Skip to main content
Erschienen in: Reproductive Biology and Endocrinology 1/2017

Open Access 01.12.2017 | Review

Ooplasmic transfer in human oocytes: efficacy and concerns in assisted reproduction

verfasst von: Sara Darbandi, Mahsa Darbandi, Hamid Reza Khorram Khorshid, Mohammad Reza Sadeghi, Ashok Agarwal, Pallav Sengupta, Safaa Al-Hasani, Mohammad Mehdi Akhondi

Erschienen in: Reproductive Biology and Endocrinology | Ausgabe 1/2017

Abstract

Background

Ooplasmic transfer (OT) technique or cytoplasmic transfer is an emerging technique with relative success, having a significant status in assisted reproduction. This technique had effectively paved the way to about 30 healthy births worldwide. Though OT has long been invented, proper evaluation of the efficacy and risks associated with this critical technique has not been explored properly until today. This review thereby put emphasis upon the applications, efficacy and adverse effects of OT techniques in human.

Main body

Available reports published between January 1982 and August 2017 has been reviewed and the impact of OT on assisted reproduction was evaluated. The results consisted of an update on the efficacy and concerns of OT, the debate on mitochondrial heteroplasmy, apoptosis, and risk of genetic and epigenetic alteration.

Short conclusion

The application of OT technique in humans demands more clarity and further development of this technique may successfully prove its utility as an effective treatment for oocyte incompetence.
Abkürzungen
AIF
Apoptosis-inducing factor
Ca2+
Calcium
CPEB
Cytoplasmic polyadenylation element binding protein
CPSF
Cleavage and polyadenylation specific factor
CSF
Cytostatic factor
GH
Growth hormone
GV
Germinal vesicle
GVBD
Germinal vesicle breakdown
ICSI
Intracytoplasmic sperm injection
IGF-I
Insulin-like growth factor I
iSCNT
Interspecies somatic cell nuclear transfer
IVC
In-vitro culture
K +
Potassium
MAPK
Mitogen-associated protein kinase
MII
Second meiotic metaphase.
MPF
M-phase promoting factor.
mRNAs
Messenger RNAs.
mtCOX2
Mitochondrial subunit-2 of cytochrome C oxidase.
mtDNA
Mitochondrial DNA.
MZT
Maternal-to-zygotic transition.
nDNA
Nuclear DNA.
NRF2
Nuclear respiratory factor 2.
OT
Ooplasmic transfer.
OXPHOS
Oxidative phosphorylation.
PAF
Platelet-activating factor.
ROS
Reactive oxygen spaces.
S1P
Ceramide and sphingosine-1-phosphate.
SAM
S-adenosyl methionine.
STAT3
Signal transducer and activator of transcription 3.
TFAM
Mitochondrial transcription factor A.
TGF-b
Transforming growth factor-b.
TGFb2
Transforming growth factor b2.
VEGF
Vascular endothelial growth factor.

Capsule

This review study provided the efficacy and concerns regarding ooplasmic transfer (OT), the debate on mitochondrial heteroplasmy, apoptosis, and risk of genetic and epigenetic alterations.

Background

The role of the ooplasm in oocyte maturation and activation is well known. Meiotic division from germinal vesicle (GV, 4 N) stage to second meiotic metaphase (MII, 2 N), fertilization and the embryonic genome activation are strictly controlled by ooplasmic regulators following maturation of nucleus and ooplasm [1]. Theoretically, ooplasmic transfer (OT), a technique that renders a poor quality oocyte by efficient transfer of essential cellular components, may be referred to as a partial ooplasmic transfer including messenger RNAs (mRNAs), proteins, energy-producing components, mitochondria, and several other important cellular organelles and innumerable undetected factors from healthy oocytes to the insufficient one. By the mentioned mechanism, the technique focuses on improving normal growth, viability as well as the overall quality of an earlier unhealthy oocyte so that the qualities required to successfully participate in formation of a healthy zygote are sufficient [15].
Mitochondria are maternally inherited organelles in ooplasm with their own genomes that provide adenosine triphosphate (ATP) within the cells via the oxidative phosphorylation (OXPHOS) pathway [6, 7]. Oocytes, on an average, have 100,000 mitochondria containing a single copy of mitochondrial DNA (mtDNA) [8, 9]. In mammals, mtDNA encodes 13 structural proteins, which are essential for high-level energy production in the cell [6]. Therefore, in some types of cells (e.g., immature oocytes and cleaving preimplantation embryos), mitochondrial activity directly affects viability [1, 7, 10]. The specific cell cycle factors in the donor ooplasm could improve the nuclear and ooplasmic maturation of the recipient oocytes according to the cell cycle phase [3, 4, 11, 12]. To meet these objectives, Muggleton-Harris in 1982 first attempted OT in mice where cytoplasm had been transferred from non-blocking to blocking embryo development [13]. Following the initiation, several experiments have been performed in assisted reproduction using animal or human oocytes aiming to enhance oocyte quality. But, still the detailed genetic mechanisms involved in OT which actually inculcate completeness in a disabled oocyte are blurred. While it is obvious that adopting an OT technique can practically establish normal growth and return viability to the embryos, this review explained the appropriate practical OT techniques used for human oocytes, and its positive and negative aspects in assisted reproduction.

Ooplasmic transfer techniques

Since the first report of Muggleton-Harris in 1982 regarding the efficacy of OT, many reports had emerged covering such techniques in animal and human models. During the past 30 years, a variety of studies have been performed to overcome ooplasmic deficiencies and abnormalities in oocyte or embryo manipulation at the subcellular level [4, 13, 14]. The ability to improve the oocyte capacity through the transfer of donor ooplasmic components was first demonstrated in animals [13, 15]. In 1997, the human pregnancy was announced by Cohen et al. following the transfer of donor ooplasm into the oocytes of a patient [1]. After that, this method had been successfully used in patients with poor embryo development and recurrent implantation failure and the outcomes culminated in pregnancy and birth [1, 1622]. Synchronous and asynchronous transfers are two types of OT techniques [15]. In synchronous transfer, the ooplasm of the donor replaces that of a recipient, both of which are at the same developmental stage (from fresh GV to aged GV or from young MII to post-mature MII) [15], while in asynchronous transfer, the replacement of ooplasm was done from one developmental staged oocyte to an oocyte lying at a different stage of development (from MII to prophase I (MI) [15]. Although studies have often been carried out on synchronous transfer, but the embryonic development potential of all the studies has been reported in Tables 1 and 2. For better interactions between the ooplasm and the nucleus, about 5–15% of ooplasm has been transferred and oocytes with twice of the volume had no increase in reprogramming potential [1, 4, 23]. According to previous studies, the cryopreserved human oocytes or three-pronuclei (3-PN) embryos can be used for donor and recipient synchronization [18, 19]. This technique is performed either by electrofusion of the ooplasm and then intra cytoplasmic sperm injection (ICSI) of the recipient oocyte or by injecting the donor ooplasm with a single spermatozoon into the recipient oocyte using a standard ICSI needle [1, 16]. In the second protocol, at first, a spermatozoon was immobilized and placed in an ICSI needle, followed by removal of about 5–15% of the donor ooplasm (from the vegetal pole in MII) by suction with the spermatozoon marking the top of the needle. Finally, the donor ooplasm and spermatozoon were carefully injected into the recipient oocyte (near the animal pole in MII). The eggs were cultured to observe a second polar body and two pronuclei and then moved to growth medium [1, 16].
Table 1
Comparison of embryonic development potential after MI and MII ooplasmic transfer (OT) in mammalian sample
Supplier information
Survival information
Pregnancy information
Explanation
Species
D
R
OT (%)
Fertilized (%)
2-cell (%)
4-cell (%)
6-cell (%)
8-cell (%)
Blastocyst (%)
ET (%)
pregnancy
Birth
 
Monkey [4]
MII
MI
42
23 (54.8%)
4 (9.5%)
3 (7.1%)
Sham MI
43
26 (60.5%)
0
0
Control MI
37
30 (81%)
0
0
MII
MII
22
22 (100%)
4 (18%)
4 (18%)
Sham MII
18
18 (100%)
3 (16.7%)
3 (16.7%)
Control MII
24
24 (100%)
6 (25%)
4 (16%)
 
Human [1]
MII
MII
14(100)
9 (64.3%)
8 (57.1%)
8 (57.1%)
8 (57.1%)
8 (57.1%)
4 (28.6%)
4 (28.6%)
1 (7.1%)
1 (7.1%)
amniocyte nDNA and mtDNA fingerprinting
Human [16]
MII
MII
22 fused
15 (68.2%)
10 (46.4%)
3 (13.6%)
0
0
amniocyte nDNA and mtDNA fingerprinting
MII
MII
48
38 (79.17%)
8(16.7)
5 (10.4%)
3 (6.3%)
1 (2.1%)
amniocyte nDNA and mtDNA fingerprinting
Control MII
17
9 (52.9%)
0
Human [18]
Cryo_MII
MII
37
26 (70.3%)
17 (45.9%)
2
2 (5%)
Human [19]
3PN
MII
62
44 (80%)
39 (63%)
39 (63%)
39 (63%)
4 (6.4%)
4
amniocentesis and karyotyping
Human [20]
MII
MII
26
2 (7.7%)
Confocal microscopy and mtDNA fingerprinting
Human [21]
MII
MII
8
6 (75%)
6 (75%)
5 (62.5%)
4 (50%)
2 (25%)
4 (50%)
2 (25%)
2 (25%)
MII Control
4
3 (75%)
3 (75%)
1 (25%)
Donor: “D”. Recipient: “R”
Table 2
Comparison of embryonic development potential after PN, 1-cell and 2-cell ooplasmic transfer (OT) in mammalian sample
Supplier information
Survival information
Pregnancy information
Explanation
Species
D
R
OT (%)
Fertilized (%)
2-cell (%)
4-cell (%)
6-cell (%)
8-cell (%)
Blastocyst (%)
ET (%)
pregnancy
delivery
 
Mouse [13]
F1,1-cell
MF1,1-cell
58 (55%)
106
46 (43.8%)
11 (10.4%)
9 (8.5%)
0
    
MF1,1-cell control
 
84
84 (95.5%)
39 (44.3%)
38 (43.1%)
35 (39.8%)
    
Mouse [13]
F1,2-cell
MF1,1-cell
42 (58%)
73
42 (58%)
31 (43%)
30 (41.7%)
17 (23.6%)
    
MF1,1-cell control
 
92
92 (100%)
13 (14.1%)
1 (1.09%)
1 (1.09%)
    
Mouse [13]
F1,2-cell
F1.1-cell
18 (75%)
24
18 (75%)
2 (0.03%)
9 (8.5%)
0
    
F1,1-cell control
 
73
73 (100%)
72 (98.6%)
68 (93.1%)
59 (80.8%)
    
Mouse [14]
F1,2-cell,G1
F1.1-cell,G1
267
72 (27%)
    
F1,2-cell,G1
F1.1-cell,G2
664
73 (11%)
    
F1,2-cell,S
F1.1-cell,S
800
40 (5%)
    
F1,2-cell,G2
F1.1-cell,G2
111
50 (45%)
    
F1.1-cell,
315
221 (70%)
    
F1,2-cell,G1
MF1.1-cell,G1
29
12 (42%)
    
F1,2-cell,G1
MF1.1-cell,S
800
8 (0%)
    
F1,2-cell,G1
MF1.1-cell,G2
128
28 (22%)
    
F1,2-cell,S
MF1.1-cell,G2
1300
13 (0%)
    
F1,2-cell,G2
MF1.1-cell,G2
1067
32 (3%)
    
MF1.1-cell,
67,500
270 (0.4%)
    
F1,2-cell,G1
CD1.1-cell,G2
40
20 (50%)
    
F1,2-cell,S
CD1.1-cell,G2
2600
26 (0%)
    
F1,2-cell,G2
CD1.1-cell,G2
89
46 (52%)
    
CD1,2-cell,G2
CD1.1-cell,G2
2523
40 (1.5%)
    
CD1.1-cell,
3350
134 (4%)
    
Mouse [15]
PN
PN
 
224
193 (86.2%)
106 (47.3%)
66 (29.5%)
24 (10.7%)
 
MII
PN
 
419
306 (73.03%)
134 (32%)
91 (21.7%)
71 (17%)
 
GV
PN
 
224
109 (48.7%)
40 (17.9%)
11 (4.9%)
5 (2.2%)
 
PN control
 
1114
1020 (91.6%)
246 (22.1%)
135 (12.1%)
99 (8.91%)
 

Pros and cons of ooplasmic transfer

Several reports have sprung up with the positive and negative aspects of OT indicating its efficacy and safety concerns, but lack of concrete documentation of these facts of OT in human oocytes inspired the researchers to review the entire available reports regarding OT published between 1982 to August 2017 in English language and to scrutinize the pros and cons of this technique in human embryos. Only the report of Wei-ren et al. (2006) has briefly mentioned the problems and prospects of OT, but after that report more than a decade has elapsed during which a number of research reports came up with new observations of the problems and prospects. Though there is no report elucidating positive correlation between any congenital abnormalities and the OT [10, 11], recently few reports have elucidated certain concerns regarding its use in assisted reproduction, like mitochondrial functioning in zygote, regulation of apoptosis, genetic and epigenetic modifications, survival of maternal transcripts, proteins and ions which are the factors effecting oocytes due to mixing of two entities [2428].

