Skip to main content
Erschienen in: Molecular Brain 1/2023

Open Access 01.12.2023 | Micro report

Optogenetic activation of dopamine D1 receptors in island cells of medial entorhinal cortex inhibits temporal association learning

verfasst von: Jun Yokose, Naoki Yamamoto, Sachie K. Ogawa, Takashi Kitamura

Erschienen in: Molecular Brain | Ausgabe 1/2023

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

A critical feature of episodic memory formation is to associate temporally segregated events as an episode, called temporal association learning. The medial entorhinal cortical-hippocampal (EC-HPC) networks is essential for temporal association learning. We have previously demonstrated that pyramidal cells in the medial EC (MEC) layer III project to the hippocampal CA1 pyramidal cells and are necessary for trace fear conditioning (TFC), which is an associative learning between tone and aversive shock with the temporal gap. On the other hand, Island cells in MECII, project to GABAergic neurons in hippocampal CA1, suppress the MECIII input into the CA1 pyramidal cells through the feed-forward inhibition, and inhibit TFC. However, it remains unknown about how Island cells activity is regulated during TFC. In this study, we report that dopamine D1 receptor is preferentially expressed in Island cells in the MEC. Optogenetic activation of dopamine D1 receptors in Island cells facilitate the Island cell activity and inhibited hippocampal CA1 pyramidal cell activity during TFC. The optogenetic activation caused the impairment of TFC memory recall without affecting contextual fear memory recall. These results suggest that dopamine D1 receptor in Island cells have a crucial role for the regulation of temporal association learning.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13041-023-01065-3.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AAV
Adeno-associated virus
CalB
CalbindinD-28 K
D1R
Dopamine D1 receptor
EC
Entorhinal cortex
dCA1
Dorsal hippocampal CA1
GABA
Gamma-aminobutyric acid
HPC
Hippocampus
MEC
Medial entorhinal cortex
NeuN
Neuronal nuclear protein
Wfs1
Wolfram syndrome 1
ISH
In situ Hybridization
FITC
Fluorescein isothiocyanate
DIG
Digoxigenin
TFC
Trace fear conditioning
CFC
Contextual fear conditioning

