. Biochem Biophys Res Commun. 2017;482:542–8.PubMedCrossRef Xie D, Shang L, Peng L, Li L. Up-regulation of VEZT by small activating RNA inhibits the proliferation, invasion and migration of gastric cancer cells. Biochem Biophys Res Commun. 2017;482:542–8.PubMedCrossRef
127.
Zurück zum Zitat Mao Q, Li Y, Zheng X, Yang K, Shen H, Qin J, Bai Y, Kong D, Jia X, Xie L. Up-regulation of E-cadherin by small activating RNA inhibits cell invasion and migration in 5637 human bladder cancer cells. Biochem Biophys Res Commun. 2008;375:566–70.PubMedCrossRef Mao Q, Li Y, Zheng X, Yang K, Shen H, Qin J, Bai Y, Kong D, Jia X, Xie L. Up-regulation of E-cadherin by small activating RNA inhibits cell invasion and migration in 5637 human bladder cancer cells. Biochem Biophys Res Commun. 2008;375:566–70.PubMedCrossRef
128.
Zurück zum Zitat Mao Q, Zheng X, Yang K, Qin J, Bai Y, Jia X, Li Y, Xie L. Suppression of migration and invasion of PC3 prostate cancer cell line via activating E-cadherin expression by small activating RNA. Cancer Investig. 2010;28:1013–8.CrossRef Mao Q, Zheng X, Yang K, Qin J, Bai Y, Jia X, Li Y, Xie L. Suppression of migration and invasion of PC3 prostate cancer cell line via activating E-cadherin expression by small activating RNA. Cancer Investig. 2010;28:1013–8.CrossRef
129.
Zurück zum Zitat Yang T, Zhao P, Rong Z, Li B, Xue H, You J, He C, Li W, He X, Lee RJ. Anti-tumor efficiency of lipid-coated cisplatin nanoparticles co-loaded with microRNA-375. Theranostics. 2016;6:142.PubMedPubMedCentralCrossRef Yang T, Zhao P, Rong Z, Li B, Xue H, You J, He C, Li W, He X, Lee RJ. Anti-tumor efficiency of lipid-coated cisplatin nanoparticles co-loaded with microRNA-375. Theranostics. 2016;6:142.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Kim DH, Saetrom PL, Snøve O, Rossi JJ. MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci U S A. 2008;105:16230-16235. Kim DH, Saetrom PL, Snøve O, Rossi JJ. MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci U S A. 2008;105:16230-16235.
131.
Zurück zum Zitat Dweep H, Sticht C, Gretz N. In-silico algorithms for the screening of possible microRNA binding sites and their interactions. Cur Genomics. 2013;14:127–36.CrossRef Dweep H, Sticht C, Gretz N. In-silico algorithms for the screening of possible microRNA binding sites and their interactions. Cur Genomics. 2013;14:127–36.CrossRef
132.
Zurück zum Zitat Gagnon KT, Li L, Janowski BA, Corey DR. Analysis of nuclear RNA interference in human cells by subcellular fractionation and Argonaute loading. Nat Protoc. 2014;9:2045.PubMedPubMedCentralCrossRef Gagnon KT, Li L, Janowski BA, Corey DR. Analysis of nuclear RNA interference in human cells by subcellular fractionation and Argonaute loading. Nat Protoc. 2014;9:2045.PubMedPubMedCentralCrossRef
133.
Zurück zum Zitat E. Van Rooij, S. Kauppinen. Development of microRNA therapeutics is coming of age. EMBO Mol Med. 2014;6:851-864. E. Van Rooij, S. Kauppinen. Development of microRNA therapeutics is coming of age. EMBO Mol Med. 2014;6:851-864.
134.
Zurück zum Zitat Taft RJ, Simons C, Nahkuri S, Oey H, Korbie DJ, Mercer TR, Holst J, Ritchie W, Wong JJ, Rasko JE. Nuclear-localized tiny RNAs are associated with transcription initiation and splice sites in metazoans. Nat Struct Mol Biol. 2010;17:1030–4.PubMedCrossRef Taft RJ, Simons C, Nahkuri S, Oey H, Korbie DJ, Mercer TR, Holst J, Ritchie W, Wong JJ, Rasko JE. Nuclear-localized tiny RNAs are associated with transcription initiation and splice sites in metazoans. Nat Struct Mol Biol. 2010;17:1030–4.PubMedCrossRef
135.
Zurück zum Zitat Li Z, Lan X, Han R, Wang J, Huang Y, Sun J, Guo W, Chen H. miR-2478 inhibits TGFbeta1 expression by targeting the transcriptional activation region downstream of the TGFbeta1 promoter in dairy goats. Sci Rep. 2017;7:42627.PubMedPubMedCentralCrossRef Li Z, Lan X, Han R, Wang J, Huang Y, Sun J, Guo W, Chen H. miR-2478 inhibits TGFbeta1 expression by targeting the transcriptional activation region downstream of the TGFbeta1 promoter in dairy goats. Sci Rep. 2017;7:42627.PubMedPubMedCentralCrossRef
136.
Zurück zum Zitat Tan Y, Zhang B, Wu T, Skogerbo G, Zhu X, Guo X, He S, Chen R. Transcriptional inhibiton of Hoxd4 expression by miRNA-10a in human breast cancer cells. BMC Mol Biol. 2009;10:12.PubMedPubMedCentralCrossRef Tan Y, Zhang B, Wu T, Skogerbo G, Zhu X, Guo X, He S, Chen R. Transcriptional inhibiton of Hoxd4 expression by miRNA-10a in human breast cancer cells. BMC Mol Biol. 2009;10:12.PubMedPubMedCentralCrossRef
137.
Zurück zum Zitat Xiang X, Mei H, Qu H, Zhao X, Li D, Song H, Jiao W, Pu J, Huang K, Zheng L, Tong Q. miRNA-584-5p exerts tumor suppressive functions in human neuroblastoma through repressing transcription of matrix metalloproteinase 14. Biochim Biophys Acta. 2015;1852:1743–54.PubMedCrossRef Xiang X, Mei H, Qu H, Zhao X, Li D, Song H, Jiao W, Pu J, Huang K, Zheng L, Tong Q. miRNA-584-5p exerts tumor suppressive functions in human neuroblastoma through repressing transcription of matrix metalloproteinase 14. Biochim Biophys Acta. 2015;1852:1743–54.PubMedCrossRef
138.
Zurück zum Zitat Wang C, Chen Q, Li S, Li S, Zhao Z, Gao H, Wang X, Li B, Zhang W, Yuan Y, Ming L, He H, Tao B, Zhong J. Dual inhibition of PCDH9 expression by miR-215-5p up-regulation in gliomas. Oncotarget. 2017;8:10287–97.PubMed Wang C, Chen Q, Li S, Li S, Zhao Z, Gao H, Wang X, Li B, Zhang W, Yuan Y, Ming L, He H, Tao B, Zhong J. Dual inhibition of PCDH9 expression by miR-215-5p up-regulation in gliomas. Oncotarget. 2017;8:10287–97.PubMed
Metadaten
Titel
Nuclear functions of mammalian MicroRNAs in gene regulation, immunity and cancer
verfasst von
Hongyu Liu
Cheng Lei
Qin He
Zou Pan
Desheng Xiao
Yongguang Tao
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Molecular Cancer / Ausgabe 1/2018
Elektronische ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-018-0765-5

Weitere Artikel der Ausgabe 1/2018

Molecular Cancer 1/2018 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.