Mitochondrial functions

Mitochondria have eccentric role in fertilization, cell division, development of embryo by balancing pro- and anti-apoptotic factors and also stabilising oxidative stress (OS). It has been proposed that in OT technique, genome of resulting offspring contains nuclear DNA (nDNA) from both of the biological parents and mtDNA from the biological mother as well as from the donor [27, 29]. Research revealed that although a brief mitochondrial heteroplasmy occurs in the newly fertilized oocyte (with respect to the entire sperm tail into the ooplasm), there remains a high degree of its homoplasmy throughout the body [3032]. Mitochondrial function is also regulated by a complex combination of nuclear and mitochondrial genes and survival of mitochondrial genotypes relies on nuclear constitution as well [27, 29]. The introduction of foreign mtDNA via OT can introduce a conflict between the control mechanisms for nDNA, recipient mtDNA and donor mtDNA, leading to unpredictable outcomes which raised concerns regarding the safety of this technique [20, 27, 29, 3337]. Spontaneous rearrangements of mtDNA include deletions, insertions and duplications which are responsible for some diseases [33, 37, 38]. In oocytes, when the percentage of mtDNA rearrangements increases, a significant reduction in the efficiency of OXPHOS occurs following reactive oxygen species (ROS) induced damages [33, 37]. In the zygote, ROS can induce lipid peroxidation and disruption in DNA, RNA and protein functions [33, 37, 39]. Though Krimsky (2014) expressed concerns regarding the sparse empirical knowledge regarding heteroplasmy in OT in human oocytes, it was shown in few studies that OT related mitochondrial disease transmission due to mtDNA mutation has a very low population frequency (1:8000) and therefore a theoretical risk of these diseases associated with OT seems unlikely [29, 35]. Only a few published animal studies have observed heteroplamy induced cardiovascular mal-alterations and neuropsychiatric defects in offsprings [40]. Ferreira et al. (2010) threw a beam on the fate of the donor’s mtDNA mentioning that owing to a reduced proportion of transmitted donor mtDNA compared with its input, it may be indicated that the introduced mtDNA was lost at any stage between foetal development and adulthood either by random drift or by selective replicative disadvantages of the transplanted mtDNA [41]. Bredenoord et al. (2008), in this regard, referred to the positive impact of OT on mitochondrial diseases. They mentioned, after clarifying some conceptual issues, that OT and nuclear transfer prevent mtDNA disorders [42].
Reports have also suggested that women carrying a history of IVF failure generate poor quality oocytes containing inefficient mitochondria, resulting in decreased energy production [43]. Healthy mitochondria are essential for apoptotic-signalling pathway and appropriate chromatid segregation during fertilization as well as subsequent mitotic division via respiratory processes and ATP production [44]. To focus upon the positive aspects of OT, it may thus be conceived that aged or defective mitochondria which may give rise to aberrant chromosomal segregation or developmental arrest, can become healthy with restored mitochondrial activities by injection of ooplasm from healthy donor [44]. It could avoid the chaotic mosaicism associated with low mitochondrial potential [43]. Liu et al. first reported the transfusion of active mitochondria in totally reconstructed zygotes with nuclei and cytosol from H2O2 treated as well as untreated zygotes that ultimately showed TUNEL staining at the similar rate as that of H2O2 treated controls, indicating that apoptotic potential could have transferred cytoplasmically [45]. This experiment also revealed that healthy cytoplasm could partly rescue pronuclei from OS.

Regulation of apoptosis

Apoptosis is a natural and normal feature in preimplantation development, both in vivo and in vitro, which is essential in the developing embryo for removal of deficient cells. Embryo development is controlled by counterbalance between pro-(i.e. Bax) and anti-apoptotic (i.e. Bcl-2) genes, as oogenesis, throughout the preimplantation period, and it precedes facing successive checkpoints [46]. Cytochrome C and apoptosis-inducing factor (AIF) are bifunctional proteins with oxidoreductase and apoptogenic functions, which frequently lead to the caspase cascade activation with changes in membrane asymmetry and disposal of phosphatidylserine (PS) [46]. Anti-apoptotic factors (i.e. Bcl-2) are inhibitors that naturally block the programmed cell death pathway [46]. When these factors mutated or incorrectly regulated, cancer or other complications may occur [46]. The impacts of OT on the balance between pro- and anti-apoptotic factors of recipient oocyte are regulated by some internal and external factors [46]. For instance, controlled ovarian stimulation can potentially result in inadequate ooplasmic maturation because of an uncoordinated apoptotic system [4751]. Recent evidence suggested that consumption of oral antioxidants can non-specifically regulate the apoptosis process in oocytes which might be worthy before OT [52]. The growth hormone (GH) involved in ovarian regulation may reduce apoptosis during cumulus expansion and in-vitro culture (IVC), by altering the Bax: Bcl-2 ratio and increasing its DNA repair capacity [5356]. Polluted air or smoking can induce toxicity mediated by a Bax pathway and alter the meiotic spindle of oocyte and sperm [5760]. In oocyte and preimplantation human embryo, concentration of ROS and DNA fragmentation levels are comparatively more in fragmented than in non-fragmented forms because of inducing apoptosis [6167]. This evidence suggests that most probably the mitochondrial component of ooplasm has the most significant role in mediating development and oxidative stress induced apoptotic cell death in zygote [29, 45, 51, 6872]. It has been shown that because of some gene activations and productions in culture media, the level of apoptosis in this condition was higher than in in vivo condition [48, 7376]. There is controversy surrounding supplementation of culture medium with amino acids and exogenous growth factors such as transforming growth factor-b (TGF-b), insulin-like growth factor I (IGF-I) or platelet-activating factor (PAF; 1-o-alkyl-2-acetyl-sn-glycero-3-phosphocholine) which are supposed to reduce sulphur-free amino acids to induce the apoptosis [74, 7786]. Ceramide and sphingosine-1-phosphate (S1P), as a mediator and a suppressor respectively, are involved in oocyte apoptosis [8789]. Mammalian oocytes and preimplantation embryos have many transcripts encoding cell death suppressor, inducer and caspase genes during developmental stages [49, 90]. In preimplantation human embryos, caspases are associated with developmental processes [91, 92]. It was suggested that the embryo development is regulated by an equivalence of pro- and anti- apoptotic gene expression with sequential checkpoints [48]. Mature oocytes with adequate anti-apoptotic mRNA have appropriate maturation and fertilization [48, 93]. Also, poor quality oocytes with increasing cell death inducers or decreasing its antagonists may have fragmentation or arrest [93]. When pronuclei are formed, expression of mRNA that codes for DNA repair enzymes may be observed as a marker of oocyte quality [9499]. Transfer of ooplasm can also introduce unwanted menacing elements by elevating the level of apoptosis in the embryo; it seems that transmission of about 15% of ooplasm cannot adjust the death promoters and inhibitors [93]. Several studies suggested that OT might increase the capacity of DNA repair by transfer of the essential repair enzymes, like polymerase beta or the multifunctional DNA repair enzyme APEX [29, 100]. It is obvious that ooplasm donated from a healthy oocyte provides specific endogenous growth factors crucial for survival, mRNA and anti-apoptotic mRNA in women experiencing advanced reproductive age or poor embryo quality [18, 21, 101]. It seems that OT might increase the essential repair enzymes and apoptosis and the anti- or pro- apoptotic factors in ooplasm. Due to inadequate clarity in proper identification of the process of apoptosis and the anti- or pro- apoptotic factors in the preimplantation embryo, OT is applied on a complete empirical basis.

Genetic modifications

Though most of the reports describing genetic alterations of OT point out towards its beneficial impacts, still few reports discuss the concerns associated with OT. Reports emphasizing upon the positive impact of OT divulge its assistance in proper oocyte cell division and in reduction of probability of chromosomal abnormalities. Two major proteins closely linked to dynamics of microtubules in ooplasm are mitogen-associated protein kinase (MAPK) and M-phase promoting factor (MPF) [11, 12, 102107]. MAPK as a serine/threonine-specific protein kinase is involved in directing cellular responses to the different stimuli and regulate cell functions [108]. MPF is the main regulator of germinal vesicle breakdown (GVBD) and chromosome condensation and mostly related with chromosomes and spindle structures (3, 4). Matured MII oocytes contain MPF and cytostatic factor (CSF) [3, 4]. CSF is an ooplasmic factor found in unfertilized eggs that causes metaphase arrest of cell cycles in the oocyte and zygote [109]. CSF appears in maturing oocyte ooplasm, but disappears during egg activation [109]. The effect of CSF appears to be primarily stabilization of MPF [109]. It has been proposed that the aged oocytes may have changes in ooplasmic capacity for spindle formation during meiosis [103107, 110112]. It was thought that the meiosis I and meiosis II spindles may be easily disturbed by the needling in OT and the disturbances can lead to the presence of multiple nuclei in a single oocyte and they are strongly correlated with embryo chromosomal abnormalities [113115]. Gametes with these anomalies can result in conditions such as Down’s syndrome (47 chromosomes), or Turner syndrome (45 chromosomes). These abnormalities are frequently observed in manipulated preimplantation embryos and associated with diminished cleavage, poor quality, increased fragmentation and decreased implantation potential [113115]. Although it has been proposed that OT can dynamically increase ooplasmic microtubules and cell cycle factors, it can form an atypical number of chromosomes or a structural abnormality in one or more chromosomes in embryos [20, 33, 107, 112]. In documenting the disadvantages of this technique in genetic alterations, the report of Liang et al. (2009) should be indicated which delineated the effect of OT on paternal genome functions [116]. By using C57BL/6 and DBA/2 mice strains, they have indicated that inter-strain OT significantly affects development of IVF/ICSI embryos as well as the paternal genome functions which could contribute to an altered phenotype after birth [116]. They showed that although OT can assist proper oocyte cell division and reduction of probability of chromosomal abnormalities by improving the ooplasmic capacity for spindle formation in poor oocytes, but meiosis I and meiosis II spindles may be easily disturbed by the needling and lead to embryo chromosomal abnormalities.

Epigenetic modifications

It was demonstrated that the parental genotype can influence the DNA methylation in genomic imprinting of the offspring mediated by S-adenosyl methionine (SAM) in CpG islands and regulate gene expression by creating hetero- and eu-chromatin [117119]. In vitro culture conditions, inhibitors of SAM synthesis and deficiency in the endogenous methionine pool can also alter this genomic activation process and significantly affect embryo development and apoptosis [79, 80, 120]. Epigenetic programming plays multiple roles in post fertilization in embryo. Recent studies demonstrated that blastomere fragmentation in embryos is controlled by multiple genetic loci which were affected by genomic imprinting or different mitochondrial origin [121123]. However, undoubtedly in OT, the foreign ooplasm and specific manipulations can have effect on epigenetic markers of oocyte and alter gene expression patterns and phenotype at later stages of development, and these effects immediately adverse early embryo development through blastomere fragmentation and apoptosis [117, 124128]. Although the use of epigenetic analysis is rapidly expanded as a marker to reduce abnormal embryo morphology and reproductive ART outcomes, the analysis of the alteration of epigenetic markers is essential.

