Skip to main content
Erschienen in: Journal of Cancer Research and Clinical Oncology 11/2019

Open Access 04.10.2019 | Original Article – Cancer Research

Outcome in serous ovarian cancer is not associated with LATS expression

verfasst von: Céline Montavon, Gregor R. Stricker, Andreas Schoetzau, Viola Heinzelmann-Schwarz, Francis Jacob, André Fedier

Erschienen in: Journal of Cancer Research and Clinical Oncology | Ausgabe 11/2019

Abstract

Background

Large tumor suppressor (LATS) proteins are putative tumor suppressors and poorly expressed associated with poor outcome in many cancers. A recent immunohistochemistry study showed that LATS protein expression correlated with poor outcome in serous ovarian cancer.

Materials and methods

We analyzed LATS expression in various ovarian cancer transcriptomic data sets and immunohistochemically assessed LATS protein expression in a Swiss ovarian tumor cohort. Results were compared to clinicopathological characteristics and outcome. We also compared LATS protein expression in serous ovarian cancer cell lines to their EMT status (Western blotting) and drug sensitivity (MTT assay).

Results

The analysis of 15 different transcriptomic data sets showed that LATS2 was associated with poorer outcome, while LATS1 was irrelevant (HR = 1.19 and HR = 1.00, respectively). The TCGA-RNASeqV2 data set showed that low LATS1 and LATS2 were associated with better survival in serous ovarian carcinoma. Despite heterogeneity among the different data sets, LATS expression is not an indicator of survival in serous ovarian cancer and LATS2 expression may even be tumorigenic. LATS expression was neither associated with survival nor with the stage and grade in the Swiss cohort. It was low in cystadenoma, intermediate in carcinoma, and high in borderline tumors and was higher in serous than mucinous ovarian carcinoma. LATS protein expression extent was comparable in epithelial-, intermediate-, and mesenchymal-type ovarian cancer cells and was not associated with drug sensitivity.

Conclusion

These results are largely incompatible with a tumor-suppressive function of LATS in ovarian cancer, and LATS protein level is also not an indicator for drug sensitivity and EMT status of ovarian cancer cells.
Hinweise
Céline Montavon and Gregor R. Stricker contributed equally to this work.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Large tumor suppressor (LATS) family proteins LATS1 and LATS2 have been proposed to be tumor suppressors. They have been reported to govern cellular homeostasis by preventing cell proliferation and migration, by inducing cell death and senescence, and by regulating cell cycle checkpoints to maintain genetic stability (Visser and Yang 2010; Furth and Aylon 2017). Consistent with their proposed tumor-suppressive function, LATS proteins have been reported to be down-regulated in various cell types including breast cancer (Morinaga et al. 2000), non-small lung cancer (Lin et al. 2014), and gastric cancer (Son et al. 2017). However, LATS was reported to be overexpressed in nasopharyngeal cancer (Zhang et al. 2010), suggesting that the function of LATS remains controversial and may be tissue- and cancer-type dependent.
Large tumor suppressor1 and LATS2 are the core kinases of the Hippo pathway, in which LATS1 and LATS2 become activated by upstream kinases in response to stimuli and then phosphorylate and thereby repress the nuclear activity of two transcriptional co-factors YAP and TAZ by their cytoplasmic retention, eventually preventing the transcription of tumor-promoting genes. The Hippo signaling pathway plays a critical role in organogenesis, tumorigenesis, metastasis, stem cell differentiation and renewal, and mechanotransduction (Furth and Aylon 2017; Meng et al. 2016; Janse van Rensburg and Yang 2016; Yu et al. 2015). Accordingly, YAP/TAZ are activated, whereas LATS1/2 are inactivated in many human malignant tumors (Plouffe et al. 2015; Zanconato et al. 2016).
Clinically, LATS expression can have prognostic value. LATS1 and LATS2 expressions have been reported as significant markers for good prognosis in patients with gastric cancer (Son et al. 2017), reduced LATS1 correlated with poor outcome with breast cancer patients (Takahashi et al. 2005), and reduced LATS2 correlated with poor survival in acute lymphoblastic leukemia (Jiménez-Velasco et al. 2005).
The role of LATS in ovarian cancer remains poorly understood. Epithelial ovarian cancer is the leading cause of death in gynecologic cancer. In patients with advanced FIGO stage serous ovarian cancer, the most common, aggressive and deadly type, the 5-year survival rate is  < 30%. This poor outcome is due to the lack of early disease-specific symptoms and reliable tools for early diagnosis, as well as ineffective therapy for advanced disease (Ozols 2006; Bowtell et al. 2015). Recently, a study evaluated immunohistochemistry data from Chinese ovarian cancer samples and showed that LATS1 and LATS2 expression was reduced in serous ovarian cancer patients associated with shorter survival and increased recurrence, while LATS1 and LATS2 were highly expressed in fallopian tube and LATS1 was expressed in normal ovarian tissue (Xu et al. 2015).
To validate these previous data, we investigated LATS expression (1) and clinical outcome in ovarian cancer using various publicly accessible transcriptomic data sets and (2) in our Swiss ovarian cancer patient cohort and related the results to various clinicopathological parameters. As LATS expression has also been shown to regulate epithelial-mesenchymal transition (EMT), a cellular program that promotes invasion and metastasis during cancer development, and modulate drug responses (Nozaki et al. 2019; Zhang et al. 2012; Takahashi et al. 2007; Kawahara et al. 2008), we determined LATS protein expression in a panel of ovarian cancer cell lines and investigated (3) whether LATS expression in these cell lines was an indicator for the EMT state of the cells and for the sensitivity to chemotherapeutic drugs.

