Skip to main content
Erschienen in: Journal of Experimental & Clinical Cancer Research 1/2011

Open Access 01.12.2011 | Review

Oncogene addiction in gliomas: Implications for molecular targeted therapy

verfasst von: Wei Yan, Wei Zhang, Tao Jiang

Erschienen in: Journal of Experimental & Clinical Cancer Research | Ausgabe 1/2011

Abstract

Oncogene addiction is a phenomenon that the survival of cancer cells depends on an activated oncogene or inactivation of tumor suppressor gene, and is regarded as the 'Achilles heel' of the successful molecular targeted therapies in cancer. However, the role of oncogene addiction in gliomas has not been elucidated systematically. In this review, we summarize the current experimental and clinical evidence for the concept of oncogene addiction and describe the mechanisms explaining oncogene addiction in gliomas. And the clinical implications for oncogene addiction in molecular targeted therapy are further emphasized. In addition, we discuss future direction for defining complex "oncogene addiction network" through the integrated analysis of multiple platforms in the flow of genetic information in gliomagenesis.
Hinweise
Wei Yan, Wei Zhang contributed equally to this work.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

TJ initiated the concept. WY and WZ drafted the manuscript. All authors participated in writing, read and approved the final manuscript. WY and WZ contributed equally to this article.
Abkürzungen
MiRNAs
MicroRNAs
LOH
Loss of heterozygosity
FISH
fluorescence in situ hybridization
MS-PCR
methylation specific-polymerase chain reaction.

Introduction

Cancer arises as a result of a stepwise accumulation of genetic aberrations [1]. Despite multiple genetic alterations, its growth and survival can often be impaired by the inactivation of a single oncogene. This phenomenon indicates that tumors may become dependent upon a single oncogenic activity for both maintenance of the malignant phenotype and cell survival [2]. The phrase "oncogene addiction" was coined by Bernard Weinstein to describe the observation that tumor maintenance often depends on the continued activity of certain oncogene or loss of tumor suppressor gene [3]. Oncogene addiction provides a rationale for molecular targeted therapy in cancers [4]. More and more researches proposed that decoding of the oncogene addiction in cancer may provide a key for effective cancer therapy. But it is difficult to define oncogene addiction in numerous conditions. And the efficacy of this strategy requires novel methods, including integrative genomics and systems biology, to identify the status of oncogene addiction in individual cancer [3]. However, it has been known that so many growth related pathways are activated in cancers. To date, it remains controversial whether the cancer cells could get hooked on one single gene [5]. Although the debate that one gene shouldn't affect it much is still continuing, it is remarkable that in some cases reversing only one of these genes can have a strong inhibitory effect. Evidence that supports the concept of oncogene addiction has been obtained in various human cancers via Pubmed Search as indicated in Table 1 [619].
Table 1
Oncogene addiction in various human cancers
Addicted oncogenes
Implications in cancers
Contributors
MYC
Inactivation of MYC can result in dramatic and sustained tumor regression in various cancers
Felsher et al., Genes Cancer. (2010) [6]
cyclin D1
Cell proliferation
Lee et al., Cell Cycle. (2010) [7]
Met
The MET tyrosine kinase stimulates cell scattering, invasion, protection from apoptosis and angiogenesis
Comoglio et al., Nat Rev Drug Discov. (2008) [8]
PDGFRA amplification or mutation
Predictive biomarker of drug sensitivity
Swanton et al., Cancer Biol Ther. (2009) [9]
NF-kappaB
Acquisition of resistance to CPT
Togano et al., Biochem Biophys Res Commun. (2009) [10]
FIP1L1-PDGFRalpha
Generation sustained activation signaling to maintain a cell malignant phenotype
Jin et al., Cancer Sci. (2009) [11]
PDGF-B
PDGF-B is required to overcome cell-cell contact inhibition and to confer in vivo infiltrating potential on tumor cells
Calzolari et al., Neoplasia. (2008) [12]
EGFR amplification or mutations
Increased sensitivity to EGFR small molecule tyrosine kinase inhibitors
Rothenberg et al., Proc Natl Acad Sci USA. (2008) [13]
SphK1
SphK1 is involved in the major mechanisms underpinning oncogenesis
Vadas et al., Biochim Biophys Acta. (2008) [14]
E2F1
The E2F1 protein functions as a transcription factor that enhances cell proliferation
Alonso et al., Cancer Lett. (2008)
[15]
HSP90
Cell proliferation and/or survival
Workman et al., Ann N Y Acad Sci. (2007) [16]
Bcr-Abl
Chemosensitivity to imatinib
Chen et al., Cancer Res. (2006) [17]
mTOR
mTOR plays a central role in cell growth, proliferation and survival
Choo et al., Cancer Cell. (2006) [18]
microRNA-21
Overexpression of miR-21 leads to a pre-B malignant lymphoid-like phenotype
Medina et al., Nature. (2010) [19]