Main

Remembering timing of distinct events and associating temporally discontinuous events are crucial process for the formation of episodic memories in daily life. We refer to this aspect of memory encoding as temporal association learning [1]. Pavlovian trace fear conditioning (TFC) have been established as one suitable animal models for temporal association learning [2]. The entorhinal cortical-hippocampal (EC-HPC) networks is currently considered to bridge and regulate the temporal discontinuity [3]. We have previously demonstrated that pyramidal cells in the medial EC (MEC) layer III project to the dorsal hippocampal CA1 (dCA1) pyramidal cells and are necessary for TFC [4]. On the other hand, pyramidal cells in MECII, which express both CalbindinD-28 K (CalB) and Wolfram syndrome 1 (Wfs1) (we refer to these as Island cells) [4, 5], project to GABAergic neurons in hippocampal dCA1, suppress the MECIII input into the dCA1 pyramidal cells through the feed-forward inhibition, and regulate TFC [4, 6, 7]. These results suggest a disinhibition model to control TFC, driving TFC by MECIII inputs into dCA1 and regulating TFC by Island cell inputs into dCA1. However, it remains unknown about how Island cell activity is regulated for successful association during TFC.
Dopaminergic projection in the brain play pivotal roles in various brain functions including temporal association learning, working memory, motivation, and motor control [8]. Dopaminergic projections into the prefrontal cortex, amygdala and basal ganglia have significant influence on working memory and fear conditioning [9]. In temporal association learning, the dopamine transporter hetero knockout mice showed the deficit in TFC [10]. While the dopaminergic innervation of the EC has been well characterized in rodents and monkeys [11, 12], the contributions of the dopamine receptors in MEC on TFC remain unexplored.
In this study, we first investigated the expression of dopamine D1 receptor in the MEC of 6–10 weeks old C57BL/6 J male and female mice (JAX: 000664). By using a specific in situ hybridization (ISH) probe for mRNA of dopamine D1 receptors (D1R) [13], we identified that D1R mRNA was localized in the layer II of MEC and made Island-like clusters similar to the distribution of Wfs1+ cells in MEC (Fig. 1A). Fluorescent double ISH revealed that Wfs1+ cells express D1R (Fig. 1B), while we could only detect a little D1R expression in Reelin+ cells (Fig. 1C, D) (the percentage of D1R + /Wfs1 + and D1R + /Reelin + cells were 89.5 ± 0.027%, total 617 cells from 4 slices and 3.95 ± 0.002%, total 1065 cells from 3 slices, respectively). ISH probes for Wfs1 and Reelin were labelled with fluorescein isothiocyanate (FITC). The ISH probe for D1R [13] was labelled with digoxigenin (DIG). The information of these ISH probes was listed as below (See Additional file 1). Each mRNA signal was detected from 30 μm parasagittal section with in situ hybridization followed by tyramide signal amplification. Next, we examined the immunohistochemistry for both D1R (1:1000; Frontier Institute, D1R-GP-Af500), Wfs1 (1:1000; Proteintech Group Inc, 11558-1-AP) Neuronal nuclear protein (NeuN) (1:2000; Millipore Sigma, ABN91) in MEC and found the immunoreactivity for D1R match with the signal of Wfs1+ cells (Fig. 1E, F). These data indicate that Island cells preferentially express D1R in MEC.