Materials and methods

Transcriptomic database analysis

Transcriptomic ovarian databases were analyzed using the Bioconductor package “curatedOvarianData” which represents a manually curated data collection for gene expression meta-analysis of patients with ovarian cancer (Ganzfried et al. 2013). The results are presented as hazard ratios (HR) of LATS1 and LATS2 with corresponding 95% CI using forest plots. In addition, TCGA RNASeqV2 data were analyzed in more detail, presenting results from Cox regression using the two quantiles (0.05, 0.95) for LATS1 and LATS2.

Patient cohort, tissue microarray immunohistochemistry, and ethical approval

The patient cohort was previously recruited at the University Hospital Zurich, Switzerland from 1990 to 2007 and the respective tissue microarray (TMA) was used for the immunohistochemistry (IHC) experiments (described in: Jacob et al. 2012). Deparaffinized and stained sections were incubated with anti-LATS1/2 antibody (GTX87014; Lucerna Chem, Lucerne, Switzerland) as per standard laboratory and manufacturer’s protocols. This antibody recognizes endogenous levels of total LATS 1/2 protein. Tissue slides were counterstained with hematoxylin. Sections were dehydrated and coverslipped. Immunostaining was scored by the weighted average score (intensity: 0–3, coloring: 0–100% of LATS1/2 expression) by three trained scientists (CM, GS, VHS) independently and discrepancies were resolved by consensus. The cohort consisted of 710 samples on three TMAs from initially 271 patients. There were 200 samples with incomplete data or with non-evaluable scores. 510 samples had evaluable scores, whereof 122 had no LATS expression and 388 had LATS expression. For patients with more than one sample, the scores were averaged. From the resulting 205 patients, a miscellaneous group of 9 patients was excluded due the low patient numbers and unclear malignancies. The final overall cohort consisted of 196 ovarian tumor patients: 85 (benign) cystadenomas, 32 borderline, and 79 carcinoma (Table 1).
Table 1
Overall ovarian tumor cohort description
 
All tumors
Cystadenoma
Borderline
Carcinoma
N
N = 196
N = 85
N = 32
N = 79
196
Tumor type
    
196
 Cystadenoma
85 (43.4%)
85 (100%)
   
 Borderline
32 (16.3%)
 
32 (100%)
  
 Carcinoma
79 (40.3%)
  
79 (100%)
 
Histological subtype
    
196
 Clear cell
14 (7.2%)
 
1 (3.12%)
13 (16.5%)
 
 Endometrioid
12 (6.1%)
  
12 (15.2%)
 
 Mucinous
43 (21.9%)
31 (36.5%)
10 (31.2%)
2 (2.53%)
 
 Serous
127 (64.8%)
54 (63.5%)
21 (65.6%)
52 (65.8%)
 
Stage
    
107
 I + II
48 (44.9%)
 
25 (83.3%)
20 (27.0%)
 
 III + IV
59 (55.1%)
 
5 (16.7%)
54 (73.0%)
 
Grade
    
110
 1
4 (3.6%)
  
4 (5.1%)
 
 2a
23 (20.9%)
  
23 (29.5%)
 
 3
51 (46.4%)
  
51 (65.4%)
 
 Borderline
32 (29.1%)
 
32 (100%)
  
Scoreb
0.25 [0.06;0.63]
0.10 [0.00;0.26]
0.73 [0.42;0.98]
0.38 [0.15;0.66]
196
Medsplitc
    