Oncogene addiction in gliomas

Glioma is the most common primary brain tumor in adults with poor prognosis [20]. The clinical outcomes of patients with glioma traditionally depend upon the tumor pathological grade. But the patients even within the same grade usually have diverse prognosis and therapeutic outcomes [21]. Over the last decade, the knowledge on the molecular genetic background of human gliomas has dramatically increased [22]. However, differences in glioma genetics may result in distinct prognosis and therapeutic outcome, and the underlying mechanism has not been clarified systematically. Underscoring genetic aberrations in gliomas will enhance understanding of tumor biology and have significant clinical relevance for treatment. However, amounts of chromosomal alterations and cancer-causing mutations have been discovered through genome-scale approaches. The complex genetic aberrations provide the basis for molecular targeted therapies, and molecular tests serve to complement the subjective nature of histopathologic criteria and add useful data regarding patient prognosis and therapeutic outcome. Oncogene addiction hides in the above background with complex genetic aberrations. Different types of oncogene addiction can dictate distinct glioma subtypes. It becomes a promising direction to define oncogene addiction for molecular targeted therapy in gliomas. At present, only few oncogene addictions have been identified in gliomas except for E2F1 addiction [15], and some classical glioma-associated genes may be potential oncogene addictions.
EGFR gene amplification or overexpression is a particularly striking feature of glioblastoma (GBM), observed in approximately 40% of tumors. In nearly 50% of tumors with EGFR amplification, a specific EGFR mutant (EGFRvIII) can be detected [23]. This mutant is highly oncogenic and is generated from a deletion of exons 2 to 7 of the EGFR gene, which results in an in-frame deletion of 267 amino acids from the extracellular domain of the receptor. EGFRvIII is unable to bind ligand, and it signals constitutively. Although EGFRvIII has the same signaling domain as the wild-type receptor, it seems to generate a distinct set of downstream signals that may contribute to an increased tumorigenicity [24]. Targeted inhibition of EGFR activity can suppress signal transduction pathways which control tumor cell growth, proliferation, and resistance to apoptosis [25]. Small molecule tyrosine kinase inhibitors and monoclonal antibodies are among the most common EGFR targeting agents and have been used clinically for treating various malignancies [26]. Recently, it was reported that mutations in the tyrosine kinase domain of EGFR gene can predict the response to tyrosine kinase inhibitors [27]. And if alleles with EGFR mutations are amplified, the response to tyrosine kinase inhibitors may differ relative to mutant alleles without gene amplification [28]. Thus, EGFR mutations enable the identification of the glioma subgroup that is likely to be addicted to EGFRs.
Losses of chromosomes 1p and 19q are deemed correlated with the diagnosis of oligodendroglioma, higher PCV chemosensitivity and favorable prognosis [29]. The average rates of 1p deletion and 1p/19q codeletion were respectively 65.4 and 63.3% in oligodendrogliomas, 28.7 and 21.6% in oligoastrocytomas, 13.2 and 7.5% in astrocytomas, 11.6 and 2.9% in glioblastomas [30]. Established indicators of the favorable outcome of oligodendroglial tumors include LOH on chromosomes 1p and 19q, which may indicate a loss of function of as yet unknown tumor-suppressor genes located in those regions [31]. LOH of 1p in the heterogeneous population of malignant gliomas may be one of the vital factors besides MGMT promoter methylation that predict better outcome in patients treated with TMZ [32].
Mutations in IDH1/2 are a common feature of a major subset of primary human brain tumors [33]. Recent studies reported that mutations usually affected amino acid 132 of IDH1 in more than 70% of grade II-III gliomas and secondary glioblastomas. Tumors without mutations in IDH1 often had mutations affecting the analogous amino acid (R172) of the IDH2 gene. Tumors with IDH1 or IDH2 mutations had distinctive genetic and clinical characteristics, and patients with such tumors had a better outcome than those with wild-type IDH genes [34, 35]. IDH1 mutation contributes to tumorigenesis partly through induction of the HIF-1 pathway [36]. And it has been recently reported that tumor-derived IDH1 and IDH2 mutations reduced α-KG and accumulated a α-KG antagonist, 2-hydroxyglutarate (2-HG), leading to genome-wide histone and DNA methylation alterations [37]. 2-HG accumulation caused by IDH mutation was also reported to be involved in the formation of malignant gliomas [38]. A recent study has demonstrated that IDH mutation was correlated with a higher rate of response to temozolomide and appeared to be a significant marker of positive prognosis in low-grade gliomas [39]. Taken together, mutations in IDH genes seem to arise from a common glial precursor and play an important role in the formation of specific glioma subtype in which IDH1/2 mutation functions as oncogene addiction.
MicroRNAs (miRNAs) belong to a recently discovered class of small non-coding RNA molecules that regulate the expression of multiple target genes. Some miRNAs, referred to as oncomiRs, show differential expression levels in cancer and are able to affect cellular transformation, carcinogenesis and metastasis, acting either as oncogenes or tumour suppressors. Oncogene addiction to oncomiRs has been proposed in several human cancers [19, 40, 41]. A lot of studied showed that the aberrant expression miRNAs, including miR-21, miR-221/222, miR-181s and miR-34s, played an important role in gliomagenesis [4245]. Overexpression of miR-21 could lead to a malignant phenotype, demonstrating that mir-21 was a genuine oncogene. When miR-21 was inactivated, the tumours regressed completely in a few days, partly as a result of apoptosis [42]. And miR-181a and 181b functioned as tumor suppressors in glioma cells [44]. These results demonstrate that tumors could become addicted to oncomiRs and support efforts in treating human cancers through pharmacological inactivation of miRNAs such as miR-21 or upregulation of miR-181s.