Role of oocyte contents in the embryo development

Oocyte is an electrogenic cell with specific developmental blockage during the meiotic division stages [129]. The quality of the ooplasm depends on maternal transcripts, proteins and ions accumulated during oocyte growth and maturation, until the maternal-to-zygotic transition (MZT) happens during the 4–8-cell stage and will establish the future of the embryo [130]. The evidence showed that potassium (K+) and calcium (Ca2+) are two important ions involved in different maturation stages of the oocyte [131, 132]. Wonky oocytes undergo several changes including altered intracellular K+ and Ca2+ dynamics, premature cortical granule loss and alteration in cell cycle factors and are more sensitive to undergo abnormal fertilization and arrest during early embryonic development [103, 110, 133, 134]. Studies on GVBD stage oocytes suggested that immature oocytes have a high K+ current which is lost during maturation [129]. Depolarization of granulosa cells is an essential event of oocyte maturation [129]. Because of cumulus expansion and the breaking of heterologous gap junction communications, this coupling decreases at the end of maturation [129]. In association with rapid modifications of the intracellular environment such as changes in free Ca2+ concentration, resumption of meiotic arrest due to hormonal signals and sperm entry, a wide range of changes occurred on the oocyte plasma membrane [129]. Studies showed that unfertilized oocyte contains unstable CSF, which is highly sensitive to Ca2+ [109]. As mentioned, CSF is responsible for the meiosis arrest in unfertilized oocytes, and its inactivation by a surge of Ca2+ during fertilization releases the oocyte from this arrest [109]. Methionine and cysteine can affect glutathione levels which prevent the negative effects of ROS and apoptosis in embryos [29, 80, 118, 135, 136]. Recent evidence suggested that the polarized protein like leptin and signal transducer and activator of transcription 3 (STAT3) and maybe beta-actin and IL-1 mRNAs can display polarized distribution in oocytes [137139]. The pattern of polarization is inherited differentially between blastomeres in the cleavage-stage embryo and between the inner cell mass and trophoblast of the blastocyst [137139]. However, this polarization phenomenon exists during early human development for transforming growth factor b2 (TGFb2), vascular endothelial growth factor (VEGF), apoptosis-associated proteins (Bcl-x and Bax), growth factor receptors like c-kit receptor and epidermal growth factor receptor (EGF-R), and loss of non-polarized proteins (i.e. E-cadherin) has no developmental consequences [29, 140]. It seems that the place of removing ooplasm from the donor and the place of injecting to recipient oocyte may be important because the injection of foreign ooplasm into a polarized domain in the recipient can be hazardous for subsequent embryo development if it alters regulatory protein polarization in the early preimplantation embryos and might have a clinical significance in OT. In 2016, Gonzalez-Grajales et al. have driven several doubts away reaching a convincing concept that OT and interspecies somatic cell nuclear transfer (iSCNT) did not have any detrimental effect on reconstructed embryo, as they did not observe any significant alterations in ATP content, expression of nuclear respiratory factor 2 (NRF2), mitochondrial transcription factor A (TFAM) and mitochondrial subunit-2 of cytochrome C oxidase (mtCOX2) in 8–16 cell bison embryos that emerged from the transformed cell [141]. They showed that OT may provide the suitable amounts of necessary ooplasmic contents which are responsible for the division in fertilized oocytes. And because of the oocyte polarization, the place of removing ooplasm from the donor and the injecting to recipient oocyte is important for subsequent embryo development.

Survival of required mRNA

Maternal mRNA translation is responsible for the early cleavages, zygote controlling and activation of embryonic genome [142]. The two important mechanisms involved in the recruitment of maternal mRNA are the stability of the message and its translation potential. Oocyte maturation is linked to a specific group of mRNA transcripts which continues after fertilization with different messages for degradation [143]. Rapidly or delayed degradation of oocyte mRNA is regulated via the length of its poly (A) tail which is affected by cytoplasmic polyadenylation element binding protein (CPEB), cleavage and polyadenylation specific factor (CPSF) and poly(A) polymerase (PAP) [144, 145]. Specific kinetic changes in polyadenylation contribute to gene expression in embryos, and these changes influence further development [146148]. Inadequate ooplasmic maturation is linked to poor regulation of the mRNA polyadenylation process, and this leads to altered developmental competence [146148]. For instance, the mRNA translation of Oct-4, connexin-32 and connexin-34, essential for early differentiation, totipotency and blastocyst formation, are protected via PAP [29]. Injection of good quality ooplasm might be beneficial by assisting the process of polyadenylation via injection of PAP, CPEB, CPSF and some polyadenylated mRNA [29]. On the other hand, some of the polyadenylated mRNAs gradually reduce their poly A tail (connexin-43 and Oct-4), and injection of exogenous factors could disturb the developmental process of embryonic cell cycle [29]. In addition to positive effects, it is believed that extra foreign ooplasm might interfere during the MZT cycle. Therefore, on the basis of mRNA status in recipient and donor ooplasm, OT is of questionable value.

Conclusion

It was observed that although an OT technique can practically establish normal growth and return viability to the embryos, but the appropriate practical OT techniques in human oocytes, and evaluating its positive and negative aspects in mitochondrial functions, regulation of apoptosis, genetic and epigenetic modifications, oocyte contents and survival of required mRNA are necessary. If an unhealthy oocyte with intact nuclear entity, lacking some potent cytoplasmic factors can participate in reproduction, aggrandising the oocyte by the required ooplasmic factors from another donor oocyte, life can be bestowed to innumerable infertile wombs. Thus, OT with efficient technicality may be accepted as a boon to the reproductive arena. Although the intervention of mtDNA of the donor in the transformed oocyte and eventually into the zygote and mtDNA heteroplasmy in the formed fetus may create concerns suggesting an ethical burden in the concept of ‘three genetic parents’ of the fetus immerging from the transformed oocyte, it is also evident from this review itself that no significant impact of mtDNA from the donor on the formed fetus has so far been reported with results strengthening the reliability of OT emphasising mitochondrial homoplasmy with almost no genetic intervention of donor oocyte. Moreover, as mentioned, OT can dynamically increase ooplasmic microtubules and cell cycle factors and alter the genetic and epigenetic factors. It was shown that because spontaneous mtDNA heteroplasmy occurs in normal individuals, there is no reason to worry about its detection in recipient oocytes so injection of ooplasm from healthy donor could potentially restore mitochondrial activity. In addition to these factors, the place of removing ooplasm from the donor and the place of injecting to recipient oocyte may affect the subsequent embryo development. The lack of an objective biomarker in recipient oocyte is one of the concerns to identify dysfunctional oocytes without testing their developmental ability. These worries also raise the question of how suitable oocytes for donating ooplasm should be identified or defined. It is obvious that criteria that will allow this evaluation are not yet available for clinical usage and will only be elucidated through fundamental basic research. Thus, removing the few concerns surrounding the implication of OT and with more technical improvement and standardization, OT may lead to a successful contribution in changing unhealthy into healthy oocytes enabling assisted reproduction to progress further in making new lives.

Acknowledgments

Not applicable.

