Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1/2008

01.03.2008 | NON-THEMATIC REVIEW

Osteopontin: regulation in tumor metastasis

verfasst von: Philip Y. Wai, Paul C. Kuo

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1/2008

Einloggen, um Zugang zu erhalten

Abstract

Osteopontin is a secreted phosphoprotein that has been implicated as an important mediator of tumor metastasis and has been investigated for use as a biomarker for advanced disease and as a potential therapeutic target in the regulation of cancer metastasis. The OPN DNA sequence is highly conserved and the protein contains several important functional domains including αvβ integrin and CD44 binding sites. High levels of OPN expression correlate with tumor invasion, progression or metastasis in multiple cancer. Studies demonstrate that osteopontin mediates the molecular mechanisms which determine metastatic spread, such as prevention of apoptosis, extracellular matrix proteolysis and remodeling, cell migration, evasion of host-immune cells and neovascularization. Transcriptional regulation of OPN is complex and involves multiple pathways, including AP-1, Myc, v-Src, Runx/CBF, TGF-B/BMPs/Smad/Hox, and Wnt/ß–catenin/APC/GSK–3ß/Tcf-4. The current state of knowledge of OPN biology suggests that it is an attractive target for therapeutic modulation of metastatic disease.
Literatur
1.
Zurück zum Zitat Senger, D. R., Wirth, D. F., & Hynes, R. O. (1979). Transformed mammalian cells secrete specific proteins and phosphoproteins. Cell, 16(4), 885–893.PubMed Senger, D. R., Wirth, D. F., & Hynes, R. O. (1979). Transformed mammalian cells secrete specific proteins and phosphoproteins. Cell, 16(4), 885–893.PubMed
2.
Zurück zum Zitat Fisher, L. W., Hawkins, G. R., Tuross, N., & Termine, J. D, (1987). Purification and partial characterization of small proteoglycans I and II, bone sialoproteins I and II, and osteonectin from the mineral compartment of developing human bone. Journal of Biological Chemistry, 262(20), 9702–9708.PubMed Fisher, L. W., Hawkins, G. R., Tuross, N., & Termine, J. D, (1987). Purification and partial characterization of small proteoglycans I and II, bone sialoproteins I and II, and osteonectin from the mineral compartment of developing human bone. Journal of Biological Chemistry, 262(20), 9702–9708.PubMed
3.
Zurück zum Zitat Kiefer, M. C., Bauer, D. M., & Barr, P. J. (1989). The cDNA and derived amino acid sequence for human osteopontin. Nucleic Acids Research, 17(8), 3306.PubMed Kiefer, M. C., Bauer, D. M., & Barr, P. J. (1989). The cDNA and derived amino acid sequence for human osteopontin. Nucleic Acids Research, 17(8), 3306.PubMed
4.
Zurück zum Zitat Young, M. F., Kerr, J. M., Termine, J. D., Wewer, U. M., Wang, M. G., McBride, O. W., et al. (1990). cDNA cloning, mRNA distribution and heterogeneity, chromosomal location, and RFLP analysis of human osteopontin (OPN). Genomics, 7(4), 491–502.PubMed Young, M. F., Kerr, J. M., Termine, J. D., Wewer, U. M., Wang, M. G., McBride, O. W., et al. (1990). cDNA cloning, mRNA distribution and heterogeneity, chromosomal location, and RFLP analysis of human osteopontin (OPN). Genomics, 7(4), 491–502.PubMed
5.
Zurück zum Zitat Wrana, J. L., Zhang, Q., & Sodek, J. (1989). Full length cDNA sequence of porcine secreted phosphoprotein-I (SPP-I, osteopontin). Nucleic Acids Research, 17(23), 10119–10123.PubMed Wrana, J. L., Zhang, Q., & Sodek, J. (1989). Full length cDNA sequence of porcine secreted phosphoprotein-I (SPP-I, osteopontin). Nucleic Acids Research, 17(23), 10119–10123.PubMed
6.
Zurück zum Zitat Smith, J. H., & Denhardt, D. T. (1987). Molecular cloning of a tumor promoter-inducible mRNA found in JB6 mouse epidermal cells: induction is stable at high, but not at low, cell densities. Journal of Cellular Biochemistry, 34(1), 13–22.PubMed Smith, J. H., & Denhardt, D. T. (1987). Molecular cloning of a tumor promoter-inducible mRNA found in JB6 mouse epidermal cells: induction is stable at high, but not at low, cell densities. Journal of Cellular Biochemistry, 34(1), 13–22.PubMed
7.
Zurück zum Zitat Craig, A. M., Nemir, M., Mukherjee, B. B., Chambers, A. F., & Denhardt, D. T. (1988). Identification of the major phosphoprotein secreted by many rodent cell lines as 2ar/osteopontin: enhanced expression in H-ras-transformed 3T3 cells. Biochemical and Biophysical Research Communications, 157(1), 166–173.PubMed Craig, A. M., Nemir, M., Mukherjee, B. B., Chambers, A. F., & Denhardt, D. T. (1988). Identification of the major phosphoprotein secreted by many rodent cell lines as 2ar/osteopontin: enhanced expression in H-ras-transformed 3T3 cells. Biochemical and Biophysical Research Communications, 157(1), 166–173.PubMed
8.
Zurück zum Zitat Shiraga, H., Min, W., VanDusen, W. J., Clayman, M. D., Miner, D., Terrell, C. H., et al. (1992). Inhibition of calcium oxalate crystal growth in vitro by uropontin: another member of the aspartic acid-rich protein superfamily. Proceedings of the National Academy of Sciences of the United States of America, 89(1), 426–430.PubMed Shiraga, H., Min, W., VanDusen, W. J., Clayman, M. D., Miner, D., Terrell, C. H., et al. (1992). Inhibition of calcium oxalate crystal growth in vitro by uropontin: another member of the aspartic acid-rich protein superfamily. Proceedings of the National Academy of Sciences of the United States of America, 89(1), 426–430.PubMed
9.
Zurück zum Zitat Patarca, R., Freeman, G. J., Singh, R. P., Wei, F. Y., Durfee, T., Blattner, F., et al. (1989). Structural and functional studies of the early T lymphocyte activation 1 (Eta-1) gene. Definition of a novel T cell-dependent response associated with genetic resistance to bacterial infection. Journal of Experimental Medicine, 170(1), 145–161.PubMed Patarca, R., Freeman, G. J., Singh, R. P., Wei, F. Y., Durfee, T., Blattner, F., et al. (1989). Structural and functional studies of the early T lymphocyte activation 1 (Eta-1) gene. Definition of a novel T cell-dependent response associated with genetic resistance to bacterial infection. Journal of Experimental Medicine, 170(1), 145–161.PubMed
10.
Zurück zum Zitat Craig, A. M., & Denhardt, D. T. (1991). The murine gene encoding secreted phosphoprotein 1 (osteopontin): Promoter structure, activity, and induction in vivo by estrogen and progesterone. Gene, 100, 163–171.PubMed Craig, A. M., & Denhardt, D. T. (1991). The murine gene encoding secreted phosphoprotein 1 (osteopontin): Promoter structure, activity, and induction in vivo by estrogen and progesterone. Gene, 100, 163–171.PubMed
11.
Zurück zum Zitat Denhardt, D. T., & Guo, X. (1993). Osteopontin: A protein with diverse functions. FASEB Journal, 7(15), 1475–1482.PubMed Denhardt, D. T., & Guo, X. (1993). Osteopontin: A protein with diverse functions. FASEB Journal, 7(15), 1475–1482.PubMed
12.
Zurück zum Zitat Senger, D. R., Perruzzi, C. A., Papadopoulos-Sergiou, A., & Van de Water, L. (1994). Adhesive properties of osteopontin: Regulation by a naturally occurring thrombin-cleavage in close proximity to the GRGDS cell-binding domain. Molecular Biology of the Cell, 5(5), 565–574.PubMed Senger, D. R., Perruzzi, C. A., Papadopoulos-Sergiou, A., & Van de Water, L. (1994). Adhesive properties of osteopontin: Regulation by a naturally occurring thrombin-cleavage in close proximity to the GRGDS cell-binding domain. Molecular Biology of the Cell, 5(5), 565–574.PubMed
13.
Zurück zum Zitat Attur, M. G., Dave, M. N., Stuchin, S., Kowalski, A. J., Steiner, G., Abramson, S. B., et al. (2001). Osteopontin: an intrinsic inhibitor of inflammation in cartilage. Arthritis and Rheumatism, 44(3), 578–584.PubMed Attur, M. G., Dave, M. N., Stuchin, S., Kowalski, A. J., Steiner, G., Abramson, S. B., et al. (2001). Osteopontin: an intrinsic inhibitor of inflammation in cartilage. Arthritis and Rheumatism, 44(3), 578–584.PubMed
14.
Zurück zum Zitat Guo, H., Cai, C. Q., Schroeder, R. A., & Kuo, P. C. (2001). Osteopontin is a negative feedback regulator of nitric oxide synthesis in murine macrophages. Journal of Immunology, 166(2), 1079–1086. Guo, H., Cai, C. Q., Schroeder, R. A., & Kuo, P. C. (2001). Osteopontin is a negative feedback regulator of nitric oxide synthesis in murine macrophages. Journal of Immunology, 166(2), 1079–1086.
15.
Zurück zum Zitat Johnson, R. J., Gordon, K. L., Giachelli, C., Kurth, T., Skelton, M. M., & Cowley, A. W. (2000). Tubulointerstitial injury and loss of nitric oxide synthases parallel the development of hypertension in the Dahl-SS rat. Journal de L’hypertension, 18(10), 1497–1505. Johnson, R. J., Gordon, K. L., Giachelli, C., Kurth, T., Skelton, M. M., & Cowley, A. W. (2000). Tubulointerstitial injury and loss of nitric oxide synthases parallel the development of hypertension in the Dahl-SS rat. Journal de L’hypertension, 18(10), 1497–1505.
16.
Zurück zum Zitat Noble, B. S., & Reeve, J. (2000). Osteocyte function, osteocyte death and bone fracture resistance. Molecular and Cellular Endocrinology, 159(1–2), 7–13.PubMed Noble, B. S., & Reeve, J. (2000). Osteocyte function, osteocyte death and bone fracture resistance. Molecular and Cellular Endocrinology, 159(1–2), 7–13.PubMed
17.
Zurück zum Zitat Scott, J. A., Weir, M. L., Wilson, S. M., Xuan, J. W., Chambers, A. F., & McCormack, D. G. (1998). Osteopontin inhibits inducible nitric oxide synthase activity in rat vascular tissue. American Journal of Physiology, 275(6), H2258–H2265.PubMed Scott, J. A., Weir, M. L., Wilson, S. M., Xuan, J. W., Chambers, A. F., & McCormack, D. G. (1998). Osteopontin inhibits inducible nitric oxide synthase activity in rat vascular tissue. American Journal of Physiology, 275(6), H2258–H2265.PubMed
18.
Zurück zum Zitat Thomas, S. E., Lombard, I. D., Giachelli, C., Bohle, A., & Johnson, R. J. (1998). Osteopontin expression, tubulointerstitial disease, and essential hypertension. American Journal of Hypertension, 11(8), 954–961.PubMed Thomas, S. E., Lombard, I. D., Giachelli, C., Bohle, A., & Johnson, R. J. (1998). Osteopontin expression, tubulointerstitial disease, and essential hypertension. American Journal of Hypertension, 11(8), 954–961.PubMed
19.
Zurück zum Zitat Rollo, E. E., Laskin, D. L., & Denhardt, D. T. (1996). Osteopontin inhibits nitric oxide production and cytotoxicity by activated RAW264.7 macrophages. Journal of Leukocyte Biology, 60(3), 397–404.PubMed Rollo, E. E., Laskin, D. L., & Denhardt, D. T. (1996). Osteopontin inhibits nitric oxide production and cytotoxicity by activated RAW264.7 macrophages. Journal of Leukocyte Biology, 60(3), 397–404.PubMed
20.
Zurück zum Zitat Singh, K., Balligand, J. L., Fischer, T. A., Smith, T. W., & Kelly, R. A. (1995). Glucocorticoids increase osteopontin expression in cardiac myocytes and microvascular endothelial cells. Role in regulation of inducible nitric oxide synthase. Journal of Biological Chemistry, 270(47), 28471–28478.PubMed Singh, K., Balligand, J. L., Fischer, T. A., Smith, T. W., & Kelly, R. A. (1995). Glucocorticoids increase osteopontin expression in cardiac myocytes and microvascular endothelial cells. Role in regulation of inducible nitric oxide synthase. Journal of Biological Chemistry, 270(47), 28471–28478.PubMed
21.
Zurück zum Zitat Feng, B., Rollo, E. E., & Denhardt, D. T. (1995). Osteopontin (OPN) may facilitate metastasis by protecting cells from macrophage NO-mediated cytotoxicity: Evidence from cell lines down-regulated for OPN expression by a targeted ribozyme. Clinical & Experimental Metastasis, 13(6), 453–462. Feng, B., Rollo, E. E., & Denhardt, D. T. (1995). Osteopontin (OPN) may facilitate metastasis by protecting cells from macrophage NO-mediated cytotoxicity: Evidence from cell lines down-regulated for OPN expression by a targeted ribozyme. Clinical & Experimental Metastasis, 13(6), 453–462.
22.
Zurück zum Zitat Denhardt, D. T., Lopez, C. A., Rollo, E. E., Hwang, S. M., An, X. R., & Walther, S. E. (1995). Osteopontin-induced modifications of cellular functions. Annals of the New York Academy of Sciences, 760, 127–142.PubMed Denhardt, D. T., Lopez, C. A., Rollo, E. E., Hwang, S. M., An, X. R., & Walther, S. E. (1995). Osteopontin-induced modifications of cellular functions. Annals of the New York Academy of Sciences, 760, 127–142.PubMed
23.
Zurück zum Zitat Hwang, S. M., Wilson, P. D., Laskin, J. D., & Denhardt, D. T. (1994). Age and development-related changes in osteopontin and nitric oxide synthase mRNA levels in human kidney proximal tubule epithelial cells: Contrasting responses to hypoxia and reoxygenation. Journal of Cellular Physiology, 160(1), 61–68.PubMed Hwang, S. M., Wilson, P. D., Laskin, J. D., & Denhardt, D. T. (1994). Age and development-related changes in osteopontin and nitric oxide synthase mRNA levels in human kidney proximal tubule epithelial cells: Contrasting responses to hypoxia and reoxygenation. Journal of Cellular Physiology, 160(1), 61–68.PubMed
24.
Zurück zum Zitat Hwang, S. M., Lopez, C. A., Heck, D. E., Gardner, C. R., Laskin, D. L., Laskin, J. D., et al. (1994). Osteopontin inhibits induction of nitric oxide synthase gene expression by inflammatory mediators in mouse kidney epithelial cells. Journal of Biological Chemistry, 269(1), 711–715.PubMed Hwang, S. M., Lopez, C. A., Heck, D. E., Gardner, C. R., Laskin, D. L., Laskin, J. D., et al. (1994). Osteopontin inhibits induction of nitric oxide synthase gene expression by inflammatory mediators in mouse kidney epithelial cells. Journal of Biological Chemistry, 269(1), 711–715.PubMed
25.
Zurück zum Zitat Hijiya, N., Setoguchi, M., Matsuura, K., Higuchi, Y., Akizuki, S., & Yamamoto, S. (1994). Cloning and characterization of the human osteopontin gene and its promoter. Biochemical Journal, 303(1), 255–262.PubMed Hijiya, N., Setoguchi, M., Matsuura, K., Higuchi, Y., Akizuki, S., & Yamamoto, S. (1994). Cloning and characterization of the human osteopontin gene and its promoter. Biochemical Journal, 303(1), 255–262.PubMed
26.
Zurück zum Zitat Denhardt, D. T., & Noda, M. (1998). Osteopontin expression and function: role in bone remodeling. Journal of Cell Biology, 30–31, 92–102. Denhardt, D. T., & Noda, M. (1998). Osteopontin expression and function: role in bone remodeling. Journal of Cell Biology, 30–31, 92–102.
27.
Zurück zum Zitat O’Regan, A., & Berman, J. S. (2000). Osteopontin: a key cytokine in cell-mediated and granulomatous inflammation. International Journal of Experimental Pathology, 81(6), 373–390.PubMed O’Regan, A., & Berman, J. S. (2000). Osteopontin: a key cytokine in cell-mediated and granulomatous inflammation. International Journal of Experimental Pathology, 81(6), 373–390.PubMed
28.
Zurück zum Zitat Weber, G. F. (2001). The metastasis gene osteopontin: a candidate target for cancer therapy. Biochimica et Biophysica Acta, 1552(2), 61–85.PubMed Weber, G. F. (2001). The metastasis gene osteopontin: a candidate target for cancer therapy. Biochimica et Biophysica Acta, 1552(2), 61–85.PubMed
29.
Zurück zum Zitat Fedarko, N. S., Jain, A., Karadag, A., & Fisher, L. W. (2004). Three small integrin binding ligand N-linked glycoproteins (SIBLINGs) bind and activate specific matrix metalloproteinases. FASEB Journal, 18(6), 734–736.PubMed Fedarko, N. S., Jain, A., Karadag, A., & Fisher, L. W. (2004). Three small integrin binding ligand N-linked glycoproteins (SIBLINGs) bind and activate specific matrix metalloproteinases. FASEB Journal, 18(6), 734–736.PubMed