Clinical implications of oncogene addiction in molecular targeted therapy for gliomas

Chemotherapeutic agent therapy or molecular targeted therapy always works in tumors with certain respective genetic background. A growing body of genetic aberrations was identified in gliomas, only a subset of genes acting as drivers in carcinogenesis can be recognized as oncogene addition. Meanwhile, most genes just act as downstream effectors of addicted oncogenes. Oncogene addiction is an ideal potential target for molecular targeted therapy in human cancers. Therapies targeting genes causally linked to carcinogenesis have been successful in a subset of tumor types [46]. Each subtype of gliomas may display a different oncogene addiction. Some molecular targeted drugs only work in a subgroup of tumor patients. The choice of the appropriate molecular targeted agent and combination therapy for a specific patient with cancer is largely empirical. In theory, it is essential to define specific oncogene addiction for individuals before choosing molecular targeted drugs. It should be pointed out that distinct kinds of cells in one sample (e.g. CD133- and CD133+ cells) have different oncogene addictions due to the heterogeneity of glioma. Thus combination of multiple drugs is required to target more than one oncogene addictions in one patient. In addition, oncogene addiction is always moving as the therapeutic targets in gliomas. After exposure to therapeutic agents, cancer cells can escape from one established oncogene addition to another. At this situation, previous drugs would not work anymore. This may be the reason of acquired drug resistance. We named the above phenomenon to "Oncogene addiction transition". Studies are needed for further investigating possible direction of oncogene addiction transition, which is important for choosing rational scheme of combination therapy. Targeting the existing oncogene addiction in combination with blocking the direction of oncogene addiction transition may effectively suppress the growth of glioma cells. Defining oncogene addiction and direction of potential transition in advance based on gene expression profile and bioinformatics analysis will be the novel orientation of combination therapy in the future.

Approaches for defining oncogene addiction

Recently, the utilities of fluorescence in situ hybridization (FISH), DNA sequencing and methylation specific-polymerase chain reaction (MS-PCR), are widely being employed in assessment of several genetic aberrations for human gliomas [47]. However, it has been reported that systematic characterization of cancer genome has revealed diverse aberrations among different individuals, such that the functional significance and physiological consequence of most genetic alterations remain poorly defined [48]. Cancer cells are characterized by acquired functional capabilities: self-sufficiency in exogenous growth signals, insensitivity to antigrowth signals, limitless replicative potential, evasion of apoptosis, sustained angiogenesis, and acquisition of invasiveness and metastatic ability. The order and mechanistic means to achieve these properties can vary between different tumors. Therefore, cancers are always complex, involving an interplay between various genes and a number of critical pathways and signaling cascades, and the detection of only a single marker molecule is usually insufficient for determining oncogene addiction in gliomas. However, the possibility of developing novel selective drugs against such a large number of genetic aberrations seems extremely daunting. It has been also reported that genetic lesions in cancers tend to cluster around certain pathways, suggesting the concept of 'network addiction', rather than 'oncogene addiction' [46]. It is very difficult to define certain driver genes from amounts of passenger genes in gliomas. Due to the limitation of a single gene or signaling pathway in identifying molecular pattern and predicting clinical prognosis of gliomas, high-throughput screening oncogene addiction networks was highlighted. A lot of single platform analysis cannot identify novel molecular markers that can apply to clinical practice. The integrated analysis of multiple platforms in the flow of genetic information may provide a promising direction for defining oncogene addiction networks. Advances in whole-genome microarray techniques are providing unprecedented opportunities for comprehensive analysis of multi-platform genetic information. The integration of these data sets with genetic aberrations and clinical informations will define novel oncogene addiction networks based on the individual genomics of the patients with glioma. A recent study has showed that a computational approach that integrates chromosomal copy number and gene expression data for detecting aberrations that promote cancer progression [48]. And software has been also developed to identify cancer driver genes in whole-genome sequencing studies [49]. Oncogene addiction networks will likely provide a valuable frame for designing combination therapy of molecular targeted drugs in future.