Funding

This study was not supported by any funding.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Cohen J, Scott R, Schimmel T, Levron J, Willadsen S. Birth of infant after transfer of anucleate donor oocyte cytoplasm into recipient eggs. Lancet. 1997;350(9072):186–7.PubMedCrossRef Cohen J, Scott R, Schimmel T, Levron J, Willadsen S. Birth of infant after transfer of anucleate donor oocyte cytoplasm into recipient eggs. Lancet. 1997;350(9072):186–7.PubMedCrossRef
2.
Zurück zum Zitat Brenner CA, Scott RT, Cohen J. Use of enucleate donor oocyte cytoplasm in recipient eggs. Lancet. 1997;350(9082):961–2.CrossRef Brenner CA, Scott RT, Cohen J. Use of enucleate donor oocyte cytoplasm in recipient eggs. Lancet. 1997;350(9082):961–2.CrossRef
3.
Zurück zum Zitat Masui Y, Markert CL. Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool. 1971;177(2):129–45.PubMedCrossRef Masui Y, Markert CL. Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool. 1971;177(2):129–45.PubMedCrossRef
4.
Zurück zum Zitat Flood JT, Chillik CF, van Uem JF, Iritani A, Hodgen GD. Ooplasmic transfusion: prophase germinal vesicle oocytes made developmentally competent by microinjection of metaphase II egg cytoplasm. Fertil Steril. 1990;53(6):1049–54.PubMedCrossRef Flood JT, Chillik CF, van Uem JF, Iritani A, Hodgen GD. Ooplasmic transfusion: prophase germinal vesicle oocytes made developmentally competent by microinjection of metaphase II egg cytoplasm. Fertil Steril. 1990;53(6):1049–54.PubMedCrossRef
5.
Zurück zum Zitat Takeda K, Takahashi S, Onishi A, Hanada H, Imai H. Replicative advantage and tissue-specific segregation of RR mitochondrial DNA between C57BL/6 and RR heteroplasmic mice. Genetics. 2000;155(2):777–83.PubMedPubMedCentral Takeda K, Takahashi S, Onishi A, Hanada H, Imai H. Replicative advantage and tissue-specific segregation of RR mitochondrial DNA between C57BL/6 and RR heteroplasmic mice. Genetics. 2000;155(2):777–83.PubMedPubMedCentral
6.
Zurück zum Zitat Naviaux RK, McGowan KA. Organismal effects of mitochondrial dysfunction. Hum Reprod. 2000;15(suppl 2):44–56.PubMedCrossRef Naviaux RK, McGowan KA. Organismal effects of mitochondrial dysfunction. Hum Reprod. 2000;15(suppl 2):44–56.PubMedCrossRef
7.
Zurück zum Zitat Barritt J, Kokot M, Cohen J, Steuerwald N, Brenner C. Quantification of human ooplasmic mitochondria. Reprod BioMed Online. 2002;4(3):243–7.PubMedCrossRef Barritt J, Kokot M, Cohen J, Steuerwald N, Brenner C. Quantification of human ooplasmic mitochondria. Reprod BioMed Online. 2002;4(3):243–7.PubMedCrossRef
8.
Zurück zum Zitat Moyes C, Battersby B. Regulation of muscle mitochondrial design. J Exp Biol. 1998;201(3):299–307. Moyes C, Battersby B. Regulation of muscle mitochondrial design. J Exp Biol. 1998;201(3):299–307.
9.
Zurück zum Zitat Anderson S, Bankier AT, Barrell BG, De Bruijn M, Coulson AR, Drouin J, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290(5806):457–65.PubMedCrossRef Anderson S, Bankier AT, Barrell BG, De Bruijn M, Coulson AR, Drouin J, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290(5806):457–65.PubMedCrossRef
10.
Zurück zum Zitat Ogura A, Ogonuki N, Takano K, Inoue K. Microinsemination, nuclear transfer, and cytoplasmic transfer: the application of new reproductive engineering techniques to mouse genetics. Mamm Genome. 2001;12(11):803–12.PubMedCrossRef Ogura A, Ogonuki N, Takano K, Inoue K. Microinsemination, nuclear transfer, and cytoplasmic transfer: the application of new reproductive engineering techniques to mouse genetics. Mamm Genome. 2001;12(11):803–12.PubMedCrossRef
11.
Zurück zum Zitat Verlhac M-H, Kubiak JZ, Clarke HJ, Maro B. Microtubule and chromatin behavior follow MAP kinase activity but not MPF activity during meiosis in mouse oocytes. Development. 1994;120(4):1017–25.PubMed Verlhac M-H, Kubiak JZ, Clarke HJ, Maro B. Microtubule and chromatin behavior follow MAP kinase activity but not MPF activity during meiosis in mouse oocytes. Development. 1994;120(4):1017–25.PubMed
12.
Zurück zum Zitat Verlhac M-H, de Pennart H, Maro B, Cobb MH, Clarke HJ. MAP kinase becomes stably activated at metaphase and is associated with microtubule-organizing centers during meiotic maturation of mouse oocytes. Dev Biol. 1993;158(2):330–40.PubMedCrossRef Verlhac M-H, de Pennart H, Maro B, Cobb MH, Clarke HJ. MAP kinase becomes stably activated at metaphase and is associated with microtubule-organizing centers during meiotic maturation of mouse oocytes. Dev Biol. 1993;158(2):330–40.PubMedCrossRef
13.
Zurück zum Zitat Muggleton-Harris A, Whittingham D, Wilson L. Cytoplasmic control of preimplantation development in vitro in the mouse. Nature. 1982;299(5882):460–2.PubMedCrossRef Muggleton-Harris A, Whittingham D, Wilson L. Cytoplasmic control of preimplantation development in vitro in the mouse. Nature. 1982;299(5882):460–2.PubMedCrossRef
14.
Zurück zum Zitat Pratt H, Muggleton-Harris A. Cycling cytoplasmic factors that promote mitosis in the cultured 2-cell mouse embryo. Development. 1988;104(1):115–20.PubMed Pratt H, Muggleton-Harris A. Cycling cytoplasmic factors that promote mitosis in the cultured 2-cell mouse embryo. Development. 1988;104(1):115–20.PubMed
15.
Zurück zum Zitat Levron J, Willadsen S, Bertoli M, Cohen J. The development of mouse zygotes after fusion with synchronous and asynchronous cytoplasm. Hum Reprod. 1996;11(6):1287–92.PubMedCrossRef Levron J, Willadsen S, Bertoli M, Cohen J. The development of mouse zygotes after fusion with synchronous and asynchronous cytoplasm. Hum Reprod. 1996;11(6):1287–92.PubMedCrossRef
16.
Zurück zum Zitat Cohen J, Scott R, Alikani M, Schimmel T, Munné S, Levron J, et al. Ooplasmic transfer in mature human oocytes. Mol Hum Reprod. 1998;4(3):269–80.PubMedCrossRef Cohen J, Scott R, Alikani M, Schimmel T, Munné S, Levron J, et al. Ooplasmic transfer in mature human oocytes. Mol Hum Reprod. 1998;4(3):269–80.PubMedCrossRef
17.
Zurück zum Zitat Barritt JA, Willadsen S, Brenner C, Cohen J. Cytoplasmic transfer in assisted reproduction. Hum Reprod Update. 2001;7(4):428–35.PubMedCrossRef Barritt JA, Willadsen S, Brenner C, Cohen J. Cytoplasmic transfer in assisted reproduction. Hum Reprod Update. 2001;7(4):428–35.PubMedCrossRef
18.
Zurück zum Zitat Lanzendorf SE, Mayer JF, Toner J, Oehninger S, Saffan DS, Muasher S. Pregnancy following transfer of ooplasm from cryopreserved-thawed donor oocytes into recipient oocytes. Fertil Steril. 1999;71(3):575–7.PubMedCrossRef Lanzendorf SE, Mayer JF, Toner J, Oehninger S, Saffan DS, Muasher S. Pregnancy following transfer of ooplasm from cryopreserved-thawed donor oocytes into recipient oocytes. Fertil Steril. 1999;71(3):575–7.PubMedCrossRef
19.
Zurück zum Zitat Huang C-C, Cheng T-C, Chang H-H, Chang C-C, Chen C-I, Liu J, et al. Birth after the injection of sperm and the cytoplasm of tripronucleate zygotes into metaphase II oocytes in patients with repeated implantation failure after assisted fertilization procedures. Fertil Steril. 1999;72(4):702–6.PubMedCrossRef Huang C-C, Cheng T-C, Chang H-H, Chang C-C, Chen C-I, Liu J, et al. Birth after the injection of sperm and the cytoplasm of tripronucleate zygotes into metaphase II oocytes in patients with repeated implantation failure after assisted fertilization procedures. Fertil Steril. 1999;72(4):702–6.PubMedCrossRef
20.
Zurück zum Zitat Barritt JA, Brenner CA, Malter HE, Cohen J. Mitochondria in human offspring derived from ooplasmic transplantation: brief communication. Hum Reprod. 2001;16(3):513–6.PubMedCrossRef Barritt JA, Brenner CA, Malter HE, Cohen J. Mitochondria in human offspring derived from ooplasmic transplantation: brief communication. Hum Reprod. 2001;16(3):513–6.PubMedCrossRef
21.
Zurück zum Zitat Dale B, Wilding M, Botta G, Rasile M, Marino M, Di Matteo L, et al. Pregnancy after cytoplasmic transfer in a couple suffering from idiopathic infertility case report. Hum Reprod. 2001;16(7):1469–72.PubMedCrossRef Dale B, Wilding M, Botta G, Rasile M, Marino M, Di Matteo L, et al. Pregnancy after cytoplasmic transfer in a couple suffering from idiopathic infertility case report. Hum Reprod. 2001;16(7):1469–72.PubMedCrossRef
22.
Zurück zum Zitat Hwang J-L, Lin Y-H, Tsai Y-L, Hsieh B-C, Huang L-W, Huang S-C, et al. Oocyte donation using immature oocytes from a normal ovulatory woman. Acta Obstet Gynecol Scand. 2002;81(3):274–5.PubMedCrossRef Hwang J-L, Lin Y-H, Tsai Y-L, Hsieh B-C, Huang L-W, Huang S-C, et al. Oocyte donation using immature oocytes from a normal ovulatory woman. Acta Obstet Gynecol Scand. 2002;81(3):274–5.PubMedCrossRef
23.
Zurück zum Zitat Sayaka W, Satoshi K, Van Thuan N, Hiroshi O, Takafusa H, Eiji M, et al. Effect of volume of oocyte cytoplasm on embryo development after parthenogenetic activation, intracytoplasmic sperm injection, or somatic cell nuclear transfer. Zygote. 2008;16(03):211–22.PubMedCrossRef Sayaka W, Satoshi K, Van Thuan N, Hiroshi O, Takafusa H, Eiji M, et al. Effect of volume of oocyte cytoplasm on embryo development after parthenogenetic activation, intracytoplasmic sperm injection, or somatic cell nuclear transfer. Zygote. 2008;16(03):211–22.PubMedCrossRef
24.
Zurück zum Zitat De Rycke M, Liebaers I, Van Steirteghem A. Epigenetic risks related to assisted reproductive technologies risk analysis and epigenetic inheritance. Hum Reprod. 2002;17(10):2487–94.PubMedCrossRef De Rycke M, Liebaers I, Van Steirteghem A. Epigenetic risks related to assisted reproductive technologies risk analysis and epigenetic inheritance. Hum Reprod. 2002;17(10):2487–94.PubMedCrossRef
25.
26.
Zurück zum Zitat Winston RM, Hardy K. Are we ignoring potential dangers of in vitro fertilization and related treatments? Nat Cell Biol. 2002;4:1–5. Winston RM, Hardy K. Are we ignoring potential dangers of in vitro fertilization and related treatments? Nat Cell Biol. 2002;4:1–5.
27.
Zurück zum Zitat Cummins JM. Epigenetic and experimental modifications in early mammalian development: part I mitochondria: potential roles in embryogenesis and nucleocytoplasmic transfer. Hum Reprod Update. 2001;7(2):217–28.PubMedCrossRef Cummins JM. Epigenetic and experimental modifications in early mammalian development: part I mitochondria: potential roles in embryogenesis and nucleocytoplasmic transfer. Hum Reprod Update. 2001;7(2):217–28.PubMedCrossRef
28.
Zurück zum Zitat Cummins J. The role of maternal mitochondria during oogenesis, fertilization and embryogenesis. Reprod BioMed Online. 2002;4(2):176–82.PubMedCrossRef Cummins J. The role of maternal mitochondria during oogenesis, fertilization and embryogenesis. Reprod BioMed Online. 2002;4(2):176–82.PubMedCrossRef
29.
Zurück zum Zitat Levy R, Elder K, Ménézo Y. Cytoplasmic transfer in oocytes: biochemical aspects. Hum Reprod Update. 2004;10(3):241–50.PubMedCrossRef Levy R, Elder K, Ménézo Y. Cytoplasmic transfer in oocytes: biochemical aspects. Hum Reprod Update. 2004;10(3):241–50.PubMedCrossRef
30.
Zurück zum Zitat Asch R, Simerly C, Ord T, Ord V, Schatten G. The stages at which human fertilization arrests: microtubule and chromosome configurations in inseminated oocytes which failed to complete fertilization and development in humans. Mol Hum Reprod. 1995;1(5):239–48.CrossRef Asch R, Simerly C, Ord T, Ord V, Schatten G. The stages at which human fertilization arrests: microtubule and chromosome configurations in inseminated oocytes which failed to complete fertilization and development in humans. Mol Hum Reprod. 1995;1(5):239–48.CrossRef
31.
Zurück zum Zitat Van Blerkom J, Davis P, Merriam J, Sinclair J. Nuclear and cytoplasmic dynamics of sperm penetration, pronuclear formation and microtubule organization during fertilization and early preimplantation development in the human. Hum Reprod Update. 1995;1(5):429–47.PubMedCrossRef Van Blerkom J, Davis P, Merriam J, Sinclair J. Nuclear and cytoplasmic dynamics of sperm penetration, pronuclear formation and microtubule organization during fertilization and early preimplantation development in the human. Hum Reprod Update. 1995;1(5):429–47.PubMedCrossRef