196
 Low expression
100 (51.0%)
63 (74.1%)
5 (15.6%)
32 (40.5%)
 
 High expression
96 (49.0%)
22 (25.9%)
27 (84.4%)
47 (59.5%)
 
N number of patients
aIncludes the G2 serous high-grade carcinomas; bscore, median and IQR [interquartile range]; cmedian split
Ethics approval was obtained from the Swiss Ethical Cantonal Department SPUK (approval #StV06/2006) and the Ethical Committee of Nordwest- und Zentralschweiz, Switzerland (EKNZ 2015 ± 436). Neither written nor oral consent was necessary for this retrospective study and data accession was anonymous. The whole study was performed according to the Declaration of Helsinki and local laws and regulations.

Cell lines and cell culture

A2780, BG-1, CaOv3, IGROV-1, Kuramocchi, OAW42, OVCAR-3, OVCAR-4, OVCAR-8, SKOV-3, TOV112D and TYK-nu (parental) ovarian cancer cell lines; FT190 and FT194 fallopian tube cell lines; and HOSE 6.3 and HOSE 17.1 human ovary surface epithelial cells were cultured in RPMI (R8758, Sigma-Aldrich, Buchs, Switzerland) supplemented with 10% fetal bovine serum (FBS; Sigma-Aldrich) and penicillin/streptomycin (100 U/mL/100 μg/mL; Sigma-Aldrich) at 37 °C in a 95% humidified atmosphere containing 5% CO2. All cell lines were routinely tested for mycoplasma infection. Cisplatin-resistant A2780/CP and TYK-nu(R) cell lines were obtained from the National Cell Bank of Iran (NCBI) and the JCRB Cell Bank Japan, respectively, and these cell lines had acquired cisplatin resistance generated by stepwise incubation of the parental cells with inclining cisplatin concentrations (Masuda et al. 1988; Yoshiya et al. 1989). Paclitaxel-resistant IGROV1-PXL cells were generated in our laboratory by stepwise exposure of parental IGROV-1 cells to increasing concentrations of paclitaxel (Kohler et al. 2017). They were also cultured as described above.

Western blot analysis

Western blotting was used to determine the protein expression in the cell lines and was performed according to standard laboratory protocols. Briefly, cell lysates were obtained from subconfluent cultures at the time of harvest. Cells were lysed with RIPA buffer (9806, Cell Signaling; BioConcept, Allschwil, Switzerland). Protein concentration was determined by the BCA Protein Assay (23227; Pierce, Perbio Science, Switzerland). Twenty micrograms of protein was loaded and separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), followed by blotting onto polyvinylidene difluoride (PVDF) membranes (162-0177, BioRad, Crissier, Switzerland). Proteins were detected with specific primary antibodies and appropriate secondary antibody (HRPO-conjugated anti-mouse (7076, Cell Signaling) or HRPO-conjugated anti-rabbit (7074, Cell Signaling). The primary antibodies were rabbit anti-LATS1 (9153, Cell Signaling), rabbit anti-LATS2 (ab110780, Abcam, Lucerne Chem), rabbit anti-E-cadherin (3195, Cell Signaling), mouse anti-vimentin (MA5-11883, Invitrogen, Thermo Fisher Scientific, Wohlen, Switzerland), and mouse anti-MDR1 (sc-13131, Santa Cruz, Lab Force, Muttenz, Switzerland) antibodies. Rabbit anti-tubulin antibody (2148, Cell Signaling) was used as a sample loading control. Complexes were visualized by enhanced chemiluminescence (Dura West, Pierce, Perbio Science) and autoradiography. Quantitative analysis of the complexes (intensity on autoradiogram) was performed by densitometry (normalized against tubulin) using Image J software.

MTT assay

The MTT assay was used to determine the sensitivity of the cell lines to chemotherapeutic drugs and was performed as follows: cells were seeded into 96-well plates and treated on the next day with chemotherapeutic drugs for 72 h, followed by the addition of 20 μl of MTT dye (Sigma-Aldrich) in PBS (final concentration: 0.5 mg/ml). Chemotherapeutics were purchased from the following suppliers: carboplatin (Labatec SA, Geneva, Switzerland) and cisplatin, doxorubicin, and paclitaxel (Sigma-Aldrich). After 3 h, the medium was removed and the purple crystals were dissolved in 200 μl DMSO. Optical density (absorbance at 540 nm) was measured with a SynergyH1 Hybrid Reader (Biotek, Zurich, Switzerland). Data (mean ± SD of at least four independent experiments performed in quadruplets) are presented as function of drug concentration. IC50 values were calculated by linear extrapolation.