30.
Zurück zum Zitat Fisher, L. W., Jain, A., Tayback, M., & Fedarko, N. S. (2004). Small integrin binding ligand N-linked glycoprotein gene family expression in different cancers. Clinical Cancer Research, 10(24), 8501–8511.PubMed Fisher, L. W., Jain, A., Tayback, M., & Fedarko, N. S. (2004). Small integrin binding ligand N-linked glycoprotein gene family expression in different cancers. Clinical Cancer Research, 10(24), 8501–8511.PubMed
31.
Zurück zum Zitat Senger, D. R., Perruzzi, C. A., Gracey, C. F., Papadopoulos, A., & Tenen, D. G. (1988). Secreted phosphoproteins associated with neoplastic transformation: Close homology with plasma proteins cleaved during blood coagulation. Cancer Research, 48(20), 5770–5774.PubMed Senger, D. R., Perruzzi, C. A., Gracey, C. F., Papadopoulos, A., & Tenen, D. G. (1988). Secreted phosphoproteins associated with neoplastic transformation: Close homology with plasma proteins cleaved during blood coagulation. Cancer Research, 48(20), 5770–5774.PubMed
32.
Zurück zum Zitat Senger, D. R., Perruzzi, C. A., Papadopoulos, A., & Tenen, D. G. (1989). Purification of a human milk protein closely similar to tumor-secreted phosphoproteins and osteopontin. Biochimica et Biophysica Acta, 996(1–2), 43–48.PubMed Senger, D. R., Perruzzi, C. A., Papadopoulos, A., & Tenen, D. G. (1989). Purification of a human milk protein closely similar to tumor-secreted phosphoproteins and osteopontin. Biochimica et Biophysica Acta, 996(1–2), 43–48.PubMed
33.
Zurück zum Zitat Bautista, D. S., Densted, T. J., Chambers, A. F., & Harris, J. F. (1996). Low-molecular-weight variants of osteopontin generated by serine proteinases in urine of patients with kidney stones. Journal of Cellular Biochemistry, 61(3), 402–409.PubMed Bautista, D. S., Densted, T. J., Chambers, A. F., & Harris, J. F. (1996). Low-molecular-weight variants of osteopontin generated by serine proteinases in urine of patients with kidney stones. Journal of Cellular Biochemistry, 61(3), 402–409.PubMed
34.
Zurück zum Zitat Patarca, R., Saavedra, R. A., & Cantor, H. (1993). Molecular and cellular basis of genetic resistance to bacterial infection: the role of the early T-lymphocyte activation-1/osteopontin gene. Critical Reviews in Immunology, 13(3–4), 225–246.PubMed Patarca, R., Saavedra, R. A., & Cantor, H. (1993). Molecular and cellular basis of genetic resistance to bacterial infection: the role of the early T-lymphocyte activation-1/osteopontin gene. Critical Reviews in Immunology, 13(3–4), 225–246.PubMed
35.
Zurück zum Zitat Behrend, E. I., Chambers, A. F., Wilson, S. M., & Denhardt, D. T. (1993). Comparative analysis of two alternative first exons reported for the mouse osteopontin gene. Journal of Biological Chemistry, 268(15), 11172–11175.PubMed Behrend, E. I., Chambers, A. F., Wilson, S. M., & Denhardt, D. T. (1993). Comparative analysis of two alternative first exons reported for the mouse osteopontin gene. Journal of Biological Chemistry, 268(15), 11172–11175.PubMed
36.
Zurück zum Zitat Yamamoto, S., Hijiya, N., Setoguchi, M., Matsuura, K., Ishida, T., Higuchi, Y., et al. (1995). Structure of the osteopontin gene and its promoter. Annals of the New York Academy of Sciences, 760, 44–58.PubMed Yamamoto, S., Hijiya, N., Setoguchi, M., Matsuura, K., Ishida, T., Higuchi, Y., et al. (1995). Structure of the osteopontin gene and its promoter. Annals of the New York Academy of Sciences, 760, 44–58.PubMed
37.
Zurück zum Zitat Franzen, A., & Heinegard, D. (1985). Isolation and characterization of two sialoproteins present only in bone calcified matrix. Biochemical Journal, 232(3), 715–724.PubMed Franzen, A., & Heinegard, D. (1985). Isolation and characterization of two sialoproteins present only in bone calcified matrix. Biochemical Journal, 232(3), 715–724.PubMed
38.
Zurück zum Zitat Oldberg, A., Franzen, A., & Heinegard, D. (1986). Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg–Gly–Asp cell-binding sequence. Proceedings of the National Academy of Sciences of the United States of America, 83(23), 8819–8823.PubMed Oldberg, A., Franzen, A., & Heinegard, D. (1986). Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg–Gly–Asp cell-binding sequence. Proceedings of the National Academy of Sciences of the United States of America, 83(23), 8819–8823.PubMed
39.
Zurück zum Zitat Saitoh, Y., Kuratsu, J., Takeshima, H., Yamamoto, S., & Ushio, Y. (1995). Expression of osteopontin in human glioma. Its correlation with the malignancy. Laboratory Investigation, 72(1), 55–63.PubMed Saitoh, Y., Kuratsu, J., Takeshima, H., Yamamoto, S., & Ushio, Y. (1995). Expression of osteopontin in human glioma. Its correlation with the malignancy. Laboratory Investigation, 72(1), 55–63.PubMed
40.
Zurück zum Zitat Senger, D. R., Asch, B. B., Smith, B. D., Perruzzi, C. A., & Dvorak, H. F. (1983). A secreted phosphoprotein marker for neoplastic transformation of both epithelial and fibroblastic cells. Nature, 302(5910), 714–715.PubMed Senger, D. R., Asch, B. B., Smith, B. D., Perruzzi, C. A., & Dvorak, H. F. (1983). A secreted phosphoprotein marker for neoplastic transformation of both epithelial and fibroblastic cells. Nature, 302(5910), 714–715.PubMed
41.
Zurück zum Zitat Senger, D. R., & Perruzzi, C. A. (1996). Cell migration promoted by a potent GRGDS-containing thrombin-cleavage fragment of osteopontin. Biochimica et Biophysica Acta, 1314(1–2), 13–24.PubMed Senger, D. R., & Perruzzi, C. A. (1996). Cell migration promoted by a potent GRGDS-containing thrombin-cleavage fragment of osteopontin. Biochimica et Biophysica Acta, 1314(1–2), 13–24.PubMed
42.
Zurück zum Zitat Senger, D. R., & Perruzzi, C. A. (1985). Secreted phosphoprotein markers for neoplastic transformation of human epithelial and fibroblastic cells. Cancer Research, 45(11), 5818–5823.PubMed Senger, D. R., & Perruzzi, C. A. (1985). Secreted phosphoprotein markers for neoplastic transformation of human epithelial and fibroblastic cells. Cancer Research, 45(11), 5818–5823.PubMed
43.
Zurück zum Zitat Ashkar, S., Weber, G. F., Panoutsakopoulou, V., Sanchirico, M. E., Jansson, M., Zawaideh, S., et al. (2000). Eta-1 (osteopontin): An early component of type-1 (cell-mediated) immunity. Science, 287(5454), 860–864.PubMed Ashkar, S., Weber, G. F., Panoutsakopoulou, V., Sanchirico, M. E., Jansson, M., Zawaideh, S., et al. (2000). Eta-1 (osteopontin): An early component of type-1 (cell-mediated) immunity. Science, 287(5454), 860–864.PubMed
44.
Zurück zum Zitat Helluin, O., Chan, C., Vilaire, G., Mousa, S., DeGrado, W. F., & Bennett, J. S. (2000). The activation state of alphavbeta 3 regulates platelet and lymphocyte adhesion to intact and thrombin-cleaved osteopontin. Journal of Biological Chemistry, 275(24), 18337–18343.PubMed Helluin, O., Chan, C., Vilaire, G., Mousa, S., DeGrado, W. F., & Bennett, J. S. (2000). The activation state of alphavbeta 3 regulates platelet and lymphocyte adhesion to intact and thrombin-cleaved osteopontin. Journal of Biological Chemistry, 275(24), 18337–18343.PubMed
45.
Zurück zum Zitat Giancotti, F. G., & Ruoslahti, E. (1999). Integrin signaling. Science, 285(5430), 1028–1032.PubMed Giancotti, F. G., & Ruoslahti, E. (1999). Integrin signaling. Science, 285(5430), 1028–1032.PubMed
46.
Zurück zum Zitat Liaw, L., Almeida, M., Hart, C. E., Schwartz, S. M., & Giachelli, C. M. (1994). Osteopontin promotes vascular cell adhesion and spreading and is chemotactic for smooth muscle cells in vitro. Circulation Research, 74(2), 214–224.PubMed Liaw, L., Almeida, M., Hart, C. E., Schwartz, S. M., & Giachelli, C. M. (1994). Osteopontin promotes vascular cell adhesion and spreading and is chemotactic for smooth muscle cells in vitro. Circulation Research, 74(2), 214–224.PubMed
47.
Zurück zum Zitat Liaw, L., Lindner, V., Schwartz, S. M., Chambers, A. F., & Giachelli, C. M. (1995). Osteopontin and beta 3 integrin are coordinately expressed in regenerating endothelium in vivo and stimulate Arg–Gly–Asp-dependent endothelial migration in vitro. Circulation Research, 77(4), 665–672.PubMed Liaw, L., Lindner, V., Schwartz, S. M., Chambers, A. F., & Giachelli, C. M. (1995). Osteopontin and beta 3 integrin are coordinately expressed in regenerating endothelium in vivo and stimulate Arg–Gly–Asp-dependent endothelial migration in vitro. Circulation Research, 77(4), 665–672.PubMed
48.
Zurück zum Zitat Liaw, L., Skinner, M. P., Raines, E. W., Ross, R., Cheresh, D. A., Schwartz, S. M., et al. (1995). The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins. Role of alpha v beta 3 in smooth muscle cell migration to osteopontin in vitro. Journal of Clinical Investigation, 95(2), 713–724.PubMed Liaw, L., Skinner, M. P., Raines, E. W., Ross, R., Cheresh, D. A., Schwartz, S. M., et al. (1995). The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins. Role of alpha v beta 3 in smooth muscle cell migration to osteopontin in vitro. Journal of Clinical Investigation, 95(2), 713–724.PubMed
49.
Zurück zum Zitat Yue, T. L., McKenna, P. J., Ohlstein, E. H., Farach-Carson, M. C., Butler, W. T., Johanson, K., et al. (1994). Osteopontin-stimulated vascular smooth muscle cell migration is mediated by beta 3 integrin. Experimental Cell Research, 214(2), 459–464.PubMed Yue, T. L., McKenna, P. J., Ohlstein, E. H., Farach-Carson, M. C., Butler, W. T., Johanson, K., et al. (1994). Osteopontin-stimulated vascular smooth muscle cell migration is mediated by beta 3 integrin. Experimental Cell Research, 214(2), 459–464.PubMed
50.
Zurück zum Zitat Hu, D. D., Lin, E. C., Kovach, N. L., Hoyer, J. R., & Smith, J. W. (1995). A biochemical characterization of the binding of osteopontin to integrins alpha v beta 1 and alpha v beta 5. Journal of Biological Chemistry, 270(44), 26232–26238.PubMed Hu, D. D., Lin, E. C., Kovach, N. L., Hoyer, J. R., & Smith, J. W. (1995). A biochemical characterization of the binding of osteopontin to integrins alpha v beta 1 and alpha v beta 5. Journal of Biological Chemistry, 270(44), 26232–26238.PubMed
51.
Zurück zum Zitat Smith, L. L., Cheung, H. K., Ling, L. E., Chen, J., Sheppard, D., Pytela, R., et al. (1996). Osteopontin N-terminal domain contains a cryptic adhesive sequence recognized by alpha9beta1 integrin. Journal of Biological Chemistry, 271(45), 28485–28491.PubMed Smith, L. L., Cheung, H. K., Ling, L. E., Chen, J., Sheppard, D., Pytela, R., et al. (1996). Osteopontin N-terminal domain contains a cryptic adhesive sequence recognized by alpha9beta1 integrin. Journal of Biological Chemistry, 271(45), 28485–28491.PubMed
52.
Zurück zum Zitat Bayless, K. J., Meininger, G. A., Scholtz, J. M., & Davis, G. E. (1998). Osteopontin is a ligand for the alpha4beta1 integrin. Journal of Cell Science, 111(9), 1165–1174.PubMed Bayless, K. J., Meininger, G. A., Scholtz, J. M., & Davis, G. E. (1998). Osteopontin is a ligand for the alpha4beta1 integrin. Journal of Cell Science, 111(9), 1165–1174.PubMed
53.
Zurück zum Zitat Denda, S., Reichardt, L. F., & Muller, U. (1998). Identification of osteopontin as a novel ligand for the integrin alpha8 beta1 and potential roles for this integrin-ligand interaction in kidney morphogenesis. Molecular Biology of the Cell, 9(6), 1425–1435.PubMed Denda, S., Reichardt, L. F., & Muller, U. (1998). Identification of osteopontin as a novel ligand for the integrin alpha8 beta1 and potential roles for this integrin-ligand interaction in kidney morphogenesis. Molecular Biology of the Cell, 9(6), 1425–1435.PubMed
54.
Zurück zum Zitat Barry, S. T., Ludbrook, S. B., Murrison, E., & Horgan, C. M. (2000). A regulated interaction between alpha5beta1 integrin and osteopontin. Biochemical and Biophysical Research Communications, 267(3), 764–769.PubMed Barry, S. T., Ludbrook, S. B., Murrison, E., & Horgan, C. M. (2000). A regulated interaction between alpha5beta1 integrin and osteopontin. Biochemical and Biophysical Research Communications, 267(3), 764–769.PubMed
55.
Zurück zum Zitat Gerber, D. J., Pereira, P., Huang, S. Y., Pelletier, C., & Tonegawa, S. (1996). Expression of alpha v and beta 3 integrin chains on murine lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 93(25), 14698–14703.PubMed Gerber, D. J., Pereira, P., Huang, S. Y., Pelletier, C., & Tonegawa, S. (1996). Expression of alpha v and beta 3 integrin chains on murine lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 93(25), 14698–14703.PubMed
56.
Zurück zum Zitat Reinholt, F. P., Hultenby, K., Oldberg, A., & Heinegard, D. (1990). Osteopontin–a possible anchor of osteoclasts to bone. Proceedings of the National Academy of Sciences of the United States of America, 87(12), 4473–4475.PubMed Reinholt, F. P., Hultenby, K., Oldberg, A., & Heinegard, D. (1990). Osteopontin–a possible anchor of osteoclasts to bone. Proceedings of the National Academy of Sciences of the United States of America, 87(12), 4473–4475.PubMed
57.
Zurück zum Zitat Singh, R. P., Patarca, R., Schwartz, J., Singh, P., & Cantor, H. (1990). Definition of a specific interaction between the early T lymphocyte activation 1 (Eta-1) protein and murine macrophages in vitro and its effect upon macrophages in vivo. Journal of Experimental Medicine, 171(6), 1931–1942.PubMed Singh, R. P., Patarca, R., Schwartz, J., Singh, P., & Cantor, H. (1990). Definition of a specific interaction between the early T lymphocyte activation 1 (Eta-1) protein and murine macrophages in vitro and its effect upon macrophages in vivo. Journal of Experimental Medicine, 171(6), 1931–1942.PubMed
58.
Zurück zum Zitat Bennett, J. S., Chan, C., Vilaire, G., Mousa, S. A., & DeGrado, W. F. (1997). Agonist-activated alphavbeta3 on platelets and lymphocytes binds to the matrix protein osteopontin. Journal of Biological Chemistry, 272(13), 8137–8140.PubMed Bennett, J. S., Chan, C., Vilaire, G., Mousa, S. A., & DeGrado, W. F. (1997). Agonist-activated alphavbeta3 on platelets and lymphocytes binds to the matrix protein osteopontin. Journal of Biological Chemistry, 272(13), 8137–8140.PubMed
59.
Zurück zum Zitat Denhardt, D. T., Noda, M., O, , Regan, A. W., Pavlin, D., & Berman, J. S. (2001). Osteopontin as a means to cope with environmental insults: Regulation of inflammation, tissue remodeling, and cell survival. Journal of Clinical Investigation, 107(9), 1055–1061.PubMed Denhardt, D. T., Noda, M., O, , Regan, A. W., Pavlin, D., & Berman, J. S. (2001). Osteopontin as a means to cope with environmental insults: Regulation of inflammation, tissue remodeling, and cell survival. Journal of Clinical Investigation, 107(9), 1055–1061.PubMed
60.
Zurück zum Zitat Smith, L. L., & Giachelli, C. M. (1998). Structural requirements for alpha 9 beta 1-mediated adhesion and migration to thrombin-cleaved osteopontin. Experimental Cell Research, 242(1), 351–60.PubMed Smith, L. L., & Giachelli, C. M. (1998). Structural requirements for alpha 9 beta 1-mediated adhesion and migration to thrombin-cleaved osteopontin. Experimental Cell Research, 242(1), 351–60.PubMed
61.
Zurück zum Zitat Yasuyuki, Y., Matsuura, N., Sasaki, T., Murakami, I., Schneider, H., Higashiyama, S., et al. (1999). The integrin alpha(9)beta(1) binds to a novel recognition sequence (SVVYGLR) in the thrombin-cleaved amino-terminal fragment of osteopontin. Journal of Biological Chemistry, 274(51), 36328–36334. Yasuyuki, Y., Matsuura, N., Sasaki, T., Murakami, I., Schneider, H., Higashiyama, S., et al. (1999). The integrin alpha(9)beta(1) binds to a novel recognition sequence (SVVYGLR) in the thrombin-cleaved amino-terminal fragment of osteopontin. Journal of Biological Chemistry, 274(51), 36328–36334.