32.
Zurück zum Zitat Ankel-Simons F, Cummins JM. Misconceptions about mitochondria and mammalian fertilization: implications for theories on human evolution. Proc Natl Acad Sci. 1996;93(24):13859–63.PubMedPubMedCentralCrossRef Ankel-Simons F, Cummins JM. Misconceptions about mitochondria and mammalian fertilization: implications for theories on human evolution. Proc Natl Acad Sci. 1996;93(24):13859–63.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Barritt JA, Brenner CA, Willadsen S, Cohen J. Spontaneous and artificial changes in human ooplasmic mitochondria. Hum Reprod. 2000;15(suppl 2):207–17.PubMedCrossRef Barritt JA, Brenner CA, Willadsen S, Cohen J. Spontaneous and artificial changes in human ooplasmic mitochondria. Hum Reprod. 2000;15(suppl 2):207–17.PubMedCrossRef
34.
Zurück zum Zitat Brenner CA, Barritt JA, Willadsen S, Cohen J. Mitochondrial DNA heteroplasmy after human ooplasmic transplantation. Fertil Steril. 2000;74(3):573–8.PubMedCrossRef Brenner CA, Barritt JA, Willadsen S, Cohen J. Mitochondrial DNA heteroplasmy after human ooplasmic transplantation. Fertil Steril. 2000;74(3):573–8.PubMedCrossRef
35.
Zurück zum Zitat Malter HE, Cohen J. Ooplasmic transfer: animal models assist human studies. Reprod BioMed Online. 2002;5(1):26–35.PubMedCrossRef Malter HE, Cohen J. Ooplasmic transfer: animal models assist human studies. Reprod BioMed Online. 2002;5(1):26–35.PubMedCrossRef
37.
Zurück zum Zitat Christodoulou J. Genetic defects causing mitochondrial respiratory chain disorders and disease. Hum Reprod. 2000;15(suppl 2):28–43.PubMedCrossRef Christodoulou J. Genetic defects causing mitochondrial respiratory chain disorders and disease. Hum Reprod. 2000;15(suppl 2):28–43.PubMedCrossRef
38.
Zurück zum Zitat Darbandi S, Darbandi M, Sadeghi MR, Al-Hasani S, Agarwal A, Shirazi A, et al. Experimental strategies towards increasing intracellular mitochondrial activity in oocytes: a systematic review. Mitochondrion. 2016;30:8–17.PubMedCrossRef Darbandi S, Darbandi M, Sadeghi MR, Al-Hasani S, Agarwal A, Shirazi A, et al. Experimental strategies towards increasing intracellular mitochondrial activity in oocytes: a systematic review. Mitochondrion. 2016;30:8–17.PubMedCrossRef
39.
Zurück zum Zitat Darbandi S, Darbandi M, Mokarram P, Sadeghi MR, Owji AA, Khorram Khorshid HR, et al. CME article: the acupuncture-affected gene expressions and epigenetic modifications in oxidative stress–associated diseases. Medical Acupuncture. 2016;28(1):16–27.CrossRef Darbandi S, Darbandi M, Mokarram P, Sadeghi MR, Owji AA, Khorram Khorshid HR, et al. CME article: the acupuncture-affected gene expressions and epigenetic modifications in oxidative stress–associated diseases. Medical Acupuncture. 2016;28(1):16–27.CrossRef
40.
Zurück zum Zitat Sharpley MS, Marciniak C, Eckel-Mahan K, McManus M, Crimi M, Waymire K, et al. Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell. 2012;151(2):333–43.PubMedPubMedCentralCrossRef Sharpley MS, Marciniak C, Eckel-Mahan K, McManus M, Crimi M, Waymire K, et al. Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell. 2012;151(2):333–43.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Ferreira CR, Burgstaller JP, Perecin F, Garcia JM, Chiaratti MR, Méo SC, et al. Pronounced segregation of donor mitochondria introduced by bovine ooplasmic transfer to the female germ-line. Biol Reprod. 2010;82(3):563–71.PubMedCrossRef Ferreira CR, Burgstaller JP, Perecin F, Garcia JM, Chiaratti MR, Méo SC, et al. Pronounced segregation of donor mitochondria introduced by bovine ooplasmic transfer to the female germ-line. Biol Reprod. 2010;82(3):563–71.PubMedCrossRef
42.
Zurück zum Zitat Bredenoord AL, Pennings G, De Wert G. Ooplasmic and nuclear transfer to prevent mitochondrial DNA disorders: conceptual and normative issues. Hum Reprod Update. 2008;14(6):669–78.PubMedCrossRef Bredenoord AL, Pennings G, De Wert G. Ooplasmic and nuclear transfer to prevent mitochondrial DNA disorders: conceptual and normative issues. Hum Reprod Update. 2008;14(6):669–78.PubMedCrossRef
43.
Zurück zum Zitat Wilding M, De Placido G, De Matteo L, Marino M, Alviggi C, Dale B. Chaotic mosaicism in human preimplantation embryos is correlated with a low mitochondrial membrane potential. Fertil Steril. 2003;79(2):340–6.PubMedCrossRef Wilding M, De Placido G, De Matteo L, Marino M, Alviggi C, Dale B. Chaotic mosaicism in human preimplantation embryos is correlated with a low mitochondrial membrane potential. Fertil Steril. 2003;79(2):340–6.PubMedCrossRef
44.
Zurück zum Zitat Wilding M, Dale B, Marino M, di Matteo L, Alviggi C, Pisaturo ML, et al. Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum Reprod. 2001;16(5):909–17.PubMedCrossRef Wilding M, Dale B, Marino M, di Matteo L, Alviggi C, Pisaturo ML, et al. Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum Reprod. 2001;16(5):909–17.PubMedCrossRef
45.
Zurück zum Zitat Liu L, Trimarchi JR, Keefe DL. Involvement of mitochondria in oxidative stress-induced cell death in mouse zygotes. Biol Reprod. 2000;62(6):1745–53.PubMedCrossRef Liu L, Trimarchi JR, Keefe DL. Involvement of mitochondria in oxidative stress-induced cell death in mouse zygotes. Biol Reprod. 2000;62(6):1745–53.PubMedCrossRef
46.
Zurück zum Zitat Levy R. Genetic regulation of preimplantation embryo survival. Int Rev Cytol. 2001;210:1–37.PubMedCrossRef Levy R. Genetic regulation of preimplantation embryo survival. Int Rev Cytol. 2001;210:1–37.PubMedCrossRef
47.
Zurück zum Zitat Perez GI, Tao X-J, Tilly JL. Fragmentation and death (aka apoptosis) of ovulated oocytes. Mol Hum Reprod. 1999;5(5):414–20.PubMedCrossRef Perez GI, Tao X-J, Tilly JL. Fragmentation and death (aka apoptosis) of ovulated oocytes. Mol Hum Reprod. 1999;5(5):414–20.PubMedCrossRef
48.
Zurück zum Zitat Jurisicova A, Latham KE, Casper RF, Varmuza SL. Expression and regulation of genes associated with cell death during murine preimplantation embryo development. Mol Reprod Dev. 1998;51(3):243–53.PubMedCrossRef Jurisicova A, Latham KE, Casper RF, Varmuza SL. Expression and regulation of genes associated with cell death during murine preimplantation embryo development. Mol Reprod Dev. 1998;51(3):243–53.PubMedCrossRef
49.
Zurück zum Zitat Jurisicova A, Antenos M, Varmuza S, Tilly JL, Casper RF. Expression of apoptosis-related genes during human preimplantation embryo development: potential roles for the Harakiri gene product and Caspase-3 in blastomere fragmentation. Mol Hum Reprod. 2003;9(3):133–41.PubMedCrossRef Jurisicova A, Antenos M, Varmuza S, Tilly JL, Casper RF. Expression of apoptosis-related genes during human preimplantation embryo development: potential roles for the Harakiri gene product and Caspase-3 in blastomere fragmentation. Mol Hum Reprod. 2003;9(3):133–41.PubMedCrossRef
50.
Zurück zum Zitat Exley GE, Tang C, McElhinny AS, Warner CM. Expression of caspase and BCL-2 apoptotic family members in mouse preimplantation embryos. Biol Reprod. 1999;61(1):231–9.PubMedCrossRef Exley GE, Tang C, McElhinny AS, Warner CM. Expression of caspase and BCL-2 apoptotic family members in mouse preimplantation embryos. Biol Reprod. 1999;61(1):231–9.PubMedCrossRef
51.
Zurück zum Zitat Kawamura K, Sato N, Fukuda J, Kodama H, Kumagai J, Tanikawa H, et al. Survivin acts as an antiapoptotic factor during the development of mouse preimplantation embryos. Dev Biol. 2003;256(2):331–41.PubMedCrossRef Kawamura K, Sato N, Fukuda J, Kodama H, Kumagai J, Tanikawa H, et al. Survivin acts as an antiapoptotic factor during the development of mouse preimplantation embryos. Dev Biol. 2003;256(2):331–41.PubMedCrossRef
52.
Zurück zum Zitat Tarín JJ, Pérez-Albalá S, Cano A. Oral antioxidants counteract the negative effects of female aging on oocyte quantity and quality in the mouse. Mol Reprod Dev. 2002;61(3):385–97.PubMedCrossRef Tarín JJ, Pérez-Albalá S, Cano A. Oral antioxidants counteract the negative effects of female aging on oocyte quantity and quality in the mouse. Mol Reprod Dev. 2002;61(3):385–97.PubMedCrossRef
53.
Zurück zum Zitat Kölle S, Stojkovic M, Boie G, Wolf E, Sinowatz F. Growth hormone inhibits apoptosis in in vitro produced bovine embryos. Mol Reprod Dev. 2002;61(2):180–6.PubMedCrossRef Kölle S, Stojkovic M, Boie G, Wolf E, Sinowatz F. Growth hormone inhibits apoptosis in in vitro produced bovine embryos. Mol Reprod Dev. 2002;61(2):180–6.PubMedCrossRef
54.
Zurück zum Zitat Kölle S, Stojkovic M, Boie G, Wolf E, Sinowatz F. Growth hormone-related effects on apoptosis, mitosis, and expression of connexin 43 in bovine in vitro maturation cumulus-oocyte complexes. Biol Reprod. 2003;68(5):1584–9.PubMedCrossRef Kölle S, Stojkovic M, Boie G, Wolf E, Sinowatz F. Growth hormone-related effects on apoptosis, mitosis, and expression of connexin 43 in bovine in vitro maturation cumulus-oocyte complexes. Biol Reprod. 2003;68(5):1584–9.PubMedCrossRef
55.
Zurück zum Zitat Ménézo Y, El Mouatassim S, Chavrier M, Servy E, Nicolet B. Human oocytes and preimplantation embryos express mRNA for growth hormone receptor. Zygote. 2003;11(4):293–7.PubMedCrossRef Ménézo Y, El Mouatassim S, Chavrier M, Servy E, Nicolet B. Human oocytes and preimplantation embryos express mRNA for growth hormone receptor. Zygote. 2003;11(4):293–7.PubMedCrossRef
56.
Zurück zum Zitat Thompson BJ, Shang CA, Waters MJ. Identification of genes induced by growth hormone in rat liver using cDNA arrays. Endocrinology. 2000;141(11):4321–4.PubMedCrossRef Thompson BJ, Shang CA, Waters MJ. Identification of genes induced by growth hormone in rat liver using cDNA arrays. Endocrinology. 2000;141(11):4321–4.PubMedCrossRef
57.
Zurück zum Zitat Zenzes MT. Smoking and reproduction: gene damage to human gametes and embryos. Hum Reprod Update. 2000;6(2):122–31.PubMedCrossRef Zenzes MT. Smoking and reproduction: gene damage to human gametes and embryos. Hum Reprod Update. 2000;6(2):122–31.PubMedCrossRef
59.
Zurück zum Zitat Ji B-T, Shu X-O, Zheng W, Ying D-M, Linet MS, Wacholder S, et al. Paternal cigarette smoking and the risk of childhood cancer among offspring of nonsmoking mothers. J Natl Cancer Inst. 1997;89(3):238–43.PubMedCrossRef Ji B-T, Shu X-O, Zheng W, Ying D-M, Linet MS, Wacholder S, et al. Paternal cigarette smoking and the risk of childhood cancer among offspring of nonsmoking mothers. J Natl Cancer Inst. 1997;89(3):238–43.PubMedCrossRef
60.
Zurück zum Zitat Zenzes M, Reed T. Cigarette smoking inhibits apoptosis (programmed cell death) in early human embryos. Fertil Steril. 1999;72:132–5.CrossRef Zenzes M, Reed T. Cigarette smoking inhibits apoptosis (programmed cell death) in early human embryos. Fertil Steril. 1999;72:132–5.CrossRef
61.
Zurück zum Zitat Korsmeyer SJ, Shutter JR, Veis DJ, Merry DE, Oltvai ZN. Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death. Semin Cancer Biol. 1993;4(6):327–32.PubMed Korsmeyer SJ, Shutter JR, Veis DJ, Merry DE, Oltvai ZN. Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death. Semin Cancer Biol. 1993;4(6):327–32.PubMed
62.
Zurück zum Zitat Korsmeyer SJ, Yin X-M, Oltvai ZN, Veis-Novack DJ, Linette GP. Reactive oxygen species and the regulation of cell death by the Bcl-2 gene family. Biochim Biophys Acta. 1995;1271(1):63–6.PubMedCrossRef Korsmeyer SJ, Yin X-M, Oltvai ZN, Veis-Novack DJ, Linette GP. Reactive oxygen species and the regulation of cell death by the Bcl-2 gene family. Biochim Biophys Acta. 1995;1271(1):63–6.PubMedCrossRef
63.
Zurück zum Zitat Yang HW, Hwang KJ, Kwon HC, Kim HS, Choi KW, Oh KS. Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum Reprod. 1998;13(4):998–1002.PubMedCrossRef Yang HW, Hwang KJ, Kwon HC, Kim HS, Choi KW, Oh KS. Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum Reprod. 1998;13(4):998–1002.PubMedCrossRef