Statistical analysis

Descriptive statistics is presented as median (IQR) or counts and percentages as appropriate. To compare weighted average scores between subgroups, Dunn’s test following Kruskal–Wallis tests was performed. To analyze the influence of LATS1 and LATS2 on time-to-event data, the expression values were split by medians providing high/low groups. Kaplan–Meier statistics were presented as graphs and median times with 95% confidence intervals. Time to event curves were compared using Log-rank tests presented as p values: a p value < 0.05 is considered as statistically significant. All evaluations were done using the statistical software R version 3.5.1 (https://​www.​R-project.​org/​). P values were considered as exploratory and therefore not adjusted for multiple comparisons. For comparisons regarding drug sensitivity and LATS expression in cell lines, the mean ± SD values were calculated and statistical analysis was performed using the two-tailed Student’s t test, where p values < 0.05 were considered statistically significant.

Results

LATS expression is not associated with better outcome in ovarian cancer (transcriptomic data)

A previous study has reported that LATS protein expression was associated with better outcome in a Chinese ovarian cancer cohort (Xu et al. 2015). Here, we analyzed LATS1 and LATS2 gene expression in publicly available ovarian cancer transcriptomic data sets. The Forest plot presentation over all data sets showed that high LATS1 expression (Fig. 1a) was not associated with lower survival in ovarian cancer patients (HR = 1.00; p < 0.9176; 15 data sets). The results indicated inter-data set heterogeneity: Among these data sets, four showed an HR > 1.10 and three an HR < 0.90, and the TCGA and the TCGA RNASeqV2 displayed opposing HR values (0.94 vs 1.14). In contrast, high LATS2 expression (Fig. 1b) was associated with a significant 19% higher risk for poorer survival (HR = 1.19; p < 0.0001; 10 data sets). This association for LATS2 was found in eight out of nine data sets (HR ≥ 1.07), whereas an inverse association was found only in the GSE18520 data set (HR = 0.85). Interestingly, TCGA RNASeqV2 data for serous high-grade ovarian cancer showed that both LATS1 and LATS2 expressions were associated with a higher risk for poorer survival (HR = 1.14 for LATS1 and HR = 1.08 for LATS2) for this more homogenous group of patients. This unfavorable outcome was confirmed in Kaplan–Meier curves, where log(LATS1) and log(LATS2) were computed on survival for two quantile (5%,95%) using the Cox regression model (Fig. 2a, b).
Collectively, neither LATS1 nor LATS2 expression was associated with favorable survival in ovarian cancer and LATS2 expression may even have a negative effect on survival.

LATS protein expression is not associated with better outcome in ovarian cancer (Swiss cohort)

Transcriptomic data analysis on LATS in ovarian cancer patients showed results discrepant from those of the Chinese cohort (Xu et al. 2015). We therefore immunohistochemically analyzed LATS expression on TMAs from a Swiss ovarian cancer cohort and compared LATS1 expression to tumor type, histology, staging, grading, and survival. The overall cohort consisted of 196 patients with ovarian tumors including benign cystadenomas, borderline tumors, and carcinomas, with the following clinicopathological characteristics (Table 1).
A representative example for LATS1/2 staining intensities (from 0 to 3) is shown in Fig. 3a. LATS1/2 protein expression was significantly different (p < 0.001) among the tumor types: it was lowest in cystadenoma, intermediate in carcinoma, and highest in borderline (Table 2, Fig. 3b). LATS1/2 protein expression was significantly higher in the serous than in the mucinous (p = 0.005) subtype, whereas it was similar for all other comparisons (Table 2, Fig. 3c). LATS1/2 protein expression was similar for FIGO stage I + II and stage III + IV in borderline tumors and carcinomas and was also similar in grade 1 compared to grade 2 and grade 3 carcinomas (Table 2). LATS1/2 protein expression was then related to outcome. The Kaplan–Meier curves showed that overall survival (OS) and relapse-free survival (RFS) were, despite an apparent 2.2-fold advantage of low LATS1/2-expressing patients for RFS (median: 47.4 months vs 21.4 months), not significantly different (p = 0.603 and p = 0.152, respectively) (Table 3, Fig. 3d, e). Taken together, LATS1/2 protein expression was higher in carcinomas than in cystadenomas, was higher in serous than in mucinous cancers, and was FIGO stage independent.
Table 2
Scores (median, IQR) and comparisons (overall cohort)
 