62.
Zurück zum Zitat Hamada, Y., Nokihara, K., Okazaki, M., Fujitani, W., Matsumoto, T., Matsuo, M., et al. (2003). Angiogenic activity of osteopontin-derived peptide SVVYGLR. Biochemical and Biophysical Research Communications, 310(1), 153–157.PubMed Hamada, Y., Nokihara, K., Okazaki, M., Fujitani, W., Matsumoto, T., Matsuo, M., et al. (2003). Angiogenic activity of osteopontin-derived peptide SVVYGLR. Biochemical and Biophysical Research Communications, 310(1), 153–157.PubMed
63.
Zurück zum Zitat Liapis, H., Flath, A., & Kitazawa, S. (1996). Integrin alpha V beta 3 expression by bone-residing breast cancer metastases. Diagnostic Molecular Pathology, 5(2), 127–135.PubMed Liapis, H., Flath, A., & Kitazawa, S. (1996). Integrin alpha V beta 3 expression by bone-residing breast cancer metastases. Diagnostic Molecular Pathology, 5(2), 127–135.PubMed
64.
Zurück zum Zitat Angelucci, A., Festuccia, C., D’Andrea, G., Teti, A., & Bologna, M. (2002). Osteopontin modulates prostate carcinoma invasive capacity through RGD-dependent upregulation of plasminogen activators. Biological Chemistry, 383(1), 229–234.PubMed Angelucci, A., Festuccia, C., D’Andrea, G., Teti, A., & Bologna, M. (2002). Osteopontin modulates prostate carcinoma invasive capacity through RGD-dependent upregulation of plasminogen activators. Biological Chemistry, 383(1), 229–234.PubMed
65.
Zurück zum Zitat Furger, K. A., Allan, A. L., Wilson, S. M., Hota, C., Vantyghem, S. A., Postenka, C. O., et al. (2003). Beta(3) integrin expression increases breast carcinoma cell responsiveness to the malignancy-enhancing effects of osteopontin. Molecular Cancer Research, 1(11), 810–819.PubMed Furger, K. A., Allan, A. L., Wilson, S. M., Hota, C., Vantyghem, S. A., Postenka, C. O., et al. (2003). Beta(3) integrin expression increases breast carcinoma cell responsiveness to the malignancy-enhancing effects of osteopontin. Molecular Cancer Research, 1(11), 810–819.PubMed
66.
Zurück zum Zitat Senger, D. R., Ledbetter, S. R., Claffey, K. P., Papadopoulos-Sergiou, A., Peruzzi, C. A., & Detmar, M. (1996). Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin. American Journal of Pathology, 149(1), 293–305.PubMed Senger, D. R., Ledbetter, S. R., Claffey, K. P., Papadopoulos-Sergiou, A., Peruzzi, C. A., & Detmar, M. (1996). Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin. American Journal of Pathology, 149(1), 293–305.PubMed
67.
Zurück zum Zitat Scatena, M., Almeida, M., Chaisson, M. L., Fausto, N., Nicosia, R. F., & Giachelli, C. M. (1998). NF-kappaB mediates alphavbeta3 integrin-induced endothelial cell survival. Journal of Cell Biology, 141(4), 1083–1093.PubMed Scatena, M., Almeida, M., Chaisson, M. L., Fausto, N., Nicosia, R. F., & Giachelli, C. M. (1998). NF-kappaB mediates alphavbeta3 integrin-induced endothelial cell survival. Journal of Cell Biology, 141(4), 1083–1093.PubMed
68.
Zurück zum Zitat Brooks, P. C., Montgomery, A. M., Rosenfeld, M., Reisfeld, R. A., Hu, T., Klier, G., et al. (1994). Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell, 79(7), 1157–1164.PubMed Brooks, P. C., Montgomery, A. M., Rosenfeld, M., Reisfeld, R. A., Hu, T., Klier, G., et al. (1994). Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell, 79(7), 1157–1164.PubMed
69.
Zurück zum Zitat Arap, W., Pasqualini, R., & Ruoslahti, E. (1998). Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science, 279(5349), 377–380.PubMed Arap, W., Pasqualini, R., & Ruoslahti, E. (1998). Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science, 279(5349), 377–380.PubMed
70.
Zurück zum Zitat Bayless, K. J., Salazar, R., & Davis, G. E. (2000). RGD-dependent vacuolation and lumen formation observed during endothelial cell morphogenesis in three-dimensional fibrin matrices involves the alpha(v)beta(3) and alpha(5)beta(1) integrins. American Journal of Pathology, 56(5), 1673–1683. Bayless, K. J., Salazar, R., & Davis, G. E. (2000). RGD-dependent vacuolation and lumen formation observed during endothelial cell morphogenesis in three-dimensional fibrin matrices involves the alpha(v)beta(3) and alpha(5)beta(1) integrins. American Journal of Pathology, 56(5), 1673–1683.
71.
Zurück zum Zitat Engleman, V. W., Nickols, G. A., Ross, F. P., Horton, M. A., Griggs, D. W., Settle, S. L., et al. (1997). A peptidomimetic antagonist of the alpha(v)beta3 integrin inhibits bone resorption in vitro and prevents osteoporosis in vivo. Journal of Clinical Investigation, 99(9), 2284–2292.PubMed Engleman, V. W., Nickols, G. A., Ross, F. P., Horton, M. A., Griggs, D. W., Settle, S. L., et al. (1997). A peptidomimetic antagonist of the alpha(v)beta3 integrin inhibits bone resorption in vitro and prevents osteoporosis in vivo. Journal of Clinical Investigation, 99(9), 2284–2292.PubMed
72.
Zurück zum Zitat Rabinowich, H., Lin, W. C., Amoscato, A., Herberman, R. B., & Whiteside, T. L. (1995). Expression of vitronectin receptor on human NK cells and its role in protein phosphorylation, cytokine production, and cell proliferation. Journal of Immunology, 154(3), 1124–1135. Rabinowich, H., Lin, W. C., Amoscato, A., Herberman, R. B., & Whiteside, T. L. (1995). Expression of vitronectin receptor on human NK cells and its role in protein phosphorylation, cytokine production, and cell proliferation. Journal of Immunology, 154(3), 1124–1135.
73.
Zurück zum Zitat Goodison, S., Urquidi, V., & Tarin, D. (1999). CD44 cell adhesion molecules. Molecular Pathology, 52(4), 189–196.PubMed Goodison, S., Urquidi, V., & Tarin, D. (1999). CD44 cell adhesion molecules. Molecular Pathology, 52(4), 189–196.PubMed
74.
Zurück zum Zitat Weber, G. F., Ashkar, S., Glimcher, M. J., & Cantor, H. (1996). Receptor–ligand interaction between CD44 and osteopontin (Eta-1). Science, 271(5248), 509–512.PubMed Weber, G. F., Ashkar, S., Glimcher, M. J., & Cantor, H. (1996). Receptor–ligand interaction between CD44 and osteopontin (Eta-1). Science, 271(5248), 509–512.PubMed
75.
Zurück zum Zitat Katagiri, Y. U., Sleeman, J., Fujii, H., Herrlich, P., Hotta, H., Tanaka, K., et al. (1999). CD44 variants but not CD44s cooperate with beta1-containing integrins to permit cells to bind to osteopontin independently of arginine–glycine–aspartic acid, thereby stimulating cell motility and chemotaxis. Cancer Research, 59(1), 219–226.PubMed Katagiri, Y. U., Sleeman, J., Fujii, H., Herrlich, P., Hotta, H., Tanaka, K., et al. (1999). CD44 variants but not CD44s cooperate with beta1-containing integrins to permit cells to bind to osteopontin independently of arginine–glycine–aspartic acid, thereby stimulating cell motility and chemotaxis. Cancer Research, 59(1), 219–226.PubMed
76.
Zurück zum Zitat Rudzki, Z., & Jothy, S. (1997). CD44 and the adhesion of neoplastic cells. Molecular Pathology, 50(2), 7–71. Rudzki, Z., & Jothy, S. (1997). CD44 and the adhesion of neoplastic cells. Molecular Pathology, 50(2), 7–71.
77.
Zurück zum Zitat Ponta, H., Sherman, L., & Herrlich, P. A. (2003). CD44: From adhesion molecules to signaling regulators. Nature Reviews, Molecular Cell Biology, 4(1), 33–45. Ponta, H., Sherman, L., & Herrlich, P. A. (2003). CD44: From adhesion molecules to signaling regulators. Nature Reviews, Molecular Cell Biology, 4(1), 33–45.
78.
Zurück zum Zitat Takahashi, K., Takahashi, F., Hirama, M., Tanabe, K. K., & Fukuchi, Y. (2003). Restoration of CD44S in non-small cell lung cancer cells enhanced their susceptibility to the macrophage cytotoxicity. Lung Cancer, 41(2), 145–153.PubMed Takahashi, K., Takahashi, F., Hirama, M., Tanabe, K. K., & Fukuchi, Y. (2003). Restoration of CD44S in non-small cell lung cancer cells enhanced their susceptibility to the macrophage cytotoxicity. Lung Cancer, 41(2), 145–153.PubMed
79.
Zurück zum Zitat Asosingh, K., Gunthert, U., Bakkus, M. H., De Raeve, H., Goes, E., Van Riet, I., et al. (2000). In vivo induction of insulin-like growth factor-I receptor and CD44v6 confers homing and adhesion to murine multiple myeloma cells. Cancer Research, 60(11), 3096–3104.PubMed Asosingh, K., Gunthert, U., Bakkus, M. H., De Raeve, H., Goes, E., Van Riet, I., et al. (2000). In vivo induction of insulin-like growth factor-I receptor and CD44v6 confers homing and adhesion to murine multiple myeloma cells. Cancer Research, 60(11), 3096–3104.PubMed
80.
Zurück zum Zitat Gunthert, U., Hofmann, M., Rudy, W., Reber, S., Zoller, M., Haussmann, I., et al. (1991). A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell, 65(1), 13–24.PubMed Gunthert, U., Hofmann, M., Rudy, W., Reber, S., Zoller, M., Haussmann, I., et al. (1991). A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell, 65(1), 13–24.PubMed
81.
Zurück zum Zitat Rudy, W., Hofmann, M., Schwartz-Albiez, R., Zoller, M., Heider, K. H., Ponta, H., et al. (1993). The two major CD44 proteins expressed on a metastatic rat tumor cell line are derived from different splice variants: Each one individually suffices to confer metastatic behavior. Cancer Research, 53(6), 1262–1268.PubMed Rudy, W., Hofmann, M., Schwartz-Albiez, R., Zoller, M., Heider, K. H., Ponta, H., et al. (1993). The two major CD44 proteins expressed on a metastatic rat tumor cell line are derived from different splice variants: Each one individually suffices to confer metastatic behavior. Cancer Research, 53(6), 1262–1268.PubMed
82.
Zurück zum Zitat Gao, C., Guo, H., Downey, L., Marroquin, C., Wei, J., & Kuo, P. C. (2003). Osteopontin-dependent CD44v6 expression and cell adhesion in HepG2 cells. Carcinogenesis, 24(12), 1871–1878.PubMed Gao, C., Guo, H., Downey, L., Marroquin, C., Wei, J., & Kuo, P. C. (2003). Osteopontin-dependent CD44v6 expression and cell adhesion in HepG2 cells. Carcinogenesis, 24(12), 1871–1878.PubMed
83.
Zurück zum Zitat Lin, Y. H., Huang, C. J., Chao, J. R., Chen, S. T., Lee, S. F., Yen, J. J., et al. (2000). Coupling of osteopontin and its cell surface receptor CD44 to the cell survival response elicited by interleukin-3 or granulocyte–macrophage colony-stimulating factor. Molecular and Cellular Biology, 20(8), 2734–2742.PubMed Lin, Y. H., Huang, C. J., Chao, J. R., Chen, S. T., Lee, S. F., Yen, J. J., et al. (2000). Coupling of osteopontin and its cell surface receptor CD44 to the cell survival response elicited by interleukin-3 or granulocyte–macrophage colony-stimulating factor. Molecular and Cellular Biology, 20(8), 2734–2742.PubMed
84.
Zurück zum Zitat Zohar, R., Cheifetz, S., McCulloch, C. A., & Sodek, J. (1998). Analysis of intracellular osteopontin as a marker of osteoblastic cell differentiation and mesenchymal cell migration. European Journal of Oral Sciences, 106(1), 401–407.PubMed Zohar, R., Cheifetz, S., McCulloch, C. A., & Sodek, J. (1998). Analysis of intracellular osteopontin as a marker of osteoblastic cell differentiation and mesenchymal cell migration. European Journal of Oral Sciences, 106(1), 401–407.PubMed
85.
Zurück zum Zitat Zohar, R., Suzuki, N., Suzuki, K., Arora, P., Glogauer, M., McCulloch, C. A., et al. (2000). Intracellular osteopontin is an integral component of the CD44–ERM complex involved in cell migration. Journal of Cellular Physiology, 184(1), 118–130.PubMed Zohar, R., Suzuki, N., Suzuki, K., Arora, P., Glogauer, M., McCulloch, C. A., et al. (2000). Intracellular osteopontin is an integral component of the CD44–ERM complex involved in cell migration. Journal of Cellular Physiology, 184(1), 118–130.PubMed
86.
Zurück zum Zitat Sodek, J., Ganss, B., & McKee, M. D. (2000). Osteopontin. Critical Reviews in Oral Biology and Medicine, 11(3), 279–303.PubMed Sodek, J., Ganss, B., & McKee, M. D. (2000). Osteopontin. Critical Reviews in Oral Biology and Medicine, 11(3), 279–303.PubMed
87.
Zurück zum Zitat Brown, L. F., Papadopoulos-Sergiou, A., Berse, B., Manseau, E. J., Tognazzi, K., Perruzzi, C. A., et al. (1994). Osteopontin expression and distribution in human carcinomas. American Journal of Pathology, 145(3), 610–623.PubMed Brown, L. F., Papadopoulos-Sergiou, A., Berse, B., Manseau, E. J., Tognazzi, K., Perruzzi, C. A., et al. (1994). Osteopontin expression and distribution in human carcinomas. American Journal of Pathology, 145(3), 610–623.PubMed
88.
Zurück zum Zitat Bellahcene, A., & Castronovo, V. (1995). Increased expression of osteonectin and osteopontin, two bone matrix proteins, in human breast cancer. American Journal of Pathology, 146(1), 95–100.PubMed Bellahcene, A., & Castronovo, V. (1995). Increased expression of osteonectin and osteopontin, two bone matrix proteins, in human breast cancer. American Journal of Pathology, 146(1), 95–100.PubMed
89.
Zurück zum Zitat Hirota, S., Ito, A., Nagoshi, J., Takeda, M., Kurata, A., Takatsuka, Y., et al. (1995). Expression of bone matrix protein messenger ribonucleic acids in human breast cancers. Possible involvement of osteopontin in development of calcifying foci. Laboratory Investigation, 72(1), 64–69.PubMed Hirota, S., Ito, A., Nagoshi, J., Takeda, M., Kurata, A., Takatsuka, Y., et al. (1995). Expression of bone matrix protein messenger ribonucleic acids in human breast cancers. Possible involvement of osteopontin in development of calcifying foci. Laboratory Investigation, 72(1), 64–69.PubMed
90.
Zurück zum Zitat Singhal, H., Bautista, D. S., Tonkin, K. S., O, , Malley, F. P., Tuck, A. B., Chambers, A. F., et al. (1997). Elevated plasma osteopontin in metastatic breast cancer associated with increased tumor burden and decreased survival. Clinical Cancer Research, 3(4), 605–611.PubMed Singhal, H., Bautista, D. S., Tonkin, K. S., O, , Malley, F. P., Tuck, A. B., Chambers, A. F., et al. (1997). Elevated plasma osteopontin in metastatic breast cancer associated with increased tumor burden and decreased survival. Clinical Cancer Research, 3(4), 605–611.PubMed
91.
Zurück zum Zitat Tuck, A. B., O, , Malley, F. P., Singhal, H., Harris, J. F., Tonkin, K. S., Kerkvliet, N., et al. (1998). Osteopontin expression in a group of lymph node negative breast cancer patients. International Journal of Cancer, 79(5), 502–508. Tuck, A. B., O, , Malley, F. P., Singhal, H., Harris, J. F., Tonkin, K. S., Kerkvliet, N., et al. (1998). Osteopontin expression in a group of lymph node negative breast cancer patients. International Journal of Cancer, 79(5), 502–508.
92.
Zurück zum Zitat Casson, A. G., Wilson, S. M., McCart, J. A., O’Malley, F. P., Ozcelik, H., Tsao, M. S., et al. (1997). Ras mutation and expression of the ras-regulated genes osteopontin and cathepsin L in human esophageal cancer. International Journal of Cancer, 72(5), 739–745. Casson, A. G., Wilson, S. M., McCart, J. A., O’Malley, F. P., Ozcelik, H., Tsao, M. S., et al. (1997). Ras mutation and expression of the ras-regulated genes osteopontin and cathepsin L in human esophageal cancer. International Journal of Cancer, 72(5), 739–745.
93.
Zurück zum Zitat Gotoh, M., Sakamoto, M., Kanetaka, K., Chuuma, M., & Hirohashi, S. (2002). Overexpression of osteopontin in hepatocellular carcinoma. Pathology International, 52(1), 19–24.PubMed Gotoh, M., Sakamoto, M., Kanetaka, K., Chuuma, M., & Hirohashi, S. (2002). Overexpression of osteopontin in hepatocellular carcinoma. Pathology International, 52(1), 19–24.PubMed