Conclusion

Developing novel approaches for defining oncogene addiction networks, coupled with specific combination of molecular targeted agents, will make it possible to achieve more effective and personalized molecular targeted therapy in human gliomas.

Author details

1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.6 Tiantan Xili, Dongcheng District, Beijing 100050, China.

Acknowledgements

This work was supported by grants from National Key Project of Science and Technology Supporting Programs (No. 2007BAI05B08) and National Natural Science Foundation of China (No. 30772238 and 30730035).
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

TJ initiated the concept. WY and WZ drafted the manuscript. All authors participated in writing, read and approved the final manuscript. WY and WZ contributed equally to this article.
Literatur
1.
Zurück zum Zitat Mizuarai S, Irie H, Schmatz DM, Kotani H: Integrated genomic and pharmacological approaches to identify synthetic lethal genes as cancer therapeutic targets. Curr Mol Med. 2008, 8: 774-783.CrossRefPubMed Mizuarai S, Irie H, Schmatz DM, Kotani H: Integrated genomic and pharmacological approaches to identify synthetic lethal genes as cancer therapeutic targets. Curr Mol Med. 2008, 8: 774-783.CrossRefPubMed
2.
Zurück zum Zitat Weinstein IB, Joe AK: Mechanisms of disease: Oncogene addiction--a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol. 2006, 3: 448-457.CrossRefPubMed Weinstein IB, Joe AK: Mechanisms of disease: Oncogene addiction--a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol. 2006, 3: 448-457.CrossRefPubMed
4.
Zurück zum Zitat Weinstein IB: Cancer: Addiction to oncogenes--the Achilles heal of cancer. Science. 2002, 297: 63-64.CrossRefPubMed Weinstein IB: Cancer: Addiction to oncogenes--the Achilles heal of cancer. Science. 2002, 297: 63-64.CrossRefPubMed
5.
Zurück zum Zitat Garber K: New insights into oncogene addiction found. J Natl Cancer Inst. 2007, 99: 264-265, 269.CrossRefPubMed Garber K: New insights into oncogene addiction found. J Natl Cancer Inst. 2007, 99: 264-265, 269.CrossRefPubMed
6.
Zurück zum Zitat Felsher DW: MYC Inactivation Elicits Oncogene Addiction through Both Tumor Cell-Intrinsic and Host-Dependent Mechanisms. Genes Cancer. 2010, 1: 597-604.PubMedCentralCrossRefPubMed Felsher DW: MYC Inactivation Elicits Oncogene Addiction through Both Tumor Cell-Intrinsic and Host-Dependent Mechanisms. Genes Cancer. 2010, 1: 597-604.PubMedCentralCrossRefPubMed
8.
Zurück zum Zitat Comoglio PM, Giordano S, Trusolino L: Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov. 2008, 7: 504-516.CrossRefPubMed Comoglio PM, Giordano S, Trusolino L: Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov. 2008, 7: 504-516.CrossRefPubMed
9.
Zurück zum Zitat Swanton C, Burrell RA: Advances in personalized therapeutics in non-small cell lung cancer: 4q12 amplification, PDGFRA oncogene addiction and sunitinib sensitivity. Cancer Biol Ther. 2009, 8: 2051-2053.CrossRefPubMed Swanton C, Burrell RA: Advances in personalized therapeutics in non-small cell lung cancer: 4q12 amplification, PDGFRA oncogene addiction and sunitinib sensitivity. Cancer Biol Ther. 2009, 8: 2051-2053.CrossRefPubMed
10.
Zurück zum Zitat Togano T, Sasaki M, Watanabe M, Nakashima M, Tsuruo T, Umezawa K, Higashihara M, Watanabe T, Horie R: Induction of oncogene addiction shift to NF-kappaB by camptothecin in solid tumor cells. Biochem Biophys Res Commun. 2009, 390: 60-64.CrossRefPubMed Togano T, Sasaki M, Watanabe M, Nakashima M, Tsuruo T, Umezawa K, Higashihara M, Watanabe T, Horie R: Induction of oncogene addiction shift to NF-kappaB by camptothecin in solid tumor cells. Biochem Biophys Res Commun. 2009, 390: 60-64.CrossRefPubMed
11.
Zurück zum Zitat Jin Y, Chen Q, Lu Z, Chen B, Pan J: Triptolide abrogates oncogene FIP1L1-PDGFRalpha addiction and induces apoptosis in hypereosinophilic syndrome. Cancer Sci. 2009, 100: 2210-2217.CrossRefPubMed Jin Y, Chen Q, Lu Z, Chen B, Pan J: Triptolide abrogates oncogene FIP1L1-PDGFRalpha addiction and induces apoptosis in hypereosinophilic syndrome. Cancer Sci. 2009, 100: 2210-2217.CrossRefPubMed
12.
Zurück zum Zitat Calzolari F, Appolloni I, Tutucci E, Caviglia S, Terrile M, Corte G, Malatesta P: Tumor progression and oncogene addiction in a PDGF-B-induced model of gliomagenesis. Neoplasia. 2008, 10: 1373-1382. following 1382.PubMedCentralCrossRefPubMed Calzolari F, Appolloni I, Tutucci E, Caviglia S, Terrile M, Corte G, Malatesta P: Tumor progression and oncogene addiction in a PDGF-B-induced model of gliomagenesis. Neoplasia. 2008, 10: 1373-1382. following 1382.PubMedCentralCrossRefPubMed