64.
Zurück zum Zitat Oger I, Da Cruz C, Panteix G, Menezo Y. Evaluating human sperm DNA integrity: relationship between 8-hydroxydeoxyguanosine quantification and the sperm chromatin structure assay. Zygote. 2003;11(04):367–71.PubMedCrossRef Oger I, Da Cruz C, Panteix G, Menezo Y. Evaluating human sperm DNA integrity: relationship between 8-hydroxydeoxyguanosine quantification and the sperm chromatin structure assay. Zygote. 2003;11(04):367–71.PubMedCrossRef
65.
Zurück zum Zitat Bessho T, Tano K, Kasai H, Ohtsuka E, Nishimura S. Evidence for two DNA repair enzymes for 8-hydroxyguanine (7, 8-dihydro-8-oxoguanine) in human cells. J Biol Chem. 1993;268(26):19416–21.PubMed Bessho T, Tano K, Kasai H, Ohtsuka E, Nishimura S. Evidence for two DNA repair enzymes for 8-hydroxyguanine (7, 8-dihydro-8-oxoguanine) in human cells. J Biol Chem. 1993;268(26):19416–21.PubMed
66.
Zurück zum Zitat Boiteux S, Radicella JP. Base excision repair of 8-hydroxyguanine protects DNA from endogenous oxidative stress. Biochimie. 1999;81(1):59–67.PubMedCrossRef Boiteux S, Radicella JP. Base excision repair of 8-hydroxyguanine protects DNA from endogenous oxidative stress. Biochimie. 1999;81(1):59–67.PubMedCrossRef
67.
Zurück zum Zitat Boiteux S, Radicella JP. The human OGG1 gene: structure, functions, and its implication in the process of carcinogenesis. Arch Biochem Biophys. 2000;377(1):1–8.PubMedCrossRef Boiteux S, Radicella JP. The human OGG1 gene: structure, functions, and its implication in the process of carcinogenesis. Arch Biochem Biophys. 2000;377(1):1–8.PubMedCrossRef
68.
Zurück zum Zitat Liu L, Keefe DL. Cytoplasm mediates both development and oxidation-induced apoptotic cell death in mouse zygotes. Biol Reprod. 2000;62(6):1828–34.PubMedCrossRef Liu L, Keefe DL. Cytoplasm mediates both development and oxidation-induced apoptotic cell death in mouse zygotes. Biol Reprod. 2000;62(6):1828–34.PubMedCrossRef
69.
Zurück zum Zitat Paula-Lopes F, Hansen P. Apoptosis is an adaptive response in bovine preimplantation embryos that facilitates survival after heat shock. Biochem Biophys Res Commun. 2002;295(1):37–42.PubMedCrossRef Paula-Lopes F, Hansen P. Apoptosis is an adaptive response in bovine preimplantation embryos that facilitates survival after heat shock. Biochem Biophys Res Commun. 2002;295(1):37–42.PubMedCrossRef
70.
Zurück zum Zitat Paula-Lopes F, Chase C, Al-Katanani Y, Krininger C, Rivera R, Tekin S, et al. Genetic divergence in cellular resistance to heat shock in cattle: differences between breeds developed in temperate versus hot climates in responses of preimplantation embryos, reproductive tract tissues and lymphocytes to increased culture temperatures. Reproduction. 2003;125(2):285–94.PubMedCrossRef Paula-Lopes F, Chase C, Al-Katanani Y, Krininger C, Rivera R, Tekin S, et al. Genetic divergence in cellular resistance to heat shock in cattle: differences between breeds developed in temperate versus hot climates in responses of preimplantation embryos, reproductive tract tissues and lymphocytes to increased culture temperatures. Reproduction. 2003;125(2):285–94.PubMedCrossRef
71.
Zurück zum Zitat Ravagnan L, Roumier T, Kroemer G. Mitochondria, the killer organelles and their weapons. J Cell Physiol. 2002;192(2):131–7.PubMedCrossRef Ravagnan L, Roumier T, Kroemer G. Mitochondria, the killer organelles and their weapons. J Cell Physiol. 2002;192(2):131–7.PubMedCrossRef
72.
Zurück zum Zitat Van Gurp M, Festjens N, Van Loo G, Saelens X, Vandenabeele P. Mitochondrial intermembrane proteins in cell death. Biochem Biophys Res Commun. 2003;304(3):487–97.PubMedCrossRef Van Gurp M, Festjens N, Van Loo G, Saelens X, Vandenabeele P. Mitochondrial intermembrane proteins in cell death. Biochem Biophys Res Commun. 2003;304(3):487–97.PubMedCrossRef
73.
Zurück zum Zitat Papaioannou V, Ebert K. The preimplantation pig embryo: cell number and allocation to trophectoderm and inner cell mass of the blastocyst in vivo and in vitro. Development. 1988;102(4):793–803.PubMed Papaioannou V, Ebert K. The preimplantation pig embryo: cell number and allocation to trophectoderm and inner cell mass of the blastocyst in vivo and in vitro. Development. 1988;102(4):793–803.PubMed
74.
Zurück zum Zitat Brison DR, Schultz RM. Apoptosis during mouse blastocyst formation: evidence for a role for survival factors including transforming growth factor alpha. Biol Reprod. 1997;56(5):1088–96.PubMedCrossRef Brison DR, Schultz RM. Apoptosis during mouse blastocyst formation: evidence for a role for survival factors including transforming growth factor alpha. Biol Reprod. 1997;56(5):1088–96.PubMedCrossRef
75.
Zurück zum Zitat Gjørret JO, Knijn HM, Dieleman SJ, Avery B, Larsson L-I, Maddox-Hyttel P. Chronology of apoptosis in bovine embryos produced in vivo and in vitro. Biol Reprod. 2003;69(4):1193–200.PubMedCrossRef Gjørret JO, Knijn HM, Dieleman SJ, Avery B, Larsson L-I, Maddox-Hyttel P. Chronology of apoptosis in bovine embryos produced in vivo and in vitro. Biol Reprod. 2003;69(4):1193–200.PubMedCrossRef
76.
Zurück zum Zitat Niemann H, Wrenzycki C. Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent development. Theriogenology. 2000;53(1):21–34.PubMedCrossRef Niemann H, Wrenzycki C. Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent development. Theriogenology. 2000;53(1):21–34.PubMedCrossRef
77.
Zurück zum Zitat Byrne A, Southgate J, Brison D, Leese H. Analysis of apoptosis in the preimplantation bovine embryo using TUNEL. J Reprod Fertil. 1999;117(1):97–105.PubMedCrossRef Byrne A, Southgate J, Brison D, Leese H. Analysis of apoptosis in the preimplantation bovine embryo using TUNEL. J Reprod Fertil. 1999;117(1):97–105.PubMedCrossRef
78.
Zurück zum Zitat Devreker F, Hardy K, Van den Bergh M, Vannin A-S, Emiliani S, Englert Y. Amino acids promote human blastocyst development in vitro. Hum Reprod. 2001;16(4):749–56.PubMedCrossRef Devreker F, Hardy K, Van den Bergh M, Vannin A-S, Emiliani S, Englert Y. Amino acids promote human blastocyst development in vitro. Hum Reprod. 2001;16(4):749–56.PubMedCrossRef
79.
Zurück zum Zitat Kang KW, Novak RF, Lee CH, Kim SG. Induction of microsomal epoxide hydrolase by sulfur amino acid deprivation via the pathway of C-Jun N-terminal kinase and its extracellular exposure during cell death. Free Radic Biol Med. 2002;32(10):1017–32.PubMedCrossRef Kang KW, Novak RF, Lee CH, Kim SG. Induction of microsomal epoxide hydrolase by sulfur amino acid deprivation via the pathway of C-Jun N-terminal kinase and its extracellular exposure during cell death. Free Radic Biol Med. 2002;32(10):1017–32.PubMedCrossRef
80.
Zurück zum Zitat Lu S, Hoestje SM, Choo E, Epner DE. Induction of caspase-dependent and-independent apoptosis in response to methionine restriction. Int J Oncol. 2003;22(2):415–20.PubMed Lu S, Hoestje SM, Choo E, Epner DE. Induction of caspase-dependent and-independent apoptosis in response to methionine restriction. Int J Oncol. 2003;22(2):415–20.PubMed
81.
Zurück zum Zitat Brison DR, Schultz RM. Increased incidence of apoptosis in transforming growth factor α-deficient mouse blastocysts. Biol Reprod. 1998;59(1):136–44.PubMedCrossRef Brison DR, Schultz RM. Increased incidence of apoptosis in transforming growth factor α-deficient mouse blastocysts. Biol Reprod. 1998;59(1):136–44.PubMedCrossRef
82.
Zurück zum Zitat Hardy K, Spanos S. Growth factor expression and function in the human and mouse preimplantation embryo. J Endocrinol. 2002;172(2):221–36.PubMedCrossRef Hardy K, Spanos S. Growth factor expression and function in the human and mouse preimplantation embryo. J Endocrinol. 2002;172(2):221–36.PubMedCrossRef
83.
Zurück zum Zitat Herrler A, Krusche CA, Beier HM. Insulin and insulin-like growth factor-I promote rabbit blastocyst development and prevent apoptosis. Biol Reprod. 1998;59(6):1302–10.PubMedCrossRef Herrler A, Krusche CA, Beier HM. Insulin and insulin-like growth factor-I promote rabbit blastocyst development and prevent apoptosis. Biol Reprod. 1998;59(6):1302–10.PubMedCrossRef
84.
Zurück zum Zitat Spanos S, Becker DL, Winston RM, Hardy K. Anti-apoptotic action of insulin-like growth factor-I during human preimplantation embryo development. Biol Reprod. 2000;63(5):1413–20.PubMedCrossRef Spanos S, Becker DL, Winston RM, Hardy K. Anti-apoptotic action of insulin-like growth factor-I during human preimplantation embryo development. Biol Reprod. 2000;63(5):1413–20.PubMedCrossRef
85.
Zurück zum Zitat o'Neill C. Evidence for the requirement of autocrine growth factors for development of mouse preimplantation embryos in vitro. Biol Reprod. 1997;56(1):229–37.PubMedCrossRef o'Neill C. Evidence for the requirement of autocrine growth factors for development of mouse preimplantation embryos in vitro. Biol Reprod. 1997;56(1):229–37.PubMedCrossRef
86.
Zurück zum Zitat Stojanov T, O'Neill C. Ontogeny of expression of a receptor for platelet-activating factor in mouse preimplantation embryos and the effects of fertilization and culture in vitro on its expression. Biol Reprod. 1999;60(3):674–82.PubMedCrossRef Stojanov T, O'Neill C. Ontogeny of expression of a receptor for platelet-activating factor in mouse preimplantation embryos and the effects of fertilization and culture in vitro on its expression. Biol Reprod. 1999;60(3):674–82.PubMedCrossRef
87.
Zurück zum Zitat Casper RF, Jurisicova A. Protecting the female germ line from cancer therapy. Nat Med. 2000;6(10):1100–1.PubMedCrossRef Casper RF, Jurisicova A. Protecting the female germ line from cancer therapy. Nat Med. 2000;6(10):1100–1.PubMedCrossRef
88.
Zurück zum Zitat Morita Y, Perez GI, Paris F, Miranda SR, Ehleiter D, Haimovitz-Friedman A, et al. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med. 2000;6(10):1109–14.PubMedCrossRef Morita Y, Perez GI, Paris F, Miranda SR, Ehleiter D, Haimovitz-Friedman A, et al. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med. 2000;6(10):1109–14.PubMedCrossRef
89.
Zurück zum Zitat Spiegel S, Kolesnick R. Sphingosine 1-phosphate as a therapeutic agent. Leukemia. 2002;16(9):1596–602.PubMedCrossRef Spiegel S, Kolesnick R. Sphingosine 1-phosphate as a therapeutic agent. Leukemia. 2002;16(9):1596–602.PubMedCrossRef
90.
Zurück zum Zitat Van Blerkom J, Davis P, Alexander S. A microscopic and biochemical study of fragmentation phenotypes in stage-appropriate human embryos. Hum Reprod. 2001;16(4):719–29.PubMedCrossRef Van Blerkom J, Davis P, Alexander S. A microscopic and biochemical study of fragmentation phenotypes in stage-appropriate human embryos. Hum Reprod. 2001;16(4):719–29.PubMedCrossRef
91.
Zurück zum Zitat Martinez F, Rienzi L, Iacobelli M, Ubaldi F, Mendoza C, Greco E, et al. Caspase activity in preimplantation human embryos is not associated with apoptosis. Hum Reprod. 2002;17(6):1584–90.PubMedCrossRef Martinez F, Rienzi L, Iacobelli M, Ubaldi F, Mendoza C, Greco E, et al. Caspase activity in preimplantation human embryos is not associated with apoptosis. Hum Reprod. 2002;17(6):1584–90.PubMedCrossRef
93.
Zurück zum Zitat Hardy K, Spanos S, Becker D, Iannelli P, Winston R, Stark J. From cell death to embryo arrest: mathematical models of human preimplantation embryo development. Proc Natl Acad Sci. 2001;98(4):1655–60.PubMedPubMedCentralCrossRef Hardy K, Spanos S, Becker D, Iannelli P, Winston R, Stark J. From cell death to embryo arrest: mathematical models of human preimplantation embryo development. Proc Natl Acad Sci. 2001;98(4):1655–60.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Nasr-Esfahani MH, Aitken JR, Johnson MH. Hydrogen peroxide levels in mouse oocytes and early cleavage stage embryos developed in vitro or in vivo. Development. 1990;109(2):501–7.PubMed Nasr-Esfahani MH, Aitken JR, Johnson MH. Hydrogen peroxide levels in mouse oocytes and early cleavage stage embryos developed in vitro or in vivo. Development. 1990;109(2):501–7.PubMed