Median
IQR
N
p global
p individual
Tumor type
  
196
< 0.001*
 
 Cystadenoma
0.100
0.263
85
  
 Borderline
0.731
0.558
32
  
 Carcinoma
0.375
0.513
79
  
 Borderline vs cystadenoma
    
< 0.001
 Borderline vs carcinoma
    
0.004
 Cystadenoma vs carcinoma
    
< 0.001
Histological subtype
  
196
0.024
 
 Clear cell
0.156
0.436
14
  
 Endometrioid
0.144
0.265
12
  
 Mucinous
0.125
0.338
43
  
 Serous
0.350
0.600
127
  
 Clear cell vs endometrioid
    
0.676
 Clear cell vs mucinous
    
0.529
 Clear cell vs serous
    
0.287
 Endometrioid vs mucinous
    
0.929
 Endometrioid vs serous
    
0.124
 Mucinous vs serous
    
0.005
Stage
  
107
0.709
 
 I + II
0.397
0.703
48
  
 III + IV
0.500
0.522
59
  
 (I + II) vs (III + IV)
    
0.709
Grade
  
110
0.002
 
 1
0.239
0.572
4
  
 2a
0.233
0.519
23
  
 3
0.500
0.550
51
  
 Borderline
0.731
0.558
32
  
 1 vs 2
    
0.858
 1 vs 3
    
0.432
 2 vs 3
    
0.044
 Borderline vs 1
    
0.085
 Borderline vs 2
    
< 0.001
 Borderline vs 3
    
0.025
*p < 0.05 = significant
IQR interquartile range, N number of patients
aIncludes the G2 serous high-grade carcinomas
Table 3
Outcome statistics (overall cohort)
 
Median
0.95 LCL; 0.95 UCLa
N
p value*
Overall cohort
    
 Overall survival
  
50
0.603
  Median months (low)
158.3
59.1; NE
  
  Median months (high)
NE
43.4; NE
  
 Relapse-free survival
    
  Median months (low)
47.4
19.4; NE
50
0.152
  Median months (high)
21.37
11.8; 44.1
  
Serous sub-cohort
    
 Overall survival
  
39
 
  Median months (low)
158.3
59.1; NE
 
0.165
  Median months (high)
47.7
27.5; NE
  
 Relapse-free survival
  
39
 
  Median months (low)
19.4
9.2; NE
 
0.576
  Median months (high)
14.9
11.8; NE
  
N number of patients, NE not estimable
*p < 0.05 = significant
aLower; upper confidential level
Specifically interested in the serous ovarian carcinoma, we then analyzed LATS1/2 expression in this group of patients, which was also the largest histological subtype (n = 52) in our cohort. The descriptive statistics are summarized in Table 4. Among these 52 patients, a good three-quarters (77%) were FIGO stage I + II and just under one-quarter (23%) were FIGO stage III + IV. All except one among all the 51 were high-grade serous carcinoma patients. LATS1/2 protein expression in FIGO stage I + II and stage III + IV in this sub-cohort was not significantly different (p = 0.275) (Table 5). LATS12/2 expression in the one low-grade patient was higher than in the high-grade serous carcinoma patients (Table 5), but the meaning of this comparison is limited (one single case in the low-grade group). Both overall survival and relapse-free survival were not different in low LATS1/2- and high LATS1/2-expressing patients (p = 0.164 and p = 0.576, respectively) (Table 5, Fig. 3f, g); however, an at least apparent advantage of low LATS1/2-expressing serous carcinoma patients for overall survival was noted: the median overall survival of high LATS1/2 expressers was shorter than that of low LATS1/2 expressers. LATS1/2 expression was thus FIGO stage independent and did not associate with outcome. Taken together, the results from our Swiss cohort indicate that LATS1/2 expression was not associated with better outcome.
Table 4
Serous carcinoma cohort description
Adenocarcinoma
 
N
52
Stage (FIGO)
 
48
 I + II
11 (22.9%)
 
 III + IV
37 (77.1%)
 
Grade
 
51
 Lowa
1 (2%)
 
 Higha
50 (98%)
 
Scoreb
0.50 [0.25;0.71]
52
Medsplitc
 
52
 Low expression
28 (53.8%)
 
 High expression
24 (46.2%)
 
N number of patients
aLow = G1; high = (G2 + G3); bmedian and IQR (interquartile range); cmedian split
Table 5
Scores (median, IQR) and comparisons (serous carcinoma cohort)
 
Median
IQR
N
p value
Stage
  
48
 
 I + II
0.338
0.377
11
0.275
 III + IV
0.550
0.494
37
 
 (I + II) vs (III + IV)
   