13.
Zurück zum Zitat Rothenberg SM, Engelman JA, Le S, Riese DJ, Haber DA, Settleman J: Modeling oncogene addiction using RNA interference. Proc Natl Acad Sci USA. 2008, 105: 12480-12484.PubMedCentralCrossRefPubMed Rothenberg SM, Engelman JA, Le S, Riese DJ, Haber DA, Settleman J: Modeling oncogene addiction using RNA interference. Proc Natl Acad Sci USA. 2008, 105: 12480-12484.PubMedCentralCrossRefPubMed
14.
Zurück zum Zitat Vadas M, Xia P, McCaughan G, Gamble J: The role of sphingosine kinase 1 in cancer: oncogene or non-oncogene addiction?. Biochim Biophys Acta. 2008, 1781: 442-447.CrossRefPubMed Vadas M, Xia P, McCaughan G, Gamble J: The role of sphingosine kinase 1 in cancer: oncogene or non-oncogene addiction?. Biochim Biophys Acta. 2008, 1781: 442-447.CrossRefPubMed
15.
Zurück zum Zitat Alonso MM, Alemany R, Fueyo J, Gomez-Manzano C: E2F1 in gliomas: a paradigm of oncogene addiction. Cancer Lett. 2008, 263: 157-163.CrossRefPubMed Alonso MM, Alemany R, Fueyo J, Gomez-Manzano C: E2F1 in gliomas: a paradigm of oncogene addiction. Cancer Lett. 2008, 263: 157-163.CrossRefPubMed
16.
Zurück zum Zitat Workman P, Burrows F, Neckers L, Rosen N: Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann N Y Acad Sci. 2007, 1113: 202-216.CrossRefPubMed Workman P, Burrows F, Neckers L, Rosen N: Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann N Y Acad Sci. 2007, 1113: 202-216.CrossRefPubMed
17.
Zurück zum Zitat Chen R, Gandhi V, Plunkett W: A sequential blockade strategy for the design of combination therapies to overcome oncogene addiction in chronic myelogenous leukemia. Cancer Res. 2006, 66: 10959-10966.CrossRefPubMed Chen R, Gandhi V, Plunkett W: A sequential blockade strategy for the design of combination therapies to overcome oncogene addiction in chronic myelogenous leukemia. Cancer Res. 2006, 66: 10959-10966.CrossRefPubMed
18.
Zurück zum Zitat Choo AY, Blenis J: TORgeting oncogene addiction for cancer therapy. Cancer Cell. 2006, 9: 77-79.CrossRefPubMed Choo AY, Blenis J: TORgeting oncogene addiction for cancer therapy. Cancer Cell. 2006, 9: 77-79.CrossRefPubMed
19.
Zurück zum Zitat Medina PP, Nolde M, Slack FJ: OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature. 2010, 467: 86-90.CrossRefPubMed Medina PP, Nolde M, Slack FJ: OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature. 2010, 467: 86-90.CrossRefPubMed
20.
Zurück zum Zitat Minniti G, Muni R, Lanzetta G, Marchetti P, Enrici RM: Chemotherapy for glioblastoma: current treatment and future perspectives for cytotoxic and targeted agents. Anticancer Res. 2009, 29: 5171-5184.PubMed Minniti G, Muni R, Lanzetta G, Marchetti P, Enrici RM: Chemotherapy for glioblastoma: current treatment and future perspectives for cytotoxic and targeted agents. Anticancer Res. 2009, 29: 5171-5184.PubMed
21.
Zurück zum Zitat van den Bent MJ, Kros JM: Predictive and prognostic markers in neuro-oncology. J Neuropathol Exp Neurol. 2007, 66: 1074-1081.CrossRefPubMed van den Bent MJ, Kros JM: Predictive and prognostic markers in neuro-oncology. J Neuropathol Exp Neurol. 2007, 66: 1074-1081.CrossRefPubMed
22.
Zurück zum Zitat Eoli M, Silvani A, Pollo B, Bianchessi D, Menghi F, Valletta L, Broggi G, Boiardi A, Bruzzone MG, Finocchiaro G: Molecular markers of gliomas: a clinical approach. Neurol Res. 2006, 28: 538-541.CrossRefPubMed Eoli M, Silvani A, Pollo B, Bianchessi D, Menghi F, Valletta L, Broggi G, Boiardi A, Bruzzone MG, Finocchiaro G: Molecular markers of gliomas: a clinical approach. Neurol Res. 2006, 28: 538-541.CrossRefPubMed
23.
Zurück zum Zitat Hatanpaa KJ, Burma S, Zhao D, Habib AA: Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance. Neoplasia. 2010, 12: 675-684.PubMedCentralCrossRefPubMed Hatanpaa KJ, Burma S, Zhao D, Habib AA: Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance. Neoplasia. 2010, 12: 675-684.PubMedCentralCrossRefPubMed
24.
Zurück zum Zitat Gan HK, Kaye AH, Luwor RB: The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci. 2009, 16: 748-754.CrossRefPubMed Gan HK, Kaye AH, Luwor RB: The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci. 2009, 16: 748-754.CrossRefPubMed
25.
Zurück zum Zitat Wykosky J, Fenton T, Furnari F, Cavenee WK: Therapeutic targeting of epidermal growth factor receptor in human cancer: successes and limitations. Chin J Cancer. 2011, 30: 5-12.PubMedCentralCrossRefPubMed Wykosky J, Fenton T, Furnari F, Cavenee WK: Therapeutic targeting of epidermal growth factor receptor in human cancer: successes and limitations. Chin J Cancer. 2011, 30: 5-12.PubMedCentralCrossRefPubMed
26.