95.
Zurück zum Zitat Johnson MH, Nasresfahani MH. Radical solutions and cultural problems: could free oxygen radicals be responsible for the impaired development of preimplantation mammalian embryos in vitro? BioEssays. 1994;16(1):31–8.PubMedCrossRef Johnson MH, Nasresfahani MH. Radical solutions and cultural problems: could free oxygen radicals be responsible for the impaired development of preimplantation mammalian embryos in vitro? BioEssays. 1994;16(1):31–8.PubMedCrossRef
96.
Zurück zum Zitat Pampfer S. Peri-implantation embryopathy induced by maternal diabetes. Journal of reproduction and fertility. Supplement. 1999;55:129–39. Pampfer S. Peri-implantation embryopathy induced by maternal diabetes. Journal of reproduction and fertility. Supplement. 1999;55:129–39.
97.
Zurück zum Zitat Pampfer S, Cordi S, Vanderheyden I, Van Der Smissen P, Courtoy PJ, Van Cauwenberge A, et al. Expression and role of Bcl-2 in rat blastocysts exposed to high D-glucose. Diabetes. 2001;50(1):143–9.PubMedCrossRef Pampfer S, Cordi S, Vanderheyden I, Van Der Smissen P, Courtoy PJ, Van Cauwenberge A, et al. Expression and role of Bcl-2 in rat blastocysts exposed to high D-glucose. Diabetes. 2001;50(1):143–9.PubMedCrossRef
98.
Zurück zum Zitat Leunda-Casi A, Genicot G, Donnay I, Pampfer S, De Hertogh R. Increased cell death in mouse blastocysts exposed to high D-glucose in vitro: implications of an oxidative stress and alterations in glucose metabolism. Diabetologia. 2002;45(4):571–9.PubMedCrossRef Leunda-Casi A, Genicot G, Donnay I, Pampfer S, De Hertogh R. Increased cell death in mouse blastocysts exposed to high D-glucose in vitro: implications of an oxidative stress and alterations in glucose metabolism. Diabetologia. 2002;45(4):571–9.PubMedCrossRef
99.
Zurück zum Zitat Jiménez A, Madrid-Bury N, Fernandez R, Pérez-Garnelo S, Moreira P, Pintado B, et al. Hyperglycemia-induced apoptosis affects sex ratio of bovine and murine preimplantation embryos. Mol Reprod Dev. 2003;65(2):180–7.PubMedCrossRef Jiménez A, Madrid-Bury N, Fernandez R, Pérez-Garnelo S, Moreira P, Pintado B, et al. Hyperglycemia-induced apoptosis affects sex ratio of bovine and murine preimplantation embryos. Mol Reprod Dev. 2003;65(2):180–7.PubMedCrossRef
100.
Zurück zum Zitat Murdoch WJ, van Kirk EA. Estrogenic upregulation of DNA polymerase β in oocytes of preovulatory ovine follicles. Mol Reprod Dev. 2001;58(4):417–23.PubMedCrossRef Murdoch WJ, van Kirk EA. Estrogenic upregulation of DNA polymerase β in oocytes of preovulatory ovine follicles. Mol Reprod Dev. 2001;58(4):417–23.PubMedCrossRef
101.
Zurück zum Zitat Opsahl M, Thorsell L, Geltinger M, Iwaszko M, Blauer K, Sherins R. Donor oocyte cytoplasmic transfer did not enhance implantation of embryos of women with poor ovarian reserve. J Assist Reprod Genet. 2002;19(3):113–7.PubMedPubMedCentralCrossRef Opsahl M, Thorsell L, Geltinger M, Iwaszko M, Blauer K, Sherins R. Donor oocyte cytoplasmic transfer did not enhance implantation of embryos of women with poor ovarian reserve. J Assist Reprod Genet. 2002;19(3):113–7.PubMedPubMedCentralCrossRef
102.
103.
Zurück zum Zitat Xu Z, Abbott A, Kopf GS, Schultz RM, Ducibella T. Spontaneous activation of ovulated mouse eggs: time-dependent effects on M-phase exit, cortical granule exocytosis, maternal messenger ribonucleic acid recruitment, and inositol 1, 4, 5-trisphosphate sensitivity. Biol Reprod. 1997;57(4):743–50.PubMedCrossRef Xu Z, Abbott A, Kopf GS, Schultz RM, Ducibella T. Spontaneous activation of ovulated mouse eggs: time-dependent effects on M-phase exit, cortical granule exocytosis, maternal messenger ribonucleic acid recruitment, and inositol 1, 4, 5-trisphosphate sensitivity. Biol Reprod. 1997;57(4):743–50.PubMedCrossRef
104.
Zurück zum Zitat Webb M, Howlett SK, Maro B. Parthenogenesis and cytoskeletal organization in ageing mouse eggs. Development. 1986;95(1):131–45. Webb M, Howlett SK, Maro B. Parthenogenesis and cytoskeletal organization in ageing mouse eggs. Development. 1986;95(1):131–45.
105.
Zurück zum Zitat Zernicka-Goetz M, Kubiak JZ, Antony C, Maro B. Cytoskeletal organization of rat oocytes during metaphase II arrest and following abortive activation: a study by confocal laser scanning microscopy. Mol Reprod Dev. 1993;35(2):165–75.PubMedCrossRef Zernicka-Goetz M, Kubiak JZ, Antony C, Maro B. Cytoskeletal organization of rat oocytes during metaphase II arrest and following abortive activation: a study by confocal laser scanning microscopy. Mol Reprod Dev. 1993;35(2):165–75.PubMedCrossRef
106.
Zurück zum Zitat Pickering SJ, Johnson MH, Braude PR, Houliston E. Cytoskeletal organization in fresh, aged and spontaneously activated human oocytes. Hum Reprod. 1988;3(8):978–89.PubMedCrossRef Pickering SJ, Johnson MH, Braude PR, Houliston E. Cytoskeletal organization in fresh, aged and spontaneously activated human oocytes. Hum Reprod. 1988;3(8):978–89.PubMedCrossRef
107.
Zurück zum Zitat Goud AP, Goud PT, Van Oostveldt P, Diamond MP, Dhont M. Dynamic changes in microtubular cytoskeleton of human postmature oocytes revert after ooplasm transfer. Fertil Steril. 2004;81(2):323–31.PubMedCrossRef Goud AP, Goud PT, Van Oostveldt P, Diamond MP, Dhont M. Dynamic changes in microtubular cytoskeleton of human postmature oocytes revert after ooplasm transfer. Fertil Steril. 2004;81(2):323–31.PubMedCrossRef
108.
Zurück zum Zitat Johnson MD, Woodard A, Kim P, Frexes-Steed M. Evidence for mitogen-associated protein kinase activation and transduction of mitogenic signals by platelet-derived growth factor in human meningioma cells. J Neurosurg. 2001;94(2):293–300.PubMedCrossRef Johnson MD, Woodard A, Kim P, Frexes-Steed M. Evidence for mitogen-associated protein kinase activation and transduction of mitogenic signals by platelet-derived growth factor in human meningioma cells. J Neurosurg. 2001;94(2):293–300.PubMedCrossRef
109.
Zurück zum Zitat Masui Y. The role of “cytostatic factor (CSF)” in the control of oocyte cell cycles: a summary of 20 years of study. Develop Growth Differ. 1991;33(6):543–51.CrossRef Masui Y. The role of “cytostatic factor (CSF)” in the control of oocyte cell cycles: a summary of 20 years of study. Develop Growth Differ. 1991;33(6):543–51.CrossRef
110.
Zurück zum Zitat Igarashi H, Takahashi E, Hiroi M. Aging-related changes in calcium oscillations in fertilized mouse oocytes. Mol Reprod Dev. 1997;48(3):383–90.PubMedCrossRef Igarashi H, Takahashi E, Hiroi M. Aging-related changes in calcium oscillations in fertilized mouse oocytes. Mol Reprod Dev. 1997;48(3):383–90.PubMedCrossRef
111.
Zurück zum Zitat Yanagimachi R, Chang M. Fertilizable life of golden hamster ova and their morphological changes at the time of losing fertilizability. J Exp Zool. 1961;148(3):185–203.PubMedCrossRef Yanagimachi R, Chang M. Fertilizable life of golden hamster ova and their morphological changes at the time of losing fertilizability. J Exp Zool. 1961;148(3):185–203.PubMedCrossRef
112.
Zurück zum Zitat Tarín JJ, Pérez-Albalá S, Cano A. Consequences on offspring of abnormal function in ageing gametes. Hum Reprod Update. 2000;6(6):532–49.PubMedCrossRef Tarín JJ, Pérez-Albalá S, Cano A. Consequences on offspring of abnormal function in ageing gametes. Hum Reprod Update. 2000;6(6):532–49.PubMedCrossRef
113.
Zurück zum Zitat Balakier H, Cadesky K. The frequency and developmental capability of human embryos containing multinucleated blastomeres. Hum Reprod. 1997;12(4):800–4.PubMedCrossRef Balakier H, Cadesky K. The frequency and developmental capability of human embryos containing multinucleated blastomeres. Hum Reprod. 1997;12(4):800–4.PubMedCrossRef
114.
Zurück zum Zitat Van Royen E, Mangelschots K, Vercruyssen M, De Neubourg D, Valkenburg M, Ryckaert G, et al. Multinucleation in cleavage stage embryos. Hum Reprod. 2003;18(5):1062–9.PubMedCrossRef Van Royen E, Mangelschots K, Vercruyssen M, De Neubourg D, Valkenburg M, Ryckaert G, et al. Multinucleation in cleavage stage embryos. Hum Reprod. 2003;18(5):1062–9.PubMedCrossRef
115.
Zurück zum Zitat Kligman I, Benadiva C, Alikani M, Munne S. The presence of multinucleated blastomeres in human embryos is correlated withchromosomal abnormalities. Human Reproduction (Oxford). 1996;1(11):1492–8.CrossRef Kligman I, Benadiva C, Alikani M, Munne S. The presence of multinucleated blastomeres in human embryos is correlated withchromosomal abnormalities. Human Reproduction (Oxford). 1996;1(11):1492–8.CrossRef
116.
Zurück zum Zitat Liang C-G, Han Z, Cheng Y, Zhong Z, Latham KE. Effects of ooplasm transfer on paternal genome function in mice. Hum Reprod. 2009;24(11):2718–28.PubMedPubMedCentralCrossRef Liang C-G, Han Z, Cheng Y, Zhong Z, Latham KE. Effects of ooplasm transfer on paternal genome function in mice. Hum Reprod. 2009;24(11):2718–28.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Pickard B, Dean W, Engemann S, Bergmann K, Fuermann M, Jung M, et al. Epigenetic targeting in the mouse zygote marks DNA for later methylation: a mechanism for maternal effects in development. Mech Dev. 2001;103(1):35–47.PubMedCrossRef Pickard B, Dean W, Engemann S, Bergmann K, Fuermann M, Jung M, et al. Epigenetic targeting in the mouse zygote marks DNA for later methylation: a mechanism for maternal effects in development. Mech Dev. 2001;103(1):35–47.PubMedCrossRef
118.
Zurück zum Zitat Menezo Y, Khatchadourian C, Gharib A, Hamidi J, Greenland T, Sarda N. Regulation of S-adenosyl methionine synthesis in the mouse embryo. Life Sci. 1989;44(21):1601–9.PubMedCrossRef Menezo Y, Khatchadourian C, Gharib A, Hamidi J, Greenland T, Sarda N. Regulation of S-adenosyl methionine synthesis in the mouse embryo. Life Sci. 1989;44(21):1601–9.PubMedCrossRef
119.
Zurück zum Zitat Fuso A, Seminara L, Cavallaro RA, D'anselmi F, Scarpa S. S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Mol Cell Neurosci. 2005;28(1):195–204.PubMedCrossRef Fuso A, Seminara L, Cavallaro RA, D'anselmi F, Scarpa S. S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Mol Cell Neurosci. 2005;28(1):195–204.PubMedCrossRef
120.
Zurück zum Zitat Son MH, Kang KW, Lee CH, Kim SG. Potentiation of cadmium-induced cytotoxicity by sulfur amino acid deprivation through activation of extracellular signal-regulated kinase1/2 (ERK1/2) in conjunction with p38 kinase or c-jun N-terminal kinase (JNK): complete inhibition of the potentiated toxicity by U0126 an ERK1/2 and p38 kinase inhibitor. Biochem Pharmacol. 2001;62(10):1379–90.PubMedCrossRef Son MH, Kang KW, Lee CH, Kim SG. Potentiation of cadmium-induced cytotoxicity by sulfur amino acid deprivation through activation of extracellular signal-regulated kinase1/2 (ERK1/2) in conjunction with p38 kinase or c-jun N-terminal kinase (JNK): complete inhibition of the potentiated toxicity by U0126 an ERK1/2 and p38 kinase inhibitor. Biochem Pharmacol. 2001;62(10):1379–90.PubMedCrossRef
121.
Zurück zum Zitat Smith LC, Murphy BD. Review: genetic and epigenetic aspects of cloning and potential effects on offspring of cloned mammals. Cloning & Stem Cells. 2004;6(2):126–32.CrossRef Smith LC, Murphy BD. Review: genetic and epigenetic aspects of cloning and potential effects on offspring of cloned mammals. Cloning & Stem Cells. 2004;6(2):126–32.CrossRef
122.
Zurück zum Zitat Hawes SM, Sapienza C, Latham KE. Ooplasmic donation in humans the potential for epigenic modifications. Hum Reprod. 2002;17(4):850–2.PubMedCrossRef Hawes SM, Sapienza C, Latham KE. Ooplasmic donation in humans the potential for epigenic modifications. Hum Reprod. 2002;17(4):850–2.PubMedCrossRef
123.
Zurück zum Zitat Hawes SM, Chung YG, Latham KE. Genetic and epigenetic factors affecting blastomere fragmentation in two-cell stage mouse embryos. Biol Reprod. 2001;65(4):1050–6.PubMedCrossRef Hawes SM, Chung YG, Latham KE. Genetic and epigenetic factors affecting blastomere fragmentation in two-cell stage mouse embryos. Biol Reprod. 2001;65(4):1050–6.PubMedCrossRef