94.
Zurück zum Zitat Fedarko, N. S., Jain, A., Karadag, A., Van Eman, M. R., & Fisher, L. W. (2001). Elevated serum bone sialoprotein and osteopontin in colon, breast, prostate, and lung cancer. Clinical Cancer Research, 7(12), 4060–4066.PubMed Fedarko, N. S., Jain, A., Karadag, A., Van Eman, M. R., & Fisher, L. W. (2001). Elevated serum bone sialoprotein and osteopontin in colon, breast, prostate, and lung cancer. Clinical Cancer Research, 7(12), 4060–4066.PubMed
95.
Zurück zum Zitat Tuck, A. B., O, , Malley, F. P., Singhal, H., Tonkin, K. S., Harris, J. F., Bautista, D., et al. (1997). Osteopontin and p53 expression are associated with tumor progression in a case of synchronous, bilateral, invasive mammary carcinomas. Archives of Pathology and Laboratory Medicine, 121(6), 578–584.PubMed Tuck, A. B., O, , Malley, F. P., Singhal, H., Tonkin, K. S., Harris, J. F., Bautista, D., et al. (1997). Osteopontin and p53 expression are associated with tumor progression in a case of synchronous, bilateral, invasive mammary carcinomas. Archives of Pathology and Laboratory Medicine, 121(6), 578–584.PubMed
96.
Zurück zum Zitat Tuck, A. B., Arsenault, D. M., O, , Malley, F. P., Hota, C., Ling, M. C., Wilson, S. M., et al. (1999). Osteopontin induces increased invasiveness and plasminogen activator expression of human mammary epithelial cells. Oncogene, 18(29), 4237–4246.PubMed Tuck, A. B., Arsenault, D. M., O, , Malley, F. P., Hota, C., Ling, M. C., Wilson, S. M., et al. (1999). Osteopontin induces increased invasiveness and plasminogen activator expression of human mammary epithelial cells. Oncogene, 18(29), 4237–4246.PubMed
97.
Zurück zum Zitat Ue, T., Yokozaki, H., Kitadai, Y., Yamamoto, S., Yasui, W., Ishikawa, T., et al. (1998). Co-expression of osteopontin and CD44v9 in gastric cancer. International Journal of Cancer, 79(2), 127–132. Ue, T., Yokozaki, H., Kitadai, Y., Yamamoto, S., Yasui, W., Ishikawa, T., et al. (1998). Co-expression of osteopontin and CD44v9 in gastric cancer. International Journal of Cancer, 79(2), 127–132.
98.
Zurück zum Zitat Shijubo, N., Uede, T., Kon, S., Maeda, M., Segawa, T., Imada, A., et al. (1999). Vascular endothelial growth factor and osteopontin in stage I lung adenocarcinoma. American Journal of Respiratory and Critical Care Medicine, 160(4), 1269–1273.PubMed Shijubo, N., Uede, T., Kon, S., Maeda, M., Segawa, T., Imada, A., et al. (1999). Vascular endothelial growth factor and osteopontin in stage I lung adenocarcinoma. American Journal of Respiratory and Critical Care Medicine, 160(4), 1269–1273.PubMed
99.
Zurück zum Zitat Chambers, A. F., Wilson, S. M., Kerkvliet, N., O, , Malley, F. P., Harris, J. F., & Casson, A. G. (1996). Osteopontin expression in lung cancer. Lung Cancer, 15(3), 311–323.PubMed Chambers, A. F., Wilson, S. M., Kerkvliet, N., O, , Malley, F. P., Harris, J. F., & Casson, A. G. (1996). Osteopontin expression in lung cancer. Lung Cancer, 15(3), 311–323.PubMed
100.
Zurück zum Zitat Thalmann, G. N., Sikes, R. A., Devoll, R. E., Kiefer, J. A., Markwalder, R., Klima, I., et al. (1999). Osteopontin: Possible role in prostate cancer progression. Clinical Cancer Research, 5(8), 2271–2277.PubMed Thalmann, G. N., Sikes, R. A., Devoll, R. E., Kiefer, J. A., Markwalder, R., Klima, I., et al. (1999). Osteopontin: Possible role in prostate cancer progression. Clinical Cancer Research, 5(8), 2271–2277.PubMed
101.
Zurück zum Zitat Pan, H. W., Ou, Y. H., Peng, S. Y., Liu, S. H., Lai, P. L., Lee, P. H., et al. (2003). Overexpression of osteopontin is associated with intrahepatic metastasis, early recurrence, and poorer prognosis of surgically resected hepatocellular carcinoma. Cancer, 98(1), 119–127.PubMed Pan, H. W., Ou, Y. H., Peng, S. Y., Liu, S. H., Lai, P. L., Lee, P. H., et al. (2003). Overexpression of osteopontin is associated with intrahepatic metastasis, early recurrence, and poorer prognosis of surgically resected hepatocellular carcinoma. Cancer, 98(1), 119–127.PubMed
102.
Zurück zum Zitat Agrawal, D., Chen, T., Irby, R., Quackenbush, J., Chambers, A. F., Szabo, M., et al. (2002). Osteopontin identified as lead marker of colon cancer progression, using pooled sample expression profiling. Journal of the National Cancer Institute, 94(7), 513–521.PubMed Agrawal, D., Chen, T., Irby, R., Quackenbush, J., Chambers, A. F., Szabo, M., et al. (2002). Osteopontin identified as lead marker of colon cancer progression, using pooled sample expression profiling. Journal of the National Cancer Institute, 94(7), 513–521.PubMed
103.
Zurück zum Zitat Yeatman, T. J., & Chambers, A. F. (2003). Osteopontin and colon cancer progression. Clinical & Experimental Metastasis, 20(1), 85–90. Yeatman, T. J., & Chambers, A. F. (2003). Osteopontin and colon cancer progression. Clinical & Experimental Metastasis, 20(1), 85–90.
104.
Zurück zum Zitat Rudland, P. S., Platt-Higgins, A., El-Tanani, M., De Silva Rudland, S., Barraclough, R., Winstanley, J. H., et al. (2002). Prognostic significance of the metastasis-associated protein osteopontin in human breast cancer. Cancer Research, 62(12), 3417–3427.PubMed Rudland, P. S., Platt-Higgins, A., El-Tanani, M., De Silva Rudland, S., Barraclough, R., Winstanley, J. H., et al. (2002). Prognostic significance of the metastasis-associated protein osteopontin in human breast cancer. Cancer Research, 62(12), 3417–3427.PubMed
105.
Zurück zum Zitat Wu, C. Y., Wu, M. S., Chiang, E. P., Wu, C. C., Chen, Y. J., Chen, C. J., et al. (2007). Elevated plasma osteopontin associated with gastric cancer development, invasion and survival. Gut, 56(6), 782–789.PubMed Wu, C. Y., Wu, M. S., Chiang, E. P., Wu, C. C., Chen, Y. J., Chen, C. J., et al. (2007). Elevated plasma osteopontin associated with gastric cancer development, invasion and survival. Gut, 56(6), 782–789.PubMed
106.
Zurück zum Zitat Chang, Y. S., Kim, H. J., Chang, J., Ahn, C. M., Kim, S. K., & Kim, S. K. (2007). Elevated circulating level of osteopontin is associated with advanced disease state of non-small cell lung cancer. Lung Cancer, 57(3), 373–380.PubMed Chang, Y. S., Kim, H. J., Chang, J., Ahn, C. M., Kim, S. K., & Kim, S. K. (2007). Elevated circulating level of osteopontin is associated with advanced disease state of non-small cell lung cancer. Lung Cancer, 57(3), 373–380.PubMed
107.
Zurück zum Zitat Bramwell, V. H., Doig, G. S., Tuck, A. B., Wilson, S. M., Tonkin, K. S., et al. (2006). Serial plasma osteopontin levels have prognostic value in metastatic breast cancer. Clinical Cancer Research, 12(11), 3337–3343.PubMed Bramwell, V. H., Doig, G. S., Tuck, A. B., Wilson, S. M., Tonkin, K. S., et al. (2006). Serial plasma osteopontin levels have prognostic value in metastatic breast cancer. Clinical Cancer Research, 12(11), 3337–3343.PubMed
108.
Zurück zum Zitat Tuck, A. B., Elliott, B. E., Hota, C., Tremblay, E., & Chambers, A. F. (2000). Osteopontin-induced, integrin-dependent migration of human mammary epithelial cells involves activation of the hepatocyte growth factor receptor (Met). Journal of Cellular Biochemistry, 78(3), 465–475.PubMed Tuck, A. B., Elliott, B. E., Hota, C., Tremblay, E., & Chambers, A. F. (2000). Osteopontin-induced, integrin-dependent migration of human mammary epithelial cells involves activation of the hepatocyte growth factor receptor (Met). Journal of Cellular Biochemistry, 78(3), 465–475.PubMed
109.
Zurück zum Zitat Yoneda, T., Williams, P. J., & Niewolna, M. (1998). Promotion of angiogenesis and enhancement of breast cancer metastasis to bone. Bone, 23(5), 201–202. Yoneda, T., Williams, P. J., & Niewolna, M. (1998). Promotion of angiogenesis and enhancement of breast cancer metastasis to bone. Bone, 23(5), 201–202.
110.
Zurück zum Zitat Oates, A. J., Barraclough, R., & Rudland, P. S. (1996). The identification of osteopontin as a metastasis-related gene product in a rodent mammary tumour model. Oncogene, 13(1), 97–104.PubMed Oates, A. J., Barraclough, R., & Rudland, P. S. (1996). The identification of osteopontin as a metastasis-related gene product in a rodent mammary tumour model. Oncogene, 13(1), 97–104.PubMed
111.
Zurück zum Zitat Chen, H., Ke, Y., Oates, A. J., Barraclough, R., & Rudland, P. S. (1997). Isolation of and effector for metastasis-inducing DNAs from a human metastatic carcinoma cell line. Oncogene, 14(13), 1581–1588.PubMed Chen, H., Ke, Y., Oates, A. J., Barraclough, R., & Rudland, P. S. (1997). Isolation of and effector for metastasis-inducing DNAs from a human metastatic carcinoma cell line. Oncogene, 14(13), 1581–1588.PubMed
112.
Zurück zum Zitat Takahashi, F., Akutagawa, S., Fukumoto, H., Tsukiyama, S., Ohe, Y., Takahashi, K., et al. (2002). Osteopontin induces angiogenesis of murine neuroblastoma cells in mice. International Journal of Cancer, 98(5), 707–712. Takahashi, F., Akutagawa, S., Fukumoto, H., Tsukiyama, S., Ohe, Y., Takahashi, K., et al. (2002). Osteopontin induces angiogenesis of murine neuroblastoma cells in mice. International Journal of Cancer, 98(5), 707–712.
113.
Zurück zum Zitat Crawford, H. C., Matrisian, L. M., & Liaw, L. (1998). Distinct roles of osteopontin in host defense activity and tumor survival during squamous cell carcinoma progression in vivo. Cancer Research, 58(22), 5206–5215.PubMed Crawford, H. C., Matrisian, L. M., & Liaw, L. (1998). Distinct roles of osteopontin in host defense activity and tumor survival during squamous cell carcinoma progression in vivo. Cancer Research, 58(22), 5206–5215.PubMed
114.
Zurück zum Zitat Wu, Y., Denhardt, D. T., & Rittling, S. R. (2000). Osteopontin is required for full expression of the transformed phenotype by the ras oncogene. British Journal of Cancer, 83(2), 156–163.PubMed Wu, Y., Denhardt, D. T., & Rittling, S. R. (2000). Osteopontin is required for full expression of the transformed phenotype by the ras oncogene. British Journal of Cancer, 83(2), 156–163.PubMed
115.
Zurück zum Zitat Nemoto, H., Rittling, S. R., Yoshitake, H., Furuya, K., Amagasa, T., Tsuji, K., et al. (2001). Osteopontin deficiency reduces experimental tumor cell metastasis to bone and soft tissues. Journal of Bone and Mineral Research, 16(4), 652–659.PubMed Nemoto, H., Rittling, S. R., Yoshitake, H., Furuya, K., Amagasa, T., Tsuji, K., et al. (2001). Osteopontin deficiency reduces experimental tumor cell metastasis to bone and soft tissues. Journal of Bone and Mineral Research, 16(4), 652–659.PubMed
116.
Zurück zum Zitat Mukhopadhyay, R., & Price, J. E. (1999). Stable expression of Antisense osteopontin inhibits the growth of human breast cancer cells. Proceedings of the American Association for Cancer Research, 40(2), 448–449. Mukhopadhyay, R., & Price, J. E. (1999). Stable expression of Antisense osteopontin inhibits the growth of human breast cancer cells. Proceedings of the American Association for Cancer Research, 40(2), 448–449.
117.
Zurück zum Zitat Adwan, H., Bauerle, T. J., & Berger, M. R. (2003). Downregulation of osteopontin and bone sialoprotein II is related to reduced colony formation and metastasis formation of MDA-MB-231 human breast cancer cells. Cancer Gene Therapy, 11(2), 109–120. Adwan, H., Bauerle, T. J., & Berger, M. R. (2003). Downregulation of osteopontin and bone sialoprotein II is related to reduced colony formation and metastasis formation of MDA-MB-231 human breast cancer cells. Cancer Gene Therapy, 11(2), 109–120.
118.
Zurück zum Zitat Gardner, H. A., Berse, B., & Senger, D. R. (1994). Specific reduction in osteopontin synthesis by antisense RNA inhibits the tumorigenicity of transformed Rat1 fibroblasts. Oncogene, 9(8), 2321–2326.PubMed Gardner, H. A., Berse, B., & Senger, D. R. (1994). Specific reduction in osteopontin synthesis by antisense RNA inhibits the tumorigenicity of transformed Rat1 fibroblasts. Oncogene, 9(8), 2321–2326.PubMed
119.
Zurück zum Zitat Behrend, E. I., Craig, A. M., Wilson, S. M., Denhardt, D. T., & Chambers, A. F. (1994). Reduced malignancy of ras-transformed NIH 3T3 cells expressing antisense osteopontin RNA. Cancer Research, 54(3), 832–837.PubMed Behrend, E. I., Craig, A. M., Wilson, S. M., Denhardt, D. T., & Chambers, A. F. (1994). Reduced malignancy of ras-transformed NIH 3T3 cells expressing antisense osteopontin RNA. Cancer Research, 54(3), 832–837.PubMed
120.
Zurück zum Zitat Tanabe, K. K., Ellis, L. M., & Saya, H. (1993). Expression of CD44R1 adhesion molecule in colon carcinomas and metastases. Lancet, 341(8847), 725–726.PubMed Tanabe, K. K., Ellis, L. M., & Saya, H. (1993). Expression of CD44R1 adhesion molecule in colon carcinomas and metastases. Lancet, 341(8847), 725–726.PubMed
121.
Zurück zum Zitat Stamenkovic, I., Aruffo, A., Amiot, M., & Seed, B. (1991). The hematopoietic and epithelial forms of CD44 are distinct polypeptides with different adhesion potentials for hyaluronate-bearing cells. EMBO Journal, 10(2), 343–348.PubMed Stamenkovic, I., Aruffo, A., Amiot, M., & Seed, B. (1991). The hematopoietic and epithelial forms of CD44 are distinct polypeptides with different adhesion potentials for hyaluronate-bearing cells. EMBO Journal, 10(2), 343–348.PubMed
122.
Zurück zum Zitat Matsumura, Y., & Tarin, D. (1992). Significance of CD44 gene products for cancer diagnosis and disease evaluation. Lancet, 340(8827), 1053–1058.PubMed Matsumura, Y., & Tarin, D. (1992). Significance of CD44 gene products for cancer diagnosis and disease evaluation. Lancet, 340(8827), 1053–1058.PubMed
123.
Zurück zum Zitat Tanabe, K. K., Stamenkovic, I., Cutler, M., & Takahashi, K. (1995). Restoration of CD44H expression in colon carcinomas reduces tumorigenicity. Annals of Surgery, 222(4), 493–501.PubMedCrossRef Tanabe, K. K., Stamenkovic, I., Cutler, M., & Takahashi, K. (1995). Restoration of CD44H expression in colon carcinomas reduces tumorigenicity. Annals of Surgery, 222(4), 493–501.PubMedCrossRef
124.
Zurück zum Zitat Takahashi, K., Stamenkovic, I., Cutler, M., Saya, H., & Tanabe, K. K. (1995). CD44 hyaluronate binding influences growth kinetics and tumorigenicity of human colon carcinomas. Oncogene, 11(11), 2223–2232.PubMed Takahashi, K., Stamenkovic, I., Cutler, M., Saya, H., & Tanabe, K. K. (1995). CD44 hyaluronate binding influences growth kinetics and tumorigenicity of human colon carcinomas. Oncogene, 11(11), 2223–2232.PubMed
125.
Zurück zum Zitat Evan, G. I., & Vousden, K. H. (2001). Proliferation, cell cycle and apoptosis in cancer. Nature, 411(6835), 342–348.PubMed Evan, G. I., & Vousden, K. H. (2001). Proliferation, cell cycle and apoptosis in cancer. Nature, 411(6835), 342–348.PubMed
126.
Zurück zum Zitat Lin, Y. H., & Yang-Yen, H. F. (2001). The osteopontin-CD44 survival signal involves activation of the phosphatidylinositol 3-kinase/Akt signaling pathway. Journal of Biological Chemistry, 276(49), 46024–46030.PubMed Lin, Y. H., & Yang-Yen, H. F. (2001). The osteopontin-CD44 survival signal involves activation of the phosphatidylinositol 3-kinase/Akt signaling pathway. Journal of Biological Chemistry, 276(49), 46024–46030.PubMed
127.
Zurück zum Zitat Hruska, K. A., Rolnick, F., Huskey, M., Alvarez, U., & Cheresh, D. (1995). Engagement of the osteoclast integrin alpha v beta 3 by osteopontin stimulates phosphatidylinositol 3-hydroxyl kinase activity. Endocrinology, 136(7), 2984–2992.PubMed Hruska, K. A., Rolnick, F., Huskey, M., Alvarez, U., & Cheresh, D. (1995). Engagement of the osteoclast integrin alpha v beta 3 by osteopontin stimulates phosphatidylinositol 3-hydroxyl kinase activity. Endocrinology, 136(7), 2984–2992.PubMed
128.
Zurück zum Zitat Chellaiah, M., & Hruska, K. (1996). Osteopontin stimulates gelsolin-associated phosphoinositide levels and phosphatidylinositol triphosphate-hydroxyl kinase. Molecular Biology of the Cell, 7(5), 743–753.PubMed Chellaiah, M., & Hruska, K. (1996). Osteopontin stimulates gelsolin-associated phosphoinositide levels and phosphatidylinositol triphosphate-hydroxyl kinase. Molecular Biology of the Cell, 7(5), 743–753.PubMed
129.
Zurück zum Zitat Urquidi, V., Sloan, D., Kawai, K., Agarwal, D., Woodman, A. C., Tarin, D., et al. (2002). Contrasting expression of thrombospondin-1 and osteopontin correlates with absence or presence of metastatic phenotype in an isogenic model of spontaneous human breast cancer metastasis. Clinical Cancer Research, 8(1), 61–74.PubMed Urquidi, V., Sloan, D., Kawai, K., Agarwal, D., Woodman, A. C., Tarin, D., et al. (2002). Contrasting expression of thrombospondin-1 and osteopontin correlates with absence or presence of metastatic phenotype in an isogenic model of spontaneous human breast cancer metastasis. Clinical Cancer Research, 8(1), 61–74.PubMed
130.
Zurück zum Zitat Aznavoorian, S., Murphy, A. N., Stetler-Stevenson, W. G., & Liotta, L. A. (1993). Molecular aspects of tumor cell invasion and metastasis. Cancer, 71(4), 1368–1383.PubMed Aznavoorian, S., Murphy, A. N., Stetler-Stevenson, W. G., & Liotta, L. A. (1993). Molecular aspects of tumor cell invasion and metastasis. Cancer, 71(4), 1368–1383.PubMed
131.
Zurück zum Zitat Murphy, G., & Gavrilovic, J. (1999). Proteolysis and cell migration: creating a path? Current Opinion in Cell Biology, 11(5), 614–621.PubMed Murphy, G., & Gavrilovic, J. (1999). Proteolysis and cell migration: creating a path? Current Opinion in Cell Biology, 11(5), 614–621.PubMed
132.
Zurück zum Zitat Philip, S., Bulbule, A., & Kundu, G. C. (2001). Osteopontin stimulates tumor growth and activation of promatrix metalloproteinase-2 through nuclear factor-kappa B-mediated induction of membrane type 1 matrix metalloproteinase in murine melanoma cells. Journal of Biological Chemistry, 276(48), 44926–44935.PubMed Philip, S., Bulbule, A., & Kundu, G. C. (2001). Osteopontin stimulates tumor growth and activation of promatrix metalloproteinase-2 through nuclear factor-kappa B-mediated induction of membrane type 1 matrix metalloproteinase in murine melanoma cells. Journal of Biological Chemistry, 276(48), 44926–44935.PubMed
133.
Zurück zum Zitat Tuck, A. B., Hota, C., & Chambers, A. F. (2001). Osteopontin (OPN)-induced increase in human mammary epithelial cell invasiveness is urokinase (uPA)-dependent. Breast Cancer Research and Treatment, 70(3), 197–204.PubMed Tuck, A. B., Hota, C., & Chambers, A. F. (2001). Osteopontin (OPN)-induced increase in human mammary epithelial cell invasiveness is urokinase (uPA)-dependent. Breast Cancer Research and Treatment, 70(3), 197–204.PubMed
134.
Zurück zum Zitat Andreasen, P. A., Kjoller, L., Christensen, L., & Duffy, M. J. (1997). The urokinase-type plasminogen activator system in cancer metastasis: a review. International Journal of Cancer, 72(1), 1–22. Andreasen, P. A., Kjoller, L., Christensen, L., & Duffy, M. J. (1997). The urokinase-type plasminogen activator system in cancer metastasis: a review. International Journal of Cancer, 72(1), 1–22.
135.
Zurück zum Zitat Fisher, J. L., Field, C. L., Zhou, H., Harris, T. L., Henderson, M. A., & Choong, P. F. (2000). Urokinase plasminogen activator system gene expression is increased in human breast carcinoma and its bone metastases—A comparison of normal breast tissue, non-invasive and invasive carcinoma and osseous metastases. Breast Cancer Research and Treatment, 61(1), 1–12.PubMed Fisher, J. L., Field, C. L., Zhou, H., Harris, T. L., Henderson, M. A., & Choong, P. F. (2000). Urokinase plasminogen activator system gene expression is increased in human breast carcinoma and its bone metastases—A comparison of normal breast tissue, non-invasive and invasive carcinoma and osseous metastases. Breast Cancer Research and Treatment, 61(1), 1–12.PubMed
136.
Zurück zum Zitat Philip, S., & Kundu, G. C. (2003). Osteopontin induces nuclear factor kappa B-mediated promatrix metalloproteinase-2 activation through I kappa B alpha /IKK signaling pathways, and curcumin (diferulolylmethane) down-regulates these pathways. Journal of Biological Chemistry, 278(16), 14487–14497.PubMed Philip, S., & Kundu, G. C. (2003). Osteopontin induces nuclear factor kappa B-mediated promatrix metalloproteinase-2 activation through I kappa B alpha /IKK signaling pathways, and curcumin (diferulolylmethane) down-regulates these pathways. Journal of Biological Chemistry, 278(16), 14487–14497.PubMed
137.
Zurück zum Zitat Das, R., Mahabeleshwar, G. H., & Kundu, G. C. (2003). Osteopontin stimulates cell motility and nuclear factor kappaB-mediated secretion of urokinase type plasminogen activator through phosphatidylinositol 3-kinase/Akt signaling pathways in breast cancer cells. Journal of Biological Chemistry, 278(31), 28593–28606.PubMed Das, R., Mahabeleshwar, G. H., & Kundu, G. C. (2003). Osteopontin stimulates cell motility and nuclear factor kappaB-mediated secretion of urokinase type plasminogen activator through phosphatidylinositol 3-kinase/Akt signaling pathways in breast cancer cells. Journal of Biological Chemistry, 278(31), 28593–28606.PubMed
138.
Zurück zum Zitat Jain, S., Chakraborty, G., & Kundu, G. C. (2006). The crucial role of cyclooxygenase-2 in osteopontin-induced protein kinase C alpha/c-Src/IkappaB kinase alpha/beta-dependent prostate tumor progression and angiogenesis. Cancer Research, 66(13), 6638–6648.PubMed Jain, S., Chakraborty, G., & Kundu, G. C. (2006). The crucial role of cyclooxygenase-2 in osteopontin-induced protein kinase C alpha/c-Src/IkappaB kinase alpha/beta-dependent prostate tumor progression and angiogenesis. Cancer Research, 66(13), 6638–6648.PubMed
139.
Zurück zum Zitat Rangswami, H., Bulbule, A., & Kundu, G. C. (2004). Nuclear factor-inducing kinase plays a crucial role in osteopontin-induced MAPK/IkappaBalpha kinase-dependent nuclear factor kappaB-mediated promatrix metalloproteinase-9 activation. Journal of Biological Chemistry, 279(37), 38921–38935. Rangswami, H., Bulbule, A., & Kundu, G. C. (2004). Nuclear factor-inducing kinase plays a crucial role in osteopontin-induced MAPK/IkappaBalpha kinase-dependent nuclear factor kappaB-mediated promatrix metalloproteinase-9 activation. Journal of Biological Chemistry, 279(37), 38921–38935.
140.
Zurück zum Zitat Mi, Z., Guo, H., Wai, P. Y., Gao, C., & Kuo, P. C. (2006). Integrin-linked kinase regulates osteopontin-dependent MMP-2 and uPA expression to convey metastatic function in murine mammary epithelial cancer cells. Carcinogenesis, 27(6), 1134–1145.PubMed Mi, Z., Guo, H., Wai, P. Y., Gao, C., & Kuo, P. C. (2006). Integrin-linked kinase regulates osteopontin-dependent MMP-2 and uPA expression to convey metastatic function in murine mammary epithelial cancer cells. Carcinogenesis, 27(6), 1134–1145.PubMed
141.
Zurück zum Zitat Mi, Z., Oliver, T., Guo, H., Gao, C., & Kuo, P. C. (2007). Thrombin-cleaved COOH(–) terminal osteopontin peptide binds with cyclophilin C to CD147 in murine breast cancer cells. Cancer Research, 67(9), 4088–4097.PubMed Mi, Z., Oliver, T., Guo, H., Gao, C., & Kuo, P. C. (2007). Thrombin-cleaved COOH(–) terminal osteopontin peptide binds with cyclophilin C to CD147 in murine breast cancer cells. Cancer Research, 67(9), 4088–4097.PubMed
142.
Zurück zum Zitat Friedl, P., & Wolf, K. (2003). Tumour-cell invasion and migration: Diversity and escape mechanisms. Nature Reviews. Cancer, 3(5), 362–374.PubMed Friedl, P., & Wolf, K. (2003). Tumour-cell invasion and migration: Diversity and escape mechanisms. Nature Reviews. Cancer, 3(5), 362–374.PubMed
143.
Zurück zum Zitat Tuck, A. B., Hota, C., Wilson, S. M., & Chambers, A. F. (2003). Osteopontin-induced migration of human mammary epithelial cells involves activation of EGF receptor and multiple signal transduction pathways. Oncogene, 22(8), 1198–1205.PubMed Tuck, A. B., Hota, C., Wilson, S. M., & Chambers, A. F. (2003). Osteopontin-induced migration of human mammary epithelial cells involves activation of EGF receptor and multiple signal transduction pathways. Oncogene, 22(8), 1198–1205.PubMed
144.
Zurück zum Zitat Hayashi, C., Rittling, S., Hayata, T., Amagasa, T., Denhardt, D., Ezura, Y., et al. (2007). Serum osteopontin, an enhancer of tumor metastasis to bone, promotes B16 melanoma cell migration. Journal of Cellular Biochemistry, 101(4), 979–986.PubMed Hayashi, C., Rittling, S., Hayata, T., Amagasa, T., Denhardt, D., Ezura, Y., et al. (2007). Serum osteopontin, an enhancer of tumor metastasis to bone, promotes B16 melanoma cell migration. Journal of Cellular Biochemistry, 101(4), 979–986.PubMed
145.
Zurück zum Zitat Denhardt, D. T., & Chambers, A. F. (1994). Overcoming obstacles to metastasis–defenses against host defenses: osteopontin (OPN) as a shield against attack by cytotoxic host cells. Journal of Cellular Biochemistry, 56(1), 48–51.PubMed Denhardt, D. T., & Chambers, A. F. (1994). Overcoming obstacles to metastasis–defenses against host defenses: osteopontin (OPN) as a shield against attack by cytotoxic host cells. Journal of Cellular Biochemistry, 56(1), 48–51.PubMed
146.
Zurück zum Zitat Gao, C., Guo, H., Wei, J., & Kuo, P. C. (2003). Osteopontin inhibits expression of cytochrome c oxidase in RAW 264.7 murine macrophages. Biochemical and Biophysical Research Communications, 309(1), 120–125.PubMed Gao, C., Guo, H., Wei, J., & Kuo, P. C. (2003). Osteopontin inhibits expression of cytochrome c oxidase in RAW 264.7 murine macrophages. Biochemical and Biophysical Research Communications, 309(1), 120–125.PubMed
147.
Zurück zum Zitat Guo, H., Cai, C. Q., Schroeder, R. A., & Kuo, P. C. (2001). Osteopontin is a negative feedback regulator of nitric oxide synthesis in murine macrophages. Journal of Immunology, 166(2), 1079–1086. Guo, H., Cai, C. Q., Schroeder, R. A., & Kuo, P. C. (2001). Osteopontin is a negative feedback regulator of nitric oxide synthesis in murine macrophages. Journal of Immunology, 166(2), 1079–1086.
148.
Zurück zum Zitat Gao, C., Guo, H., Mi, Z., Wai, P. Y., & Kuo, P. C. (2005). Transcriptional regulatory functions of heterogeneous nuclear ribonucleoprotein-U and -A/B in endotoxin-mediated macrophage expression of osteopontin. Journal of Immunology, 175(1), 523–530. Gao, C., Guo, H., Mi, Z., Wai, P. Y., & Kuo, P. C. (2005). Transcriptional regulatory functions of heterogeneous nuclear ribonucleoprotein-U and -A/B in endotoxin-mediated macrophage expression of osteopontin. Journal of Immunology, 175(1), 523–530.
149.
Zurück zum Zitat Wai, P. Y., Guo, L., Gao, C., Mi, Z., Guo, H., & Kuo, P. C. (2006). Osteopontin inhibits macrophage nitric oxide synthesis to enhance tumor proliferation. Surgery, 40(2), 132–140. Wai, P. Y., Guo, L., Gao, C., Mi, Z., Guo, H., & Kuo, P. C. (2006). Osteopontin inhibits macrophage nitric oxide synthesis to enhance tumor proliferation. Surgery, 40(2), 132–140.
150.
Zurück zum Zitat Scott, J. A., Weir, M. L., Wilson, S. M., Xuan, J. W., Chambers, A. F., & McCormack, D. G. (1998). Osteopontin inhibits inducible nitric oxide synthase activity in rat vascular tissue. American Journal of Physiology, 275(6), H2258–H2265.PubMed Scott, J. A., Weir, M. L., Wilson, S. M., Xuan, J. W., Chambers, A. F., & McCormack, D. G. (1998). Osteopontin inhibits inducible nitric oxide synthase activity in rat vascular tissue. American Journal of Physiology, 275(6), H2258–H2265.PubMed
151.
Zurück zum Zitat Nagasaki, T., Ishimura, E., Koyama, H., Shioi, A., Jono, S., Inaba, M., et al. (1999). Alphav integrin regulates TNF-alpha-induced nitric oxide synthesis in rat mesangial cells—Possible role of osteopontin. Nephrology Dialysis Transplantation, 14(8), 1861–1866. Nagasaki, T., Ishimura, E., Koyama, H., Shioi, A., Jono, S., Inaba, M., et al. (1999). Alphav integrin regulates TNF-alpha-induced nitric oxide synthesis in rat mesangial cells—Possible role of osteopontin. Nephrology Dialysis Transplantation, 14(8), 1861–1866.
152.
Zurück zum Zitat Folkman, J. (2002). Role of angiogenesis in tumor growth and metastasis. Seminars in Oncology, 29(6), 15–18.PubMed Folkman, J. (2002). Role of angiogenesis in tumor growth and metastasis. Seminars in Oncology, 29(6), 15–18.PubMed
153.
Zurück zum Zitat Hanrahan, V., Currie, M. J., Gunningham, S. P., Morrin, H. R., Scott, P. A., Robinson, B. A., et al. (2003). The angiogenic switch for vascular endothelial growth factor (VEGF)-A, VEGF-B, VEGF-C, and VEGF-D in the adenoma–carcinoma sequence during colorectal cancer progression. Journal of Pathology, 200(2), 183–194.PubMed Hanrahan, V., Currie, M. J., Gunningham, S. P., Morrin, H. R., Scott, P. A., Robinson, B. A., et al. (2003). The angiogenic switch for vascular endothelial growth factor (VEGF)-A, VEGF-B, VEGF-C, and VEGF-D in the adenoma–carcinoma sequence during colorectal cancer progression. Journal of Pathology, 200(2), 183–194.PubMed
154.
Zurück zum Zitat Nakamura, Y., Yasuoka, H., Tsujimoto, M., Yang, Q., Imabun, S., Nakahara, M., et al. (2003). Prognostic significance of vascular endothelial growth factor D in breast carcinoma with long-term follow-up. Clinical Cancer Research, 9(2), 716–721.PubMed Nakamura, Y., Yasuoka, H., Tsujimoto, M., Yang, Q., Imabun, S., Nakahara, M., et al. (2003). Prognostic significance of vascular endothelial growth factor D in breast carcinoma with long-term follow-up. Clinical Cancer Research, 9(2), 716–721.PubMed
155.
Zurück zum Zitat Hirama, M., Takahashi, F., Takahashi, K., Akutagawa, S., Shimizu, K., Soma, S., et al. (2003). Osteopontin overproduced by tumor cells acts as a potent angiogenic factor contributing to tumor growth. Cancer Letters, 198(1), 107–117.PubMed Hirama, M., Takahashi, F., Takahashi, K., Akutagawa, S., Shimizu, K., Soma, S., et al. (2003). Osteopontin overproduced by tumor cells acts as a potent angiogenic factor contributing to tumor growth. Cancer Letters, 198(1), 107–117.PubMed
156.
Zurück zum Zitat Leali, D., Dell, , Era, P., Stabile, H., Sennino, B., Chambers, A. F., Naldini, A., et al. (2003). Osteopontin (Eta-1) and fibroblast growth factor-2 cross-talk in angiogenesis. Journal of Immunology, 171(2), 1085–1093. Leali, D., Dell, , Era, P., Stabile, H., Sennino, B., Chambers, A. F., Naldini, A., et al. (2003). Osteopontin (Eta-1) and fibroblast growth factor-2 cross-talk in angiogenesis. Journal of Immunology, 171(2), 1085–1093.
157.
Zurück zum Zitat Khan, S. A., Lopez-Chua, C. A., Zhang, J., Fisher, L. W., Sorensen, E. S., & Denhardt, D. T. (2002). Soluble osteopontin inhibits apoptosis of adherent endothelial cells deprived of growth factors. Journal of Cellular Biochemistry, 85(4), 728–736.PubMed Khan, S. A., Lopez-Chua, C. A., Zhang, J., Fisher, L. W., Sorensen, E. S., & Denhardt, D. T. (2002). Soluble osteopontin inhibits apoptosis of adherent endothelial cells deprived of growth factors. Journal of Cellular Biochemistry, 85(4), 728–736.PubMed
158.