Zurück zum Zitat Butowski N, Chang SM: Small molecule and monoclonal antibody therapies in neurooncology. Cancer Control. 2005, 12: 116-124.PubMed Butowski N, Chang SM: Small molecule and monoclonal antibody therapies in neurooncology. Cancer Control. 2005, 12: 116-124.PubMed
27.
Zurück zum Zitat Gazdar AF: Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009, 28: S24-S31.PubMedCentralCrossRefPubMed Gazdar AF: Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009, 28: S24-S31.PubMedCentralCrossRefPubMed
28.
Zurück zum Zitat Benito R, Gil-Benso R, Quilis V, Perez M, Gregori-Romero M, Roldan P, Gonzalez-Darder J, Cerdá-Nicolas M, Lopez-Gines C: Primary glioblastomas with and without EGFR amplification: relationship to genetic alterations and clinicopathological features. Neuropathology. 2010, 30: 392-400.CrossRefPubMed Benito R, Gil-Benso R, Quilis V, Perez M, Gregori-Romero M, Roldan P, Gonzalez-Darder J, Cerdá-Nicolas M, Lopez-Gines C: Primary glioblastomas with and without EGFR amplification: relationship to genetic alterations and clinicopathological features. Neuropathology. 2010, 30: 392-400.CrossRefPubMed
29.
Zurück zum Zitat Kreiger PA, Okada Y, Simon S, Rorke LB, Louis DN, Golden JA: Losses of chromosomes 1p and 19q are rare in pediatric oligodendrogliomas. Acta Neuropathol. 2005, 109: 387-392.CrossRefPubMed Kreiger PA, Okada Y, Simon S, Rorke LB, Louis DN, Golden JA: Losses of chromosomes 1p and 19q are rare in pediatric oligodendrogliomas. Acta Neuropathol. 2005, 109: 387-392.CrossRefPubMed
30.
Zurück zum Zitat Fontaine D, Vandenbos F, Lebrun C, Paquis V, Frenay M: Diagnostic and prognostic values of 1p and 19q deletions in adult gliomas: critical review of the literature and implications in daily clinical practice. Rev Neurol (Paris). 2008, 164: 595-604.CrossRef Fontaine D, Vandenbos F, Lebrun C, Paquis V, Frenay M: Diagnostic and prognostic values of 1p and 19q deletions in adult gliomas: critical review of the literature and implications in daily clinical practice. Rev Neurol (Paris). 2008, 164: 595-604.CrossRef
31.
Zurück zum Zitat Ramirez C, Bowman C, Maurage CA, Dubois F, Blond S, Porchet N, Escande F: Loss of 1p, 19q, and 10q heterozygosity prospectively predicts prognosis of oligodendroglial tumors--towards individualized tumor treatment?. Neuro Oncol. 2010, 12: 490-499.PubMedCentralPubMed Ramirez C, Bowman C, Maurage CA, Dubois F, Blond S, Porchet N, Escande F: Loss of 1p, 19q, and 10q heterozygosity prospectively predicts prognosis of oligodendroglial tumors--towards individualized tumor treatment?. Neuro Oncol. 2010, 12: 490-499.PubMedCentralPubMed
32.
Zurück zum Zitat Ishii D, Natsume A, Wakabayashi T, Hatano H, Asano Y, Takeuchi H, Shimato S, Ito M, Fujii M, Yoshida J: Efficacy of temozolomide is correlated with 1p loss and methylation of the deoxyribonucleic acid repair gene MGMT in malignant gliomas. Neurol Med Chir (Tokyo). 2007, 47: 341-349. 10.2176/nmc.47.341. discussion 350.CrossRef Ishii D, Natsume A, Wakabayashi T, Hatano H, Asano Y, Takeuchi H, Shimato S, Ito M, Fujii M, Yoshida J: Efficacy of temozolomide is correlated with 1p loss and methylation of the deoxyribonucleic acid repair gene MGMT in malignant gliomas. Neurol Med Chir (Tokyo). 2007, 47: 341-349. 10.2176/nmc.47.341. discussion 350.CrossRef
33.
Zurück zum Zitat Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, et al: Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009, 462: 739-744.PubMedCentralCrossRefPubMed Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, et al: Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009, 462: 739-744.PubMedCentralCrossRefPubMed
34.
Zurück zum Zitat Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, et al: IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009, 360: 765-773.PubMedCentralCrossRefPubMed Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, et al: IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009, 360: 765-773.PubMedCentralCrossRefPubMed
35.
Zurück zum Zitat Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A: Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol. 2008, 116: 597-602.CrossRefPubMed Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A: Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol. 2008, 116: 597-602.CrossRefPubMed
36.
Zurück zum Zitat Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, Yu W, Li Z, Gong L, Peng Y, et al: Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science. 2009, 324: 261-265.PubMedCentralCrossRefPubMed Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, Yu W, Li Z, Gong L, Peng Y, et al: Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science. 2009, 324: 261-265.PubMedCentralCrossRefPubMed
37.