0.275
Grade
  
51
 
 Low
1.117
NE
1
0.081
 High
0.500
0.456
50
 
IQR interquartile range, N number of patients, NE not estimable

LATS protein expression in ovarian cancer cell lines is not associated with drug sensitivity and EMT status

We were intrigued by the transcriptomic and our patient cohort immunohistochemistry data, suggesting that LATS expression was not favorable for outcome in ovarian cancer and was not less expressed in cancer tissue compared to the benign tumor tissue (cystadenomas). We therefore determined LATS protein expression by Western blotting in a panel of serous ovarian cancer (SOC), fallopian tube (FT), and human ovarian surface epithelial (HOSE) cell lines and wondered whether LATS protein expression was accordingly elevated in SOC cell lines compared to FT and HOSE cells. The results (Fig. 4a, b) demonstrate that in comparison with the HOSE cells, LATS1 was elevated in five out of nine SOC cell lines and in EnOC cells and TOV112D cells. FT194 cells displayed elevated LATS1, while the FT190 cells displayed LATS1 expression similar to the two HOSE cell lines. LATS2 expression was elevated in four out of nine SOC cell lines, while the five other SOC cell lines and the EnOC cell line displayed LATS expression comparable to HOSE cells. Both FT cell lines displayed LATS2 expression comparable to HOSE cells. Interestingly, Kuramocchi, CaOv3, and OVCAR-3 SOC cells had elevated LATS1 and LATS2, whereas A2780, TYK-nu, and BG-1 had LATS1 and LATS2 levels comparable to HOSE cells. SKOV-3, IGROV-1, and OAW42 cells had elevated LATS1 but low LATS2, indicating that in six out of nine SOC cell lines LATS1 and LATS2 levels were comparable. These data indicate that LATS1 and LATS2 are elevated in at least some SOC cell lines in comparison to the HOSE cells.
We then determined whether LATS protein expression was associated with the EMT status of SOC cells, e.g., whether LATS protein expression decreased with EMT. The cell lines were classified according to their expression of E-cadherin (epithelial marker) and vimentin (mesenchymal marker) as epithelial (E-cad +/vim−), mesenchymal (E-cad−/vim +), and intermediate (E-cad +/vim +) (Fig. 4c; Jacob  et al. 2018). LATS1 and LATS2 expression generally varied within each individual EMT class, but was largely comparable among the three EMT classes (Fig. 4d), indicating that LATS expression did not indicate the EMT status of the cells.
We next determined whether LATS protein expression was an indicator for drug sensitivity, i.e., whether ovarian cancer cell lines with higher LATS were drug sensitive and those with low LATS were drug resistant. Spearman’s rank correlation showed that there was no statistically significant association between LATS expression and sensitivity to cisplatin, carboplatin, doxorubicin, and paclitaxel (Table 6). This indicates that LATS protein expression was not associated with the extent of drug response.
Table 6
LATS expression and drug sensitivity correlation in ovarian cancer cell lines
Drug
LATS1
LATS2
Correlation*
p value*
Correlation
p value
Cisplatin
0.571
0.151
− 0.381
0.360
Carboplatin
0.619
0.115
− 0.381
0.360
Doxorubicin
0.571
0.151
− 0.214
0.619
Paclitaxel
0.619
0.115
− 0.476
0.234
*Spearman’s rank correlation
We also wondered whether low LATS-expressing cells that acquired resistance through multiple exposures to increasing drug concentrations displayed elevated LATS expression. The results demonstrate that acquired cisplatin resistance in A2780/CP cells and in TYK-nu(R) cells (to a lesser extent though) was associated with elevated LATS1, but that inversely acquired paclitaxel resistance in IGROV1-PXL cells was associated with reduced LATS1 (Fig. 5a, b). In contrast, LATS2 was decreased in these cisplatin-resistant A2780/CP cells, whereas it was comparably expressed in cisplatin-resistant TYK-nu(R) cells, and even markedly elevated in the paclitaxel-resistant IGROV1-PXL cells. Acquired paclitaxel resistance in IGROV1-PXL cells associated with de novo expression of multidrug resistance protein MDR1. Collectively, LATS protein expression levels did not generally indicate the extent of drug sensitivity.

Discussion

We investigated LATS expression in publicly accessible transcriptomic data sets and in tissue samples from a Swiss ovarian cancer patient cohort with regard to clinicopathological characteristics and outcome and based on the intriguing results then determined in a panel of ovarian cancer cell lines whether LATS expression is an indicator for the EMT status of these cells and for drug sensitivity. Based on the results, we may conclude that LATS expression (a) did not associate with better outcome in ovarian cancer, (b) was not reduced in SOC cell lines, and (c) was not associated with EMT status and drug sensitivity.
Several interesting findings emerged from this study: Firstly, the analysis of 15 databases indicated that neither LATS1 nor LATS2 expression was associated with favorable survival in ovarian cancer and that LATS2 may even have a negative role for survival. They neither support the putative function of LATS proteins as tumor suppressors nor are they consistent with the previous study of ovarian cancer patients, where elevated LATS1 and LATS2 expression was associated with better outcome in serous ovarian cancer patients (Xu et al. 2015). Rather, LATS2 may function as a possible tumor promoter. However, it is worthwhile mentioning that the interpretation of the available transcriptomic data may be done with care because whether an association or its reverse was present depended on the data set selected for the analysis.
Secondly, LATS1/2 expression was not favorable for overall survival in both the overall cohort and the serous carcinoma sub-cohort. It even tended to have a negative effect on relapse-free survival, but the informative value is limited by the low number of events. These results are inconsistent with a tumor-suppressive function of LATS family proteins, but support the findings from the transcriptomic data sets analysis. Histologically, LATS1/2 expression was significantly higher in the serous than in the mucinous subtype, whereas it was comparable among the endometrioid, clear cell, and mucinous subtypes. LATS1/2 expression was lowest in cystadenoma, intermediate in carcinoma, and highest in borderline. LATS1/2 expression was not different among the different FIGO stages for both the overall tumor patient cohort and the serous carcinoma sub-cohort. Of note, LATS1/2 expression was significantly higher in grade 3 than grade 2 in the overall cohort: a statement not meaningful for the serous carcinoma sub-cohort, because only one single case was available in the low-grade group.
These results are discrepant to those from the previous study by Xu et al. who reported that LATS1 and LATS2 expression was elevated in mucinous compared to serous ovarian carcinomas, correlated with better outcome (longer survival and less recurrence), decreased with higher FIGO stage, and was elevated in high-grade serous carcinomas (Xu et al. 2015). The reasons for this discrepancy are unclear, but may be at least partly explained if LATS had a function different from that of a tumor suppressor. It is unlikely that the use of an antibody recognizing total LATS 1/2 protein instead of individual antibodies for LATS1 and LATS2 accounted for the discrepant immunohistochemistry results. On the other hand, our immunohistochemistry results are largely in line with those from transcriptomic data sets: those did not display an unfavorable outcome for ovarian cancer patients with low LATS expression as expected if LATS was tumor suppressive. Our data are, however, consistent with a previous study reporting LATS overexpression in nasopharyngeal cancer (Zhang et al. 2010).
Thirdly, we also report on issues not yet addressed in ovarian cancer, such as the possible relationship between LATS protein expression in ovarian cancer cell lines and their EMT status and their drug sensitivity. Interestingly LATS1 and LATS2 proteins were higher or at least comparably expressed in ovarian cancer cell lines compared to “normal” HOSE and FT cell lines, but in no case LATS protein expression was decreased relative to the “normal” cell lines. These results may be surprising: assuming a tumor-suppressive function of LATS and considering the decreased LATS expression in SOC compared to healthy tissue reported previously (Xu et al. 2015), LATS protein expression would have been expected to be lower in HOSE and FT cells than in SOC cells. On the other hand, they seem consistent with the transcriptomic data set results. Also, expression of LATS1 and LATS2 is not necessarily interdependent, meaning that high LATS1 expression does not necessarily mean high LATS2 expression in ovarian cancer cell lines. Taken together, the results do not support the proposed function of LATS proteins as tumor suppressors.
Likewise, LATS1 and LATS2 expression was comparable among epithelial, intermediate, and mesenchymal ovarian cancer cell lines, indicating that LATS protein expression was not associated with the cells’ EMT status. This is at odds with the view that LATS expression declines when cells transition from epithelial to mesenchymal (Nozaki et al. 2019; Moroishi et al. 2015; Lei et al. 2008). Opposed to these studies is a report showing that LATS can potentiate tumor-promoting factors and augment EMT (Zhang et al. 2012).
In addition, the expression of LATS1 and LATS2 was not associated with drug sensitivity, meaning that the extent of LATS expression in SOC cell lines did in general not indicate whether cells responded better or poorer to chemotherapeutic drug exposure. However, it may do so in individual cases: although lacking statistical significance, cells with higher LATS1 tended to be drug resistant and those with higher LATS2 tended to be drug sensitive, suggesting that LATS1 and LATS2 have opposing functions in this context. Notably, the absence of an association between LATS1 and LATS2 expression and drug sensitivity does not imply that LATS proteins are not implicated. Indeed, LATS1/2 does modulate cellular responses to chemotherapeutic drug exposure. Low LATS expression improved therapy response in advanced and recurrent breast cancer patients, possibly through the LATS downregulation-induced disruption of cell cycle checkpoints (Takahashi et al. 2007). Conversely, loss of LATS1 rendered HeLa cells resistant to paclitaxel-induced cell death (Yeung et al. 2018) and loss of LATS2 resulted in doxorubicin and etoposide resistance in leukemic cell lines (Kawahara et al. 2008). The molecular mechanisms by which LATS governs drug sensitivity or resistance are, however, not understood. We also wondered whether acquired drug resistance involved alterations in LATS protein expression. Indeed, altered LATS protein expression was found, but an obvious pattern was missing: this means that acquired resistance was not generally associated with elevated LATS1 and LATS2. Whether the de novo expression of multidrug resistance transporter MDR1 and the altered LATS expression in the paclitaxel-resistant IGROV1-PXL cells are connected cells is unknown.
In summary, our results suggest a function of LATS proteins different from that of a tumor suppressor and may even point to an opposed function of LATS proteins in ovarian cancer. The role of LATS proteins hence remains controversial and possibly is context dependent and cancer type dependent.

Acknowledgements

The authors thank Dr. Mona Tata for her assistance in immunohistochemistry.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical standards

Ethics approval was obtained from the Swiss Ethical Cantonal Department SPUK (approval #StV06/2006) and the Ethical Committee of Nordwest- und Zentralschweiz, Switzerland (EKNZ 2015 ± 436). Neither written nor oral consent was necessary for this retrospective study and data accession was anonymous. The whole study was performed according to the Declaration of Helsinki and local laws and regulations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
Zurück zum Zitat Bowtell DD, Böhm S, Ahmed AA, Aspuria PJ, Bast RC Jr, Beral V, Berek JS, Birrer MJ, Blagden S, Bookman MA et al (2015) Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. Nat Rev Cancer 15:668–679CrossRef Bowtell DD, Böhm S, Ahmed AA, Aspuria PJ, Bast RC Jr, Beral V, Berek JS, Birrer MJ, Blagden S, Bookman MA et al (2015) Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. Nat Rev Cancer 15:668–679CrossRef
Zurück zum Zitat Furth N, Aylon Y (2017) The LATS1 and LATS2 tumor suppressors: beyond the Hippo pathway. Cell Death Differ 24:1488–1501CrossRef Furth N, Aylon Y (2017) The LATS1 and LATS2 tumor suppressors: beyond the Hippo pathway. Cell Death Differ 24:1488–1501CrossRef
Zurück zum Zitat Ganzfried BF, Riester M, Haibe-Kains B, Risch T, Tyekucheva S, Jazic I, Wang XV, Ahmadifar M, Birrer MJ, Parmigiani G et al (2013) CuratedOvarianData: clinically annotated data for the ovarian cancer transcriptome. Database (Oxford) 2013:bat013CrossRef Ganzfried BF, Riester M, Haibe-Kains B, Risch T, Tyekucheva S, Jazic I, Wang XV, Ahmadifar M, Birrer MJ, Parmigiani G et al (2013) CuratedOvarianData: clinically annotated data for the ovarian cancer transcriptome. Database (Oxford) 2013:bat013CrossRef
Zurück zum Zitat Jacob F, Ukegjini K, Nixdorf S, Ford CE, Olivier J, Caduff R, Scurry JP, Guertler R, Hornung D, Mueller R et al (2012) Loss of secreted frizzled-related protein 4 correlates with an aggressive phenotype and predicts poor outcome in ovarian cancer patients. PLoS One 7:e31885CrossRef Jacob F, Ukegjini K, Nixdorf S, Ford CE, Olivier J, Caduff R, Scurry JP, Guertler R, Hornung D, Mueller R et al (2012) Loss of secreted frizzled-related protein 4 correlates with an aggressive phenotype and predicts poor outcome in ovarian cancer patients. PLoS One 7:e31885CrossRef
Zurück zum Zitat Jacob F, Alam S, Konantz M, Liang CY, Kohler RS, Everest-Dass AV, Huang YL, Rimmer N, Fedier A, Schötzau A et al (2018) Transition of mesenchymal and epithelial cancer cells depends on α1–4 galactosyltransferase-mediated glycosphingolipids. Cancer