We next examined the roles of the D1R activation on TFC with OptoD1 replacing intracellular domains of rhodopsin with those of D1R for optogenetically activation of D1R–mediated Gs signaling [14]. We bilaterally injected AAV2/5-EF1α-DIO-OptoD1-eYFP (UNC Vector Core, AV6284C; 5.4 × 1012 gc/ml) [14] or AAV2/5-EF1α-DIO-eYFP (UNC Vector Core, AV4310L; 4.0 × 1012 gc/ml) as a control into the MEC (AP: − 4.85, ML: ± 3.45, DV: − 3.30) of 10–14 weeks-old Wfs1-Cre transgenic mice [4] and bilaterally implanted the optic fibers (200 μm core diameter, 0.39 NA, Thorlabs) into the MEC (AP: − 4.50, ML: ± 3.50, DV: − 2.00 at 10 degrees anterior-to-posterior) (Fig. 2A, B) as we previously demonstrated [4, 6, 7]. Four–six weeks after the surgery, on Day 1, we subjected them to TFC in which after a 240 s acclimation, a 20 s conditioned stimulus (CS; tone, 5 kHz 80 dB) is followed by a 2 s foot shock as the unconditioned stimulus (US; shock, 1.0 mA, 2 s) with 20 s temporal gap, 3 trials at 3 min intervals as we previously demonstrated (Fig. 2C) [4, 6, 7]. To optogenetically activate the D1R in Island cells of the MEC, we bilaterally delivered the blue light illumination (450 nm, 10 mW) only during the CS-US association periods (total 42 s; 20 s [tone] + 20 s [trace] + 2 s [shock]). On Day 2, we presented the tone three times (60 s, each at 3 min intervals) in different context as a testing session for the memory recall of TFC. On Day 3, we exposed them to the conditioned context for 5 min to examine the memory recall for contextual fear conditioning (CFC). In the testing session on Day 2 for memory recall of TFC, the OptoD1 group showed a significantly lower freezing response during the tone and post-tone period compared with the eYFP control group (Fig. 2D, E). However, there was no difference in the freezing responses between OptoD1 and eYFP groups during the exposure to the conditioned context (Fig. 2F). These suggest that the optogenetic activation of D1R in Island cells selectively regulate TFC.
To demonstrate the effects of the optogenetic activation of D1R in Island cells on the neural activity in the MEC and dorsal hippocampal CA1 (dCA1) during TFC, we perfused them 90 min after TFC and then examined the immunohistochemistry for c-Fos (1:500; Santa Cruz, SC-52, lot: K0515) and NeuN (1:2000; Millipore Sigma, ABN90P) (Fig. 2G, H). We found that c-Fos expression in Island cells of OptoD1 mice was significantly higher than the eYFP control mice (Fig. 2I, left), suggesting that OptoD1 stimulation caused the excitation of Island cells in MECII during TFC. On the other hand, we found that c-Fos expression in dCA1 cells of OptoD1 mice was significantly lower than the eYFP mice (Fig. 2I, right), suggesting that OptoD1 stimulation in Island cells caused the suppression of dCA1 cells during TFC, probably through the feedforward inhibition [4]. We did not observe the effect on c-Fos expression in MECIII neurons (Fig. 2I, middle), suggesting that MECIII cell activity may not depend on the Island cell activity in MEC.
In this study, we found that Island cells preferentially express D1R in the MEC. The optogenetic activation of D1R in Island cells during CS-US association periods during TFC inhibited TFC memory without affecting CFC memory. The optogenetic activation facilitated the c-Fos expression in Island cell while inhibited the dCA1 cells. A previous study shows that dopamine activates the neural activity in the EC, mediated through D1-like and not D2-like dopamine receptors [15]. These results suggest that the activation of D1R in MECII Island cells facilitate Island cell activity, which would inhibit the dCA1 pyramidal cell activity, and then regulate TFC. Further studies will be required to directly investigate the roles of dopaminergic inputs into the MEC to understand the neural circuit mechanism for temporal association learning.