Zurück zum Zitat Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT, et al: Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011, 19: 17-30.PubMedCentralCrossRefPubMed Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT, et al: Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011, 19: 17-30.PubMedCentralCrossRefPubMed
38.
Zurück zum Zitat Sonoda Y, Tominaga T: 2-hydroxyglutarate accumulation caused by IDH mutation is involved in the formation of malignant gliomas. Expert Rev Neurother. 2010, 10: 487-489.CrossRefPubMed Sonoda Y, Tominaga T: 2-hydroxyglutarate accumulation caused by IDH mutation is involved in the formation of malignant gliomas. Expert Rev Neurother. 2010, 10: 487-489.CrossRefPubMed
39.
Zurück zum Zitat Houillier C, Wang X, Kaloshi G, Mokhtari K, Guillevin R, Laffaire J, Paris S, Boisselier B, Idbaih A, Laigle-Donadey F, et al: IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology. 2010, 75: 1560-1566.CrossRefPubMed Houillier C, Wang X, Kaloshi G, Mokhtari K, Guillevin R, Laffaire J, Paris S, Boisselier B, Idbaih A, Laigle-Donadey F, et al: IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology. 2010, 75: 1560-1566.CrossRefPubMed
40.
Zurück zum Zitat Matsubara H, Takeuchi T, Nishikawa E, Yanagisawa K, Hayashita Y, Ebi H, Yamada H, Suzuki M, Nagino M, Nimura Y, et al: Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene. 2007, 26: 6099-6105.CrossRefPubMed Matsubara H, Takeuchi T, Nishikawa E, Yanagisawa K, Hayashita Y, Ebi H, Yamada H, Suzuki M, Nagino M, Nimura Y, et al: Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene. 2007, 26: 6099-6105.CrossRefPubMed
42.
Zurück zum Zitat Moore LM, Zhang W: Targeting miR-21 in glioma: a small RNA with big potential. Expert Opin Ther Targets. 2010, 14: 1247-1257.CrossRefPubMed Moore LM, Zhang W: Targeting miR-21 in glioma: a small RNA with big potential. Expert Opin Ther Targets. 2010, 14: 1247-1257.CrossRefPubMed
43.
Zurück zum Zitat Zhang CZ, Zhang JX, Zhang AL, Shi ZD, Han L, Jia ZF, Yang WD, Wang GX, Jiang T, You YP, et al: MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Mol Cancer. 2010, 9: 229-PubMedCentralCrossRefPubMed Zhang CZ, Zhang JX, Zhang AL, Shi ZD, Han L, Jia ZF, Yang WD, Wang GX, Jiang T, You YP, et al: MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Mol Cancer. 2010, 9: 229-PubMedCentralCrossRefPubMed
44.
Zurück zum Zitat Shi L, Cheng Z, Zhang J, Li R, Zhao P, Fu Z, You Y: hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res. 2008, 1236: 185-193.CrossRefPubMed Shi L, Cheng Z, Zhang J, Li R, Zhao P, Fu Z, You Y: hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res. 2008, 1236: 185-193.CrossRefPubMed
45.
Zurück zum Zitat Li Y, Guessous F, Zhang Y, Dipierro C, Kefas B, Johnson E, Marcinkiewicz L, Jiang J, Yang Y, Schmittgen TD, et al: MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res. 2009, 69: 7569-7576.PubMedCentralCrossRefPubMed Li Y, Guessous F, Zhang Y, Dipierro C, Kefas B, Johnson E, Marcinkiewicz L, Jiang J, Yang Y, Schmittgen TD, et al: MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res. 2009, 69: 7569-7576.PubMedCentralCrossRefPubMed
46.
Zurück zum Zitat Tonon G: From oncogene to network addiction: the new frontier of cancer genomics and therapeutics. Future Oncol. 2008, 4: 569-577.CrossRefPubMed Tonon G: From oncogene to network addiction: the new frontier of cancer genomics and therapeutics. Future Oncol. 2008, 4: 569-577.CrossRefPubMed
47.
Zurück zum Zitat Eoli M, Silvani A, Pollo B, Bianchessi D, Menghi F, Valletta L, Broggi G, Boiardi A, Bruzzone MG, Finocchiaro G: Molecular markers of gliomas: a clinical approach. Neurol Res. 2006, 28: 538-541.CrossRefPubMed Eoli M, Silvani A, Pollo B, Bianchessi D, Menghi F, Valletta L, Broggi G, Boiardi A, Bruzzone MG, Finocchiaro G: Molecular markers of gliomas: a clinical approach. Neurol Res. 2006, 28: 538-541.CrossRefPubMed
48.
Zurück zum Zitat Akavia UD, Litvin O, Kim J, Sanchez-Garcia F, Kotliar D, Causton HC, Pochanard P, Mozes E, Garraway LA, Pe'er D: An integrated approach to uncover drivers of cancer. Cell. 2010, 143: 1005-1017.PubMedCentralCrossRefPubMed Akavia UD, Litvin O, Kim J, Sanchez-Garcia F, Kotliar D, Causton HC, Pochanard P, Mozes E, Garraway LA, Pe'er D: An integrated approach to uncover drivers of cancer. Cell. 2010, 143: 1005-1017.PubMedCentralCrossRefPubMed
Metadaten
Titel
Oncogene addiction in gliomas: Implications for molecular targeted therapy
verfasst von
Wei Yan
Wei Zhang
Tao Jiang
Publikationsdatum
01.12.2011
Verlag
BioMed Central
Erschienen in
Journal of Experimental & Clinical Cancer Research / Ausgabe 1/2011
Elektronische ISSN: 1756-9966
DOI
https://doi.org/10.1186/1756-9966-30-58

Weitere Artikel der Ausgabe 1/2011

Journal of Experimental & Clinical Cancer Research 1/2011 Zur Ausgabe

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

ADT zur Radiatio nach Prostatektomie: Wenn, dann wohl länger

24.05.2024 Prostatakarzinom Nachrichten

Welchen Nutzen es trägt, wenn die Strahlentherapie nach radikaler Prostatektomie um eine Androgendeprivation ergänzt wird, hat die RADICALS-HD-Studie untersucht. Nun liegen die Ergebnisse vor. Sie sprechen für länger dauernden Hormonentzug.

Das sind die führenden Symptome junger Darmkrebspatienten

Darmkrebserkrankungen in jüngeren Jahren sind ein zunehmendes Problem, das häufig längere Zeit übersehen wird, gerade weil die Patienten noch nicht alt sind. Welche Anzeichen Ärzte stutzig machen sollten, hat eine Metaanalyse herausgearbeitet.

„Überwältigende“ Evidenz für Tripeltherapie beim metastasierten Prostata-Ca.

22.05.2024 Prostatakarzinom Nachrichten

Patienten mit metastasiertem hormonsensitivem Prostatakarzinom sollten nicht mehr mit einer alleinigen Androgendeprivationstherapie (ADT) behandelt werden, mahnt ein US-Team nach Sichtung der aktuellen Datenlage. Mit einer Tripeltherapie haben die Betroffenen offenbar die besten Überlebenschancen.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.