Zurück zum Zitat Malyankar, U. M., Hanson, R., Schwartz, S. M., Ridall, A. L., & Giachelli, C. M. (1999). Upstream stimulatory factor 1 regulates osteopontin expression in smooth muscle cells. Experimental Cell Research, 250(2), 535–547.PubMed Malyankar, U. M., Hanson, R., Schwartz, S. M., Ridall, A. L., & Giachelli, C. M. (1999). Upstream stimulatory factor 1 regulates osteopontin expression in smooth muscle cells. Experimental Cell Research, 250(2), 535–547.PubMed
159.
Zurück zum Zitat Zhang, Q., Wrana, J. L., & Sodek, J. (1992). Characterization of the promoter region of the porcine opn (osteopontin, secreted phosphoprotein 1) gene. Identification of positive and negative regulatory elements and a ‘silent’ second promoter. European Journal of Biochemistry, 207(2), 649–659.PubMed Zhang, Q., Wrana, J. L., & Sodek, J. (1992). Characterization of the promoter region of the porcine opn (osteopontin, secreted phosphoprotein 1) gene. Identification of positive and negative regulatory elements and a ‘silent’ second promoter. European Journal of Biochemistry, 207(2), 649–659.PubMed
160.
Zurück zum Zitat Eferl, R., & Wagner, E. F. (2003). AP-1: A double-edged sword in tumorigenesis. Nature Reviews. Cancer, 3(11), 859–868.PubMed Eferl, R., & Wagner, E. F. (2003). AP-1: A double-edged sword in tumorigenesis. Nature Reviews. Cancer, 3(11), 859–868.PubMed
161.
Zurück zum Zitat Deng, T., & Karin, M. (1993). JunB differs from c-Jun in its DNA-binding and dimerization domains, and represses c-Jun by formation of inactive heterodimers. Genes & Development, 7(3), 479–490. Deng, T., & Karin, M. (1993). JunB differs from c-Jun in its DNA-binding and dimerization domains, and represses c-Jun by formation of inactive heterodimers. Genes & Development, 7(3), 479–490.
162.
Zurück zum Zitat Chiu, R., Angel, P., & Karin, M. (1989). Jun-B differs in its biological properties from, and is a negative regulator of, c-Jun. Cell, 59(6), 979–986.PubMed Chiu, R., Angel, P., & Karin, M. (1989). Jun-B differs in its biological properties from, and is a negative regulator of, c-Jun. Cell, 59(6), 979–986.PubMed
163.
Zurück zum Zitat Wang, Z. Q., Grigoriadis, A. E., Mohle-Steinlein, U., & Wagner, E. F. (1991). A novel target cell for c-fos-induced oncogenesis: Development of chondrogenic tumours in embryonic stem cell chimeras. EMBO Journal, 10(9), 2437–2450.PubMed Wang, Z. Q., Grigoriadis, A. E., Mohle-Steinlein, U., & Wagner, E. F. (1991). A novel target cell for c-fos-induced oncogenesis: Development of chondrogenic tumours in embryonic stem cell chimeras. EMBO Journal, 10(9), 2437–2450.PubMed
164.
Zurück zum Zitat Grigoriadis, A. E., Schellander, K., Wang, Z. Q., & Wagner, E. F. (1993). Osteoblasts are target cells for transformation in c-fos transgenic mice. Journal of Cell Biology, 122(3), 685–701.PubMed Grigoriadis, A. E., Schellander, K., Wang, Z. Q., & Wagner, E. F. (1993). Osteoblasts are target cells for transformation in c-fos transgenic mice. Journal of Cell Biology, 122(3), 685–701.PubMed
165.
Zurück zum Zitat Young, M. R., Li, J. J., Rincon, M., Flavell, R. A., Sathyanarayana, B. K., Hunziker, R., et al. (1999). Transgenic mice demonstrate AP-1 (activator protein-1) transactivation is required for tumor promotion. Proceedings of the National Academy of Sciences of the United States of America, 96(17), 9827–9832.PubMed Young, M. R., Li, J. J., Rincon, M., Flavell, R. A., Sathyanarayana, B. K., Hunziker, R., et al. (1999). Transgenic mice demonstrate AP-1 (activator protein-1) transactivation is required for tumor promotion. Proceedings of the National Academy of Sciences of the United States of America, 96(17), 9827–9832.PubMed
166.
Zurück zum Zitat Jochum, W., David, J. P., Elliott, C., Wutz, A., Plenk Jr, H., Matsuo, K., et al. (2000). Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nature Medicine, 6(9), 980–984.PubMed Jochum, W., David, J. P., Elliott, C., Wutz, A., Plenk Jr, H., Matsuo, K., et al. (2000). Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nature Medicine, 6(9), 980–984.PubMed
167.
Zurück zum Zitat Renault, M. A., Jalvy, S., Belloc, I., Pasquet, S., Sena, S., Olive, M., et al. (2003). AP-1 is involved in UTP-induced osteopontin expression in arterial smooth muscle cells. Circulation Research, 93(7), 674–681.PubMed Renault, M. A., Jalvy, S., Belloc, I., Pasquet, S., Sena, S., Olive, M., et al. (2003). AP-1 is involved in UTP-induced osteopontin expression in arterial smooth muscle cells. Circulation Research, 93(7), 674–681.PubMed
168.
Zurück zum Zitat Kim, H. J., Lee, M. H., Kim, H. J., Shin, H. I., Choi, J. Y., & Ryoo, H. M. (2002). Okadaic acid stimulates osteopontin expression through de novo induction of AP-1. Journal of Cellular Biochemistry, 87(1), 93–102.PubMed Kim, H. J., Lee, M. H., Kim, H. J., Shin, H. I., Choi, J. Y., & Ryoo, H. M. (2002). Okadaic acid stimulates osteopontin expression through de novo induction of AP-1. Journal of Cellular Biochemistry, 87(1), 93–102.PubMed
169.
Zurück zum Zitat Mi, Z., Guo, H., Wai, P. Y., Gao, C., & Kuo, P. C. (2006). Integrin-linked kinase regulates osteopontin-dependent MMP-2 and uPA expression to convey metastatic function in murine mammary epithelial cancer cells. Carcinogenesis, 27(6), 1134–1145.PubMed Mi, Z., Guo, H., Wai, P. Y., Gao, C., & Kuo, P. C. (2006). Integrin-linked kinase regulates osteopontin-dependent MMP-2 and uPA expression to convey metastatic function in murine mammary epithelial cancer cells. Carcinogenesis, 27(6), 1134–1145.PubMed
170.
Zurück zum Zitat Wang, D., Yamamoto, S., Hijiya, N., Benveniste, E. N., & Gladson, C. L. (2000). Transcriptional regulation of the human osteopontin promoter: Functional analysis and DNA–protein interactions. Oncogene, 19(50), 5801–5809.PubMed Wang, D., Yamamoto, S., Hijiya, N., Benveniste, E. N., & Gladson, C. L. (2000). Transcriptional regulation of the human osteopontin promoter: Functional analysis and DNA–protein interactions. Oncogene, 19(50), 5801–5809.PubMed
171.
Zurück zum Zitat Kiermaier, A., Gawn, J. M., Desbarats, L., Saffrich, R., Ansorge, W., Farrell, P. J., et al. (1999). DNA binding of USF is required for specific E-box dependent gene activation in vivo. Oncogene, 18(51), 7200–7211.PubMed Kiermaier, A., Gawn, J. M., Desbarats, L., Saffrich, R., Ansorge, W., Farrell, P. J., et al. (1999). DNA binding of USF is required for specific E-box dependent gene activation in vivo. Oncogene, 18(51), 7200–7211.PubMed
172.
Zurück zum Zitat Sirito, M., Lin, Q., Deng, J. M., Behringer, R. R., & Sawadogo, M. (1998). Overlapping roles and asymmetrical cross-regulation of the USF proteins in mice. Proceedings of the National Academy of Sciences of the United States of America, 95(7), 3758–3763.PubMed Sirito, M., Lin, Q., Deng, J. M., Behringer, R. R., & Sawadogo, M. (1998). Overlapping roles and asymmetrical cross-regulation of the USF proteins in mice. Proceedings of the National Academy of Sciences of the United States of America, 95(7), 3758–3763.PubMed
173.
Zurück zum Zitat Atchley, W. R., & Fitch, W. M. (1997). A natural classification of the basic helix–loop–helix class of transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 94(10), 5172–5176.PubMed Atchley, W. R., & Fitch, W. M. (1997). A natural classification of the basic helix–loop–helix class of transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 94(10), 5172–5176.PubMed
174.
Zurück zum Zitat Jaiswal, A. S., & Narayan, S. (2001). Upstream stimulating factor-1 (USF1) and USF2 bind to and activate the promoter of the adenomatous polyposis coli (APC) tumor suppressor gene. Journal of Cellular Biochemistry, 81(2), 262–277.PubMed Jaiswal, A. S., & Narayan, S. (2001). Upstream stimulating factor-1 (USF1) and USF2 bind to and activate the promoter of the adenomatous polyposis coli (APC) tumor suppressor gene. Journal of Cellular Biochemistry, 81(2), 262–277.PubMed
175.
Zurück zum Zitat Reisman, D., & Rotter, V. (1993). The helix–loop–helix containing transcription factor USF binds to and transactivates the promoter of the p53 tumor suppressor gene. Nucleic Acids Research, 21(2), 345–350.PubMed Reisman, D., & Rotter, V. (1993). The helix–loop–helix containing transcription factor USF binds to and transactivates the promoter of the p53 tumor suppressor gene. Nucleic Acids Research, 21(2), 345–350.PubMed
176.
Zurück zum Zitat Bidder, M., Shao, J. S., Charlton-Kachigian, N., Loewy, A. P., Semenkovich, C. F., & Towler, D. A. (2002). Osteopontin transcription in aortic vascular smooth muscle cells is controlled by glucose-regulated upstream stimulatory factor and activator protein-1 activities. Journal of Biological Chemistry, 277(46), 44485–44496.PubMed Bidder, M., Shao, J. S., Charlton-Kachigian, N., Loewy, A. P., Semenkovich, C. F., & Towler, D. A. (2002). Osteopontin transcription in aortic vascular smooth muscle cells is controlled by glucose-regulated upstream stimulatory factor and activator protein-1 activities. Journal of Biological Chemistry, 277(46), 44485–44496.PubMed
177.
Zurück zum Zitat Tezuka, K., Denhardt, D. T., Rodan, G. A., & Harada, S. (1996). Stimulation of mouse osteopontin promoter by v-Src is mediated by a CCAAT box-binding factor. Journal of Biological Chemistry, 271(37), 22713–22717.PubMed Tezuka, K., Denhardt, D. T., Rodan, G. A., & Harada, S. (1996). Stimulation of mouse osteopontin promoter by v-Src is mediated by a CCAAT box-binding factor. Journal of Biological Chemistry, 271(37), 22713–22717.PubMed
178.
Zurück zum Zitat Blobel, G. A., & Hanafusa, H. (1991). The v-src inducible gene 9E3/pCEF4 is regulated by both its promoter upstream sequence and its 3′ untranslated region. Proceedings of the National Academy of Sciences of the United States of America, 88(4), 1162–1166.PubMed Blobel, G. A., & Hanafusa, H. (1991). The v-src inducible gene 9E3/pCEF4 is regulated by both its promoter upstream sequence and its 3′ untranslated region. Proceedings of the National Academy of Sciences of the United States of America, 88(4), 1162–1166.PubMed
179.
Zurück zum Zitat Schonthal, A., Herrlich, P., Rahmsdorf, H. J., & Ponta, H. (1988). Requirement for fos gene expression in the transcriptional activation of collagenase by other oncogenes and phorbol esters. Cell, 54(3), 325–334.PubMed Schonthal, A., Herrlich, P., Rahmsdorf, H. J., & Ponta, H. (1988). Requirement for fos gene expression in the transcriptional activation of collagenase by other oncogenes and phorbol esters. Cell, 54(3), 325–334.PubMed
180.
Zurück zum Zitat Birchenall-Roberts, M. C., Ruscetti, F. W., Kasper, J., Lee, H. D., Friedman, R., Geiser, A., et al. (1990). Molecular and Cellular Biology, 10(9), 4978–4983.PubMed Birchenall-Roberts, M. C., Ruscetti, F. W., Kasper, J., Lee, H. D., Friedman, R., Geiser, A., et al. (1990). Molecular and Cellular Biology, 10(9), 4978–4983.PubMed
181.
Zurück zum Zitat Fujii, M., Shalloway, D., & Verma, I. M. (1989). Gene regulation by tyrosine kinases: Src protein activates various promoters, including c-fos. Molecular and Cellular Biology, 9(6), 2493–2499.PubMed Fujii, M., Shalloway, D., & Verma, I. M. (1989). Gene regulation by tyrosine kinases: Src protein activates various promoters, including c-fos. Molecular and Cellular Biology, 9(6), 2493–2499.PubMed
182.
Zurück zum Zitat Apel, I., Yu, C. L., Wang, T., Dobry, C., Van Antwerp, M. E., Jove, R., et al. (1992). Regulation of the junB gene by v-src. Molecular and Cellular Biology, 12(8), 3356–3364.PubMed Apel, I., Yu, C. L., Wang, T., Dobry, C., Van Antwerp, M. E., Jove, R., et al. (1992). Regulation of the junB gene by v-src. Molecular and Cellular Biology, 12(8), 3356–3364.PubMed
183.
Zurück zum Zitat Sato, H., Kita, M., & Seiki, M. (1993). v-Src activates the expression of 92-kDa type IV collagenase gene through the AP-1 site and the GT box homologous to retinoblastoma control elements. A mechanism regulating gene expression independent of that by inflammatory cytokines. Journal of Biological Chemistry, 268(31), 23460–23468.PubMed Sato, H., Kita, M., & Seiki, M. (1993). v-Src activates the expression of 92-kDa type IV collagenase gene through the AP-1 site and the GT box homologous to retinoblastoma control elements. A mechanism regulating gene expression independent of that by inflammatory cytokines. Journal of Biological Chemistry, 268(31), 23460–23468.PubMed
184.
Zurück zum Zitat Lund, A. H., & van Lohuizen, M. (2002). RUNX: a trilogy of cancer genes. Cancer Cell, 1(3), 213–215.PubMed Lund, A. H., & van Lohuizen, M. (2002). RUNX: a trilogy of cancer genes. Cancer Cell, 1(3), 213–215.PubMed
185.
Zurück zum Zitat Coffman, J. A. (2003). Runx transcription factors and the developmental balance between cell proliferation and differentiation. Cell Biology International, 27(4), 315–324.PubMed Coffman, J. A. (2003). Runx transcription factors and the developmental balance between cell proliferation and differentiation. Cell Biology International, 27(4), 315–324.PubMed
186.
Zurück zum Zitat Ito, Y., & Miyazono, K. (2003). RUNX transcription factors as key targets of TGF-beta superfamily signaling. Current Opinion in Genetics & Development, 13(1), 43–47. Ito, Y., & Miyazono, K. (2003). RUNX transcription factors as key targets of TGF-beta superfamily signaling. Current Opinion in Genetics & Development, 13(1), 43–47.
187.
Zurück zum Zitat Li, Q. L., Ito, K., Sakakura, C., Fukamachi, H., Inoue, K., Chi, X. Z., et al. (2002). Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell, 109(1), 113–124.PubMed Li, Q. L., Ito, K., Sakakura, C., Fukamachi, H., Inoue, K., Chi, X. Z., et al. (2002). Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell, 109(1), 113–124.PubMed
188.
Zurück zum Zitat Speck, N. A., & Gilliland, D. G. (2002). Core-binding factors in haematopoiesis and leukaemia. Nature Reviews. Cancer, 2(7), 502–513.PubMed Speck, N. A., & Gilliland, D. G. (2002). Core-binding factors in haematopoiesis and leukaemia. Nature Reviews. Cancer, 2(7), 502–513.PubMed
189.
Zurück zum Zitat Inman, C. K., & Shore, P. (2003). The osteoblast transcription factor Runx2 is expressed in mammary epithelial cells and mediates osteopontin expression. Journal of Biological Chemistry, 278(49), 48684–48689.PubMed Inman, C. K., & Shore, P. (2003). The osteoblast transcription factor Runx2 is expressed in mammary epithelial cells and mediates osteopontin expression. Journal of Biological Chemistry, 278(49), 48684–48689.PubMed
190.
Zurück zum Zitat Otto, F., Thornell, A. P., Crompton, T., Denzel, A., Gilmour, K. C., Rosewell, I. R., et al. (1997). Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell, 89(5), 765–771.PubMed Otto, F., Thornell, A. P., Crompton, T., Denzel, A., Gilmour, K. C., Rosewell, I. R., et al. (1997). Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell, 89(5), 765–771.PubMed
191.
Zurück zum Zitat Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., et al. (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 89(5), 755–764.PubMed Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., et al. (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 89(5), 755–764.PubMed
192.
Zurück zum Zitat Sato, M., Morii, E., Komori, T., Kawahata, H., Sugimoto, M., Terai, K., et al. (1998). Transcriptional regulation of osteopontin gene in vivo by PEBP2alphaA/CBFA1 and ETS1 in the skeletal tissues. Oncogene, 17(12), 1517–1525.PubMed Sato, M., Morii, E., Komori, T., Kawahata, H., Sugimoto, M., Terai, K., et al. (1998). Transcriptional regulation of osteopontin gene in vivo by PEBP2alphaA/CBFA1 and ETS1 in the skeletal tissues. Oncogene, 17(12), 1517–1525.PubMed
193.
Zurück zum Zitat Barnes, G. L., Javed, A., Waller, S. M., Kamal, M. H., Hebert, K. E., Hassan, M. Q., et al. (2003). Cancer Research, 63(10), 2631–2637.PubMed Barnes, G. L., Javed, A., Waller, S. M., Kamal, M. H., Hebert, K. E., Hassan, M. Q., et al. (2003). Cancer Research, 63(10), 2631–2637.PubMed
194.
Zurück zum Zitat Wai, P. Y., Mi, Z., Gao, C., Guo, H., Marroquin, C., & Kuo, P. C. (2006). Ets-1 and runx2 regulate transcription of a metastatic gene, osteopontin, in murine colorectal cancer cells. Journal of Biological Chemistry, 281(28), 18973–18982.PubMed Wai, P. Y., Mi, Z., Gao, C., Guo, H., Marroquin, C., & Kuo, P. C. (2006). Ets-1 and runx2 regulate transcription of a metastatic gene, osteopontin, in murine colorectal cancer cells. Journal of Biological Chemistry, 281(28), 18973–18982.PubMed
195.
Zurück zum Zitat Lee, K. S., Kim, H. J., Li, Q. L., Chi, X. Z., Ueta, C., Komori, T., et al. (2000). Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Molecular and Cellular Biology, 20(23), 8783–92.PubMed Lee, K. S., Kim, H. J., Li, Q. L., Chi, X. Z., Ueta, C., Komori, T., et al. (2000). Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Molecular and Cellular Biology, 20(23), 8783–92.PubMed
196.
Zurück zum Zitat Hanai, J., Chen, L. F., Kanno, T., Ohtani-Fujita, N., Kim, W. Y., Guo, W. H., et al. (1999). Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline Calpha promoter. Journal of Biological Chemistry, 274(44), 31577–31582.PubMed Hanai, J., Chen, L. F., Kanno, T., Ohtani-Fujita, N., Kim, W. Y., Guo, W. H., et al. (1999). Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline Calpha promoter. Journal of Biological Chemistry, 274(44), 31577–31582.PubMed
197.
Zurück zum Zitat Shi, X., Bai, S., Li, L., & Cao, X. (2001). Hoxa-9 represses transforming growth factor-beta-induced osteopontin gene transcription. Journal of Biological Chemistry, 276(1), 850–855.PubMed Shi, X., Bai, S., Li, L., & Cao, X. (2001). Hoxa-9 represses transforming growth factor-beta-induced osteopontin gene transcription. Journal of Biological Chemistry, 276(1), 850–855.PubMed
198.
Zurück zum Zitat Roberts, A. B., & Wakefield, L. M. (2003). The two faces of transforming growth factor beta in carcinogenesis.Proceedings of the National Academy of Sciences of the United States of America, 100(15), 8621–8623.PubMed Roberts, A. B., & Wakefield, L. M. (2003). The two faces of transforming growth factor beta in carcinogenesis.Proceedings of the National Academy of Sciences of the United States of America, 100(15), 8621–8623.PubMed
199.
Zurück zum Zitat Medrano, E. E. (2003). Repression of TGF-beta signaling by the oncogenic protein SKI in human melanomas: consequences for proliferation, survival, and metastasis. Oncogene, 22(20), 3123–3129.PubMed Medrano, E. E. (2003). Repression of TGF-beta signaling by the oncogenic protein SKI in human melanomas: consequences for proliferation, survival, and metastasis. Oncogene, 22(20), 3123–3129.PubMed
200.
Zurück zum Zitat Bello-DeOcampo, D., & Tindall, D. J. (2003). TGF-betal/Smad signaling in prostate cancer. Current Drugs Targets, 4(3), 197–207. Bello-DeOcampo, D., & Tindall, D. J. (2003). TGF-betal/Smad signaling in prostate cancer. Current Drugs Targets, 4(3), 197–207.
201.
Zurück zum Zitat Guise, T. A., & Chirgwin, J. M. (2003). Transforming growth factor-beta in osteolytic breast cancer bone metastases. Clinica Ortopedica, 415(Suppl), S32–S38. Guise, T. A., & Chirgwin, J. M. (2003). Transforming growth factor-beta in osteolytic breast cancer bone metastases. Clinica Ortopedica, 415(Suppl), S32–S38.
202.
Zurück zum Zitat Kim, S. J., & Letterio, J. (2003). Transforming growth factor-beta signaling in normal and malignant hematopoiesis. Leukemia, 17(9), 1731–1737.PubMed Kim, S. J., & Letterio, J. (2003). Transforming growth factor-beta signaling in normal and malignant hematopoiesis. Leukemia, 17(9), 1731–1737.PubMed
203.
Zurück zum Zitat Noda, M., Yoon, K., Prince, C. W., Butler, W. T., & Rodan, G. A. (1988). Transcriptional regulation of osteopontin production in rat osteosarcoma cells by type beta transforming growth factor. Journal of Biological Chemistry, 263(27), 13916–13921.PubMed Noda, M., Yoon, K., Prince, C. W., Butler, W. T., & Rodan, G. A. (1988). Transcriptional regulation of osteopontin production in rat osteosarcoma cells by type beta transforming growth factor. Journal of Biological Chemistry, 263(27), 13916–13921.PubMed
204.
Zurück zum Zitat Wrana, J. L., Kubota, T., Zhang, Q., Overall, C. M., Aubin, J. E., Butler, W. T., et al. (1991). Regulation of transformation-sensitive secreted phosphoprotein (SPPI/osteopontin) expression by transforming growth factor-beta. Comparisons with expression of SPARC (secreted acidic cysteine-rich protein). Biochemical Journal, 273(3), 523–531.PubMed Wrana, J. L., Kubota, T., Zhang, Q., Overall, C. M., Aubin, J. E., Butler, W. T., et al. (1991). Regulation of transformation-sensitive secreted phosphoprotein (SPPI/osteopontin) expression by transforming growth factor-beta. Comparisons with expression of SPARC (secreted acidic cysteine-rich protein). Biochemical Journal, 273(3), 523–531.PubMed
205.
Zurück zum Zitat Cheifetz, S., Li, I. W., McCulloch, C. A., Sampath, K., & Sodek, J. (1996). Influence of osteogenic protein-1 (OP-1;BMP-7) and transforming growth factor-beta 1 on bone formation in vitro. Connective Tissue Research, 35(1–4), 71–78.PubMed Cheifetz, S., Li, I. W., McCulloch, C. A., Sampath, K., & Sodek, J. (1996). Influence of osteogenic protein-1 (OP-1;BMP-7) and transforming growth factor-beta 1 on bone formation in vitro. Connective Tissue Research, 35(1–4), 71–78.PubMed
206.
Zurück zum Zitat Hullinger, T. G., Pa, N. Q., Viswanatha, N. H. L., & Somerman, M. J. (2001). TGFbeta and BMP-2 activation of the OPN promoter: Roles of smad- and hox-binding elements. Experimental Cell Research, 262(1), 69–74.PubMed Hullinger, T. G., Pa, N. Q., Viswanatha, N. H. L., & Somerman, M. J. (2001). TGFbeta and BMP-2 activation of the OPN promoter: Roles of smad- and hox-binding elements. Experimental Cell Research, 262(1), 69–74.PubMed
207.
Zurück zum Zitat Cui, J., Zhou, X., Liu, Y., Tang, Z., & Romeih, M. (2003). Wnt signaling in hepatocellular carcinoma: analysis of mutation and expression of beta-catenin, T-cell factor-4 and glycogen synthase kinase 3-beta genes. Journal of Gastroenterology and Hepatology, 18(3), 280–287.PubMed Cui, J., Zhou, X., Liu, Y., Tang, Z., & Romeih, M. (2003). Wnt signaling in hepatocellular carcinoma: analysis of mutation and expression of beta-catenin, T-cell factor-4 and glycogen synthase kinase 3-beta genes. Journal of Gastroenterology and Hepatology, 18(3), 280–287.PubMed
208.
Zurück zum Zitat Bright-Thomas, R. M., & Hargest, R. (2003). APC, beta-Catenin and hTCF-4; an unholy trinity in the genesis of colorectal cancer. European Journal of Surgical Oncology, 29(2), 107–117.PubMed Bright-Thomas, R. M., & Hargest, R. (2003). APC, beta-Catenin and hTCF-4; an unholy trinity in the genesis of colorectal cancer. European Journal of Surgical Oncology, 29(2), 107–117.PubMed
209.
Zurück zum Zitat El-Tanani, M., Barraclough, R., Wilkinson, M. C., & Rudland, P. S. (2001). Metastasis-inducing dna regulates the expression of the osteopontin gene by binding the transcription factor Tcf-4. Cancer Research, 61(14), 5619–5629.PubMed El-Tanani, M., Barraclough, R., Wilkinson, M. C., & Rudland, P. S. (2001). Metastasis-inducing dna regulates the expression of the osteopontin gene by binding the transcription factor Tcf-4. Cancer Research, 61(14), 5619–5629.PubMed
210.
Zurück zum Zitat Denhardt, D. T., Mistretta, D., Chambers, A. F., Krishna, S., Porter, J. F., Raghuram, S., et al. (2003). Transcriptional regulation of osteopontin and the metastatic phenotype: Evidence for a Ras-activated enhancer in the human OPN promoter. Clinical & Experimental Metastasis, 20(1), 77–84. Denhardt, D. T., Mistretta, D., Chambers, A. F., Krishna, S., Porter, J. F., Raghuram, S., et al. (2003). Transcriptional regulation of osteopontin and the metastatic phenotype: Evidence for a Ras-activated enhancer in the human OPN promoter. Clinical & Experimental Metastasis, 20(1), 77–84.
211.
Zurück zum Zitat Bos, J. L. (1989). Ras oncogenes in human cancer: A review. Cancer Research, 49(17), 4682–4689.PubMed Bos, J. L. (1989). Ras oncogenes in human cancer: A review. Cancer Research, 49(17), 4682–4689.PubMed
212.
Zurück zum Zitat Chambers, A. F., Behrend, E. I., Wilson, S. M., & Denhardt, D. T. (1992). Induction of expression of osteopontin (OPN; secreted phosphoprotein) in metastatic, ras-transformed NIH 3T3 cells. Anticancer Research, 12(1), 43–47.PubMed Chambers, A. F., Behrend, E. I., Wilson, S. M., & Denhardt, D. T. (1992). Induction of expression of osteopontin (OPN; secreted phosphoprotein) in metastatic, ras-transformed NIH 3T3 cells. Anticancer Research, 12(1), 43–47.PubMed
213.
Zurück zum Zitat Guo, X., Zhang, Y. P., Mitchell, D. A., Denhardt, D. T., & Chambers, A. F. (1995). Identification of a ras-activated enhancer in the mouse osteopontin promoter and its interaction with a putative ETS-related transcription factor whose activity correlates with the metastatic potential of the cell. Molecular and Cellular Biology, 15(1), 476–487.PubMed Guo, X., Zhang, Y. P., Mitchell, D. A., Denhardt, D. T., & Chambers, A. F. (1995). Identification of a ras-activated enhancer in the mouse osteopontin promoter and its interaction with a putative ETS-related transcription factor whose activity correlates with the metastatic potential of the cell. Molecular and Cellular Biology, 15(1), 476–487.PubMed
214.
Zurück zum Zitat Morimoto, I., Sasaki, Y., Ishida, S., Imai, K., & Tokino, T. (2002). Identification of the osteopontin gene as a direct target of TP53. Genes Chromosomes Cancer, 33(3), 270–278.PubMed Morimoto, I., Sasaki, Y., Ishida, S., Imai, K., & Tokino, T. (2002). Identification of the osteopontin gene as a direct target of TP53. Genes Chromosomes Cancer, 33(3), 270–278.PubMed
215.
Zurück zum Zitat Safe, S., & Abdelrahim, M. (2005). Sp transcription factor family and its role in cancer. European Journal of Cancer, 41(16), 2438–24348.PubMed Safe, S., & Abdelrahim, M. (2005). Sp transcription factor family and its role in cancer. European Journal of Cancer, 41(16), 2438–24348.PubMed
216.
Zurück zum Zitat Takami, Y., Russell, M. B., Gao, C., Mi, Z., Guo, H., Mantyh, C. R., et al. (2007). Sp1 regulates osteopontin expression in SW480 human colon adenocarcinoma cells. Surgery, 142(2), 163–169.PubMed Takami, Y., Russell, M. B., Gao, C., Mi, Z., Guo, H., Mantyh, C. R., et al. (2007). Sp1 regulates osteopontin expression in SW480 human colon adenocarcinoma cells. Surgery, 142(2), 163–169.PubMed
217.
Zurück zum Zitat el-Deiry, W. S. (1998). Seminars in Cancer Biology, 8(5), 345–357.PubMed el-Deiry, W. S. (1998). Seminars in Cancer Biology, 8(5), 345–357.PubMed
218.
Zurück zum Zitat Tokino, T., & Nakamura, Y. (2000). The role of p53-target genes in human cancer. Critical Reviews in Oncology/Hematology, 33(1), 1–6.PubMed Tokino, T., & Nakamura, Y. (2000). The role of p53-target genes in human cancer. Critical Reviews in Oncology/Hematology, 33(1), 1–6.PubMed
219.
Zurück zum Zitat Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature, 408(6810), 307–310.PubMed Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature, 408(6810), 307–310.PubMed
220.
Zurück zum Zitat Zhu, K., Wang, J., Zhu, J., Jiang, J., Shou, J., & Chen, X. (1999). p53 induces TAP1 and enhances the transport of MHC class I peptides. Oncogene, 18(54), 7740–7747.PubMed Zhu, K., Wang, J., Zhu, J., Jiang, J., Shou, J., & Chen, X. (1999). p53 induces TAP1 and enhances the transport of MHC class I peptides. Oncogene, 18(54), 7740–7747.PubMed
221.
Zurück zum Zitat Craig, A. M., Bowde, N. G. T., Chambers, A. F., Spearman, M. A., Greenberg, A. H., Wright, J. A., et al. (1990). Secreted phosphoprotein mRNA is induced during multi-stage carcinogenesis in mouse skin and correlates with the metastatic potential of murine fibroblasts. International Journal of Cancer, 46(1), 133–137. Craig, A. M., Bowde, N. G. T., Chambers, A. F., Spearman, M. A., Greenberg, A. H., Wright, J. A., et al. (1990). Secreted phosphoprotein mRNA is induced during multi-stage carcinogenesis in mouse skin and correlates with the metastatic potential of murine fibroblasts. International Journal of Cancer, 46(1), 133–137.
222.
Zurück zum Zitat Chang, P. L., Tucker, M. A., Hicks, P. H., & Prince, C. W. (2002). Novel protein kinase C isoforms and mitogen-activated kinase kinase mediate phorbol ester-induced osteopontin expression. International Journal of Biochemistry & Cell Biology, 34(9), 1142–1151. Chang, P. L., Tucker, M. A., Hicks, P. H., & Prince, C. W. (2002). Novel protein kinase C isoforms and mitogen-activated kinase kinase mediate phorbol ester-induced osteopontin expression. International Journal of Biochemistry & Cell Biology, 34(9), 1142–1151.
223.
Zurück zum Zitat Manji, S. S., Ng, K. W., Martin, T. J., & Zhou, H. (1998). Transcriptional and posttranscriptional regulation of osteopontin gene expression in preosteoblasts by retinoic acid. Journal of Cellular Physiology, 176(1), 1–9.PubMed Manji, S. S., Ng, K. W., Martin, T. J., & Zhou, H. (1998). Transcriptional and posttranscriptional regulation of osteopontin gene expression in preosteoblasts by retinoic acid. Journal of Cellular Physiology, 176(1), 1–9.PubMed
224.
Zurück zum Zitat Asaumi, S., Takemoto, M., Yokote, K., Ridall, A. L., Butler, W. T., Fujimoto, M., et al. (2003). Identification and characterization of high glucose and glucosamine responsive element in the rat osteopontin promoter. Journal of Diabetes and Its Complications, 17(1), 34–38.PubMed Asaumi, S., Takemoto, M., Yokote, K., Ridall, A. L., Butler, W. T., Fujimoto, M., et al. (2003). Identification and characterization of high glucose and glucosamine responsive element in the rat osteopontin promoter. Journal of Diabetes and Its Complications, 17(1), 34–38.PubMed
225.
Zurück zum Zitat Noda, M., Vogel, R. L., Craig, A. M., Prahl, J., DeLuca, H. F., & Denhardt, D. T. (1990). Identification of a DNA sequence responsible for binding of the 1,25-dihydroxyvitamin D3 receptor and 1,25-dihydroxyvitamin D3 enhancement of mouse secreted phosphoprotein 1 (SPP-1 or osteopontin) gene expression. Proceedings of the National Academy of Sciences of the United States of America, 87(24), 9995–9999.PubMed Noda, M., Vogel, R. L., Craig, A. M., Prahl, J., DeLuca, H. F., & Denhardt, D. T. (1990). Identification of a DNA sequence responsible for binding of the 1,25-dihydroxyvitamin D3 receptor and 1,25-dihydroxyvitamin D3 enhancement of mouse secreted phosphoprotein 1 (SPP-1 or osteopontin) gene expression. Proceedings of the National Academy of Sciences of the United States of America, 87(24), 9995–9999.PubMed
Metadaten
Titel
Osteopontin: regulation in tumor metastasis
verfasst von
Philip Y. Wai
Paul C. Kuo
Publikationsdatum
01.03.2008
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1/2008
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-007-9104-9

Weitere Artikel der Ausgabe 1/2008

Cancer and Metastasis Reviews 1/2008 Zur Ausgabe

Acknowledgments

Bio

Wo hapert es noch bei der Umsetzung der POMGAT-Leitlinie?

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Bestrahlung nach Prostatektomie: mehr Schaden als Nutzen?

02.05.2024 Prostatakarzinom Nachrichten

Eine adjuvante Radiotherapie nach radikaler Prostata-Op. bringt den Betroffenen wahrscheinlich keinen Vorteil. Im Gegenteil: Durch die Bestrahlung steigt offenbar das Risiko für Harn- und Stuhlinkontinenz.

ASS schützt nicht vor Brustkrebsrezidiven

02.05.2024 Mammakarzinom Nachrichten

Nützt nichts und ist vielleicht sogar schädlich: In einer Phase-3-Studie konnten täglich 300 mg ASS keine Brustkrebsrezidive bei Frauen vermeiden, die ein hohes Risiko für eine Tumorrückkehr aufwiesen. Tendenziell traten unter ASS sogar häufiger Rezidive auf als unter Placebo.

CUP-Syndrom: Künstliche Intelligenz kann Primärtumor finden

30.04.2024 Künstliche Intelligenz Nachrichten

Krebserkrankungen unbekannten Ursprungs (CUP) sind eine diagnostische Herausforderung. KI-Systeme können Pathologen dabei unterstützen, zytologische Bilder zu interpretieren, um den Primärtumor zu lokalisieren.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.