124.
Zurück zum Zitat Baldacci PA, Richoux V, Renard J-P, Guénet J-L, Babinet C. The locus Om, responsible for the DDK syndrome, maps close to Sigje on mouse chromosome 11. Mamm Genome. 1992;2(2):100–5.PubMedCrossRef Baldacci PA, Richoux V, Renard J-P, Guénet J-L, Babinet C. The locus Om, responsible for the DDK syndrome, maps close to Sigje on mouse chromosome 11. Mamm Genome. 1992;2(2):100–5.PubMedCrossRef
125.
Zurück zum Zitat Reik W, Romer I, Barton SC, Surani MA, Howlett SK, Klose J. Adult phenotype in the mouse can be affected by epigenetic events in the early embryo. Development. 1993;119(3):933–42.PubMed Reik W, Romer I, Barton SC, Surani MA, Howlett SK, Klose J. Adult phenotype in the mouse can be affected by epigenetic events in the early embryo. Development. 1993;119(3):933–42.PubMed
126.
Zurück zum Zitat Renard J, Baldacci P, Richoux-Duranthon V, Pournin S, Babinet C. A maternal factor affecting mouse blastocyst formation. Development. 1994;120(4):797–802.PubMed Renard J, Baldacci P, Richoux-Duranthon V, Pournin S, Babinet C. A maternal factor affecting mouse blastocyst formation. Development. 1994;120(4):797–802.PubMed
127.
Zurück zum Zitat Roemer I, Reik W, Dean W, Klose J. Epigenetic inheritance in the mouse. Curr Biol. 1997;7(4):277–80.PubMedCrossRef Roemer I, Reik W, Dean W, Klose J. Epigenetic inheritance in the mouse. Curr Biol. 1997;7(4):277–80.PubMedCrossRef
128.
Zurück zum Zitat de Villena FP-M, De La Casa-Esperon E, Williams JW, Malette J-M, Rosa M, Sapienza C. Heritability of the maternal meiotic drive system linked to Om and high-resolution mapping of the responder locus in mouse. Genetics. 2000;155(1):283–9. de Villena FP-M, De La Casa-Esperon E, Williams JW, Malette J-M, Rosa M, Sapienza C. Heritability of the maternal meiotic drive system linked to Om and high-resolution mapping of the responder locus in mouse. Genetics. 2000;155(1):283–9.
129.
Zurück zum Zitat Tosti E, Boni R. Electrical events during gamete maturation and fertilization in animals and humans. Hum Reprod Update. 2004;10(1):53–65.PubMedCrossRef Tosti E, Boni R. Electrical events during gamete maturation and fertilization in animals and humans. Hum Reprod Update. 2004;10(1):53–65.PubMedCrossRef
130.
Zurück zum Zitat Braude P, Bolton V, Moore S. Human gene expression first occurs between the four-and eight-cell stages of preimplantation development. Nature. 1988;332(6163):459–61.PubMedCrossRef Braude P, Bolton V, Moore S. Human gene expression first occurs between the four-and eight-cell stages of preimplantation development. Nature. 1988;332(6163):459–61.PubMedCrossRef
132.
Zurück zum Zitat Heindryckx B, Van der Elst J, De Sutter P, Dhont M. Treatment option for sperm-or oocyte-related fertilization failure: assisted oocyte activation following diagnostic heterologous ICSI. Hum Reprod. 2005;20(8):2237–41.PubMedCrossRef Heindryckx B, Van der Elst J, De Sutter P, Dhont M. Treatment option for sperm-or oocyte-related fertilization failure: assisted oocyte activation following diagnostic heterologous ICSI. Hum Reprod. 2005;20(8):2237–41.PubMedCrossRef
133.
Zurück zum Zitat Takahashi T, Saito H, Hiroi M, Takahashi E. Effects of aging on inositol 1, 4, 5-triphosphate-induced Ca2+ release in unfertilized mouse oocytes. Mol Reprod Dev. 2000;55(3):299–306.PubMedCrossRef Takahashi T, Saito H, Hiroi M, Takahashi E. Effects of aging on inositol 1, 4, 5-triphosphate-induced Ca2+ release in unfertilized mouse oocytes. Mol Reprod Dev. 2000;55(3):299–306.PubMedCrossRef
134.
Zurück zum Zitat Goud P, Goud A, Laverge H, De Sutter P, Dhont M. Effect of post-ovulatory age and calcium in the injection medium on the male pronucleus formation and metaphase entry following injection of human spermatozoa into golden hamster oocytes. Mol Hum Reprod. 1999;5(3):227–33.PubMedCrossRef Goud P, Goud A, Laverge H, De Sutter P, Dhont M. Effect of post-ovulatory age and calcium in the injection medium on the male pronucleus formation and metaphase entry following injection of human spermatozoa into golden hamster oocytes. Mol Hum Reprod. 1999;5(3):227–33.PubMedCrossRef
135.
Zurück zum Zitat Guyader-Joly C, Khatchadourian C, Ménézo Y. Glycine and methionine transport by bovine embryos. Zygote. 1997;5(03):273–6.PubMedCrossRef Guyader-Joly C, Khatchadourian C, Ménézo Y. Glycine and methionine transport by bovine embryos. Zygote. 1997;5(03):273–6.PubMedCrossRef
136.
Zurück zum Zitat Guyader-Joly C, Khatchadourian C, Ménézo Y. Comparative glucose and fructose incorporation and conversion by in vitro produced bovine embryos. Zygote. 1996;4(02):85–91.PubMedCrossRef Guyader-Joly C, Khatchadourian C, Ménézo Y. Comparative glucose and fructose incorporation and conversion by in vitro produced bovine embryos. Zygote. 1996;4(02):85–91.PubMedCrossRef
137.
Zurück zum Zitat Antczak M, Van Blerkom J. Oocyte influences on early development: the regulatory proteins leptin and STAT3 are polarized in mouse and human oocytes and differentially distributed within the cells of the preimplantation stage embryo. Mol Hum Reprod. 1997;3(12):1067–86.PubMedCrossRef Antczak M, Van Blerkom J. Oocyte influences on early development: the regulatory proteins leptin and STAT3 are polarized in mouse and human oocytes and differentially distributed within the cells of the preimplantation stage embryo. Mol Hum Reprod. 1997;3(12):1067–86.PubMedCrossRef
138.
Zurück zum Zitat Edwards RG, Beard HK. Oocyte polarity and cell determination in early mammalian embryos. Mol Hum Reprod. 1997;3(10):863–905.PubMedCrossRef Edwards RG, Beard HK. Oocyte polarity and cell determination in early mammalian embryos. Mol Hum Reprod. 1997;3(10):863–905.PubMedCrossRef
139.
Zurück zum Zitat Krüssel JS, Simón C, Rubio MC, Pape AR, Wen Y, Huang H-Y, et al. Expression of interleukin-1 system mRNA in single blastomeres from human preimplantation embryos. Hum Reprod. 1998;13(8):2206–11.PubMedCrossRef Krüssel JS, Simón C, Rubio MC, Pape AR, Wen Y, Huang H-Y, et al. Expression of interleukin-1 system mRNA in single blastomeres from human preimplantation embryos. Hum Reprod. 1998;13(8):2206–11.PubMedCrossRef
140.
Zurück zum Zitat Antczak M, Van Blerkom J. Temporal and spatial aspects of fragmentation in early human embryos: possible effects on developmental competence and association with the differential elimination of regulatory proteins from polarized domains. Hum Reprod. 1999;14(2):429–47.PubMedCrossRef Antczak M, Van Blerkom J. Temporal and spatial aspects of fragmentation in early human embryos: possible effects on developmental competence and association with the differential elimination of regulatory proteins from polarized domains. Hum Reprod. 1999;14(2):429–47.PubMedCrossRef
141.
Zurück zum Zitat González-Grajales LA, Favetta LA, King WA, Mastromonaco GF. Lack of effects of ooplasm transfer on early development of interspecies somatic cell nuclear transfer bison embryos. BMC Dev Biol. 2016;16(1):36.PubMedPubMedCentralCrossRef González-Grajales LA, Favetta LA, King WA, Mastromonaco GF. Lack of effects of ooplasm transfer on early development of interspecies somatic cell nuclear transfer bison embryos. BMC Dev Biol. 2016;16(1):36.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Latham KE. Mechanisms and control of embryonic genome activation in mammalian embryos. Int Rev Cytol. 1999;193:71–124.PubMedCrossRef Latham KE. Mechanisms and control of embryonic genome activation in mammalian embryos. Int Rev Cytol. 1999;193:71–124.PubMedCrossRef
143.
Zurück zum Zitat Piko L, Clegg KB. Quantitative changes in total RNA, total poly (a), and ribosomes in early mouse embryos. Dev Biol. 1982;89(2):362–78.PubMedCrossRef Piko L, Clegg KB. Quantitative changes in total RNA, total poly (a), and ribosomes in early mouse embryos. Dev Biol. 1982;89(2):362–78.PubMedCrossRef
144.
Zurück zum Zitat Dickson KS, Thompson SR, Gray NK, Wickens M. Poly (a) polymerase and the regulation of cytoplasmic polyadenylation. J Biol Chem. 2001;276(45):41810–6.PubMedCrossRef Dickson KS, Thompson SR, Gray NK, Wickens M. Poly (a) polymerase and the regulation of cytoplasmic polyadenylation. J Biol Chem. 2001;276(45):41810–6.PubMedCrossRef
145.
Zurück zum Zitat Hodgman R, Tay J, Mendez R, Richter JD. CPEB phosphorylation and cytoplasmic polyadenylation are catalyzed by the kinase IAK1/Eg2 in maturing mouse oocytes. Development. 2001;128(14):2815–22.PubMed Hodgman R, Tay J, Mendez R, Richter JD. CPEB phosphorylation and cytoplasmic polyadenylation are catalyzed by the kinase IAK1/Eg2 in maturing mouse oocytes. Development. 2001;128(14):2815–22.PubMed
146.
Zurück zum Zitat Brevini-Gandolfi TA, Favetta LA, Mauri L, Luciano AM, Cillo F, Gandolfi F. Changes in poly (a) tail length of maternal transcripts during in vitro maturation of bovine oocytes and their relation with developmental competence. Mol Reprod Dev. 1999;52(4):427–33.PubMedCrossRef Brevini-Gandolfi TA, Favetta LA, Mauri L, Luciano AM, Cillo F, Gandolfi F. Changes in poly (a) tail length of maternal transcripts during in vitro maturation of bovine oocytes and their relation with developmental competence. Mol Reprod Dev. 1999;52(4):427–33.PubMedCrossRef
147.
Zurück zum Zitat Brevini T, Lonergan P, Cillo F, Francisci C, Favetta L, Fair T, et al. Evolution of mRNA polyadenylation between oocyte maturation and first embryonic cleavage in cattle and its relation with developmental competence. Mol Reprod Dev. 2002;63(4):510–7.PubMedCrossRef Brevini T, Lonergan P, Cillo F, Francisci C, Favetta L, Fair T, et al. Evolution of mRNA polyadenylation between oocyte maturation and first embryonic cleavage in cattle and its relation with developmental competence. Mol Reprod Dev. 2002;63(4):510–7.PubMedCrossRef
148.
Zurück zum Zitat El Mouatassim S, Guerin P, Menezo Y. Expression of genes encoding antioxidant enzymes in human and mouse oocytes during the final stages of maturation. Mol Hum Reprod. 1999;5(8):720–5.PubMedCrossRef El Mouatassim S, Guerin P, Menezo Y. Expression of genes encoding antioxidant enzymes in human and mouse oocytes during the final stages of maturation. Mol Hum Reprod. 1999;5(8):720–5.PubMedCrossRef
Metadaten
Titel
Ooplasmic transfer in human oocytes: efficacy and concerns in assisted reproduction
verfasst von
Sara Darbandi
Mahsa Darbandi
Hamid Reza Khorram Khorshid
Mohammad Reza Sadeghi
Ashok Agarwal
Pallav Sengupta
Safaa Al-Hasani
Mohammad Mehdi Akhondi
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
Reproductive Biology and Endocrinology / Ausgabe 1/2017
Elektronische ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-017-0292-z

Weitere Artikel der Ausgabe 1/2017

Reproductive Biology and Endocrinology 1/2017 Zur Ausgabe

Erhöhte Mortalität bei postpartalem Brustkrebs

07.05.2024 Mammakarzinom Nachrichten

Auch für Trägerinnen von BRCA-Varianten gilt: Erkranken sie fünf bis zehn Jahre nach der letzten Schwangerschaft an Brustkrebs, ist das Sterberisiko besonders hoch.

Menopausale Hormontherapie für Frauen über 65?

07.05.2024 Klimakterium und Menopause Nachrichten

In den USA erhalten nicht wenige Frauen auch noch im Alter über 65 eine menopausale Hormontherapie. Welche positiven und negativen gesundheitlichen Konsequenzen daraus möglicherweise resultieren, wurde anhand von Versicherungsdaten analysiert.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Nodal-negativ nach neoadjuvanter Chemo: Axilladissektion verzichtbar?

03.05.2024 Mammakarzinom Nachrichten

Wenn bei Mammakarzinomen durch eine neoadjuvante Chemotherapie ein Downstaging von nodal-positiv zu nodal-negativ gelingt, scheint es auch ohne Axilladissektion nur selten zu axillären Rezidiven zu kommen.

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.