Acknowledgements

We thank all members of the Kitamura laboratory for their support.

Declarations

All animal experiments were approved by the UT Southwestern Medical Center IACUC (Protocol# 2017-102301).
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Wallenstein GV, Eichenbaum H, Hasselmo ME. The hippocampus as an associator of discontiguous events. Trends Neurosci. 1998;21(8):317–23.CrossRefPubMed Wallenstein GV, Eichenbaum H, Hasselmo ME. The hippocampus as an associator of discontiguous events. Trends Neurosci. 1998;21(8):317–23.CrossRefPubMed
2.
3.
Zurück zum Zitat Osanai H, Nair IR, Kitamura T. Dissecting cell-type-specific pathways in medial entorhinal cortical-hippocampal network for episodic memory. J Neurochem. 2023;166(2):172–88.CrossRefPubMed Osanai H, Nair IR, Kitamura T. Dissecting cell-type-specific pathways in medial entorhinal cortical-hippocampal network for episodic memory. J Neurochem. 2023;166(2):172–88.CrossRefPubMed
4.
Zurück zum Zitat Kitamura T, Pignatelli M, Suh J, Kohara K, Yoshiki A, Abe K, et al. Island cells control temporal association memory. Science. 2014;343(6173):896–901.CrossRefPubMedPubMedCentral Kitamura T, Pignatelli M, Suh J, Kohara K, Yoshiki A, Abe K, et al. Island cells control temporal association memory. Science. 2014;343(6173):896–901.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Kitamura T, Sun C, Martin J, Kitch LJ, Schnitzer MJ, Tonegawa S. Entorhinal cortical ocean cells encode specific contexts and drive context-specific fear memory. Neuron. 2015;87(6):1317–31.CrossRefPubMedPubMedCentral Kitamura T, Sun C, Martin J, Kitch LJ, Schnitzer MJ, Tonegawa S. Entorhinal cortical ocean cells encode specific contexts and drive context-specific fear memory. Neuron. 2015;87(6):1317–31.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Yokose J, Marks WD, Yamamoto N, Ogawa SK, Kitamura T. Entorhinal cortical Island cells regulate temporal association learning with long trace period. Learn Mem. 2021;28(9):319–28.CrossRefPubMedPubMedCentral Yokose J, Marks WD, Yamamoto N, Ogawa SK, Kitamura T. Entorhinal cortical Island cells regulate temporal association learning with long trace period. Learn Mem. 2021;28(9):319–28.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Pezze MA, Feldon J. Mesolimbic dopaminergic pathways in fear conditioning. Prog Neurobiol. 2004;74(5):301–20.CrossRefPubMed Pezze MA, Feldon J. Mesolimbic dopaminergic pathways in fear conditioning. Prog Neurobiol. 2004;74(5):301–20.CrossRefPubMed
10.
Zurück zum Zitat Deng S, Zhang L, Zhu T, Liu YM, Zhang H, Shen Y, et al. A behavioral defect of temporal association memory in mice that partly lack dopamine reuptake transporter. Sci Rep. 2015;5:17461.CrossRefPubMedPubMedCentral Deng S, Zhang L, Zhu T, Liu YM, Zhang H, Shen Y, et al. A behavioral defect of temporal association memory in mice that partly lack dopamine reuptake transporter. Sci Rep. 2015;5:17461.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Akil M, Lewis DA. The dopaminergic innervation of monkey entorhinal cortex. Cereb Cortex. 1993;3(6):533–50.CrossRefPubMed Akil M, Lewis DA. The dopaminergic innervation of monkey entorhinal cortex. Cereb Cortex. 1993;3(6):533–50.CrossRefPubMed
12.
Zurück zum Zitat Lee JY, Jun H, Soma S, Nakazono T, Shiraiwa K, Dasgupta A, et al. Dopamine facilitates associative memory encoding in the entorhinal cortex. Nature. 2021;598(7880):321–6.CrossRefPubMedPubMedCentral Lee JY, Jun H, Soma S, Nakazono T, Shiraiwa K, Dasgupta A, et al. Dopamine facilitates associative memory encoding in the entorhinal cortex. Nature. 2021;598(7880):321–6.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Sarinana J, Kitamura T, Kunzler P, Sultzman L, Tonegawa S. Differential roles of the dopamine 1-class receptors, D1R and D5R, in hippocampal dependent memory. Proc Natl Acad Sci U S A. 2014;111(22):8245–50.CrossRefPubMedPubMedCentral Sarinana J, Kitamura T, Kunzler P, Sultzman L, Tonegawa S. Differential roles of the dopamine 1-class receptors, D1R and D5R, in hippocampal dependent memory. Proc Natl Acad Sci U S A. 2014;111(22):8245–50.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE, Adhikari A, et al. Natural neural projection dynamics underlying social behavior. Cell. 2014;157(7):1535–51.CrossRefPubMedPubMedCentral Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE, Adhikari A, et al. Natural neural projection dynamics underlying social behavior. Cell. 2014;157(7):1535–51.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Glovaci I, Caruana DA, Chapman CA. Dopaminergic enhancement of excitatory synaptic transmission in layer II entorhinal neurons is dependent on D(1)-like receptor-mediated signaling. Neuroscience. 2014;258:74–83.CrossRefPubMed Glovaci I, Caruana DA, Chapman CA. Dopaminergic enhancement of excitatory synaptic transmission in layer II entorhinal neurons is dependent on D(1)-like receptor-mediated signaling. Neuroscience. 2014;258:74–83.CrossRefPubMed
Metadaten
Titel
Optogenetic activation of dopamine D1 receptors in island cells of medial entorhinal cortex inhibits temporal association learning
verfasst von
Jun Yokose
Naoki Yamamoto
Sachie K. Ogawa
Takashi Kitamura
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
Molecular Brain / Ausgabe 1/2023
Elektronische ISSN: 1756-6606
DOI
https://doi.org/10.1186/s13041-023-01065-3

Weitere Artikel der Ausgabe 1/2023

Molecular Brain 1/2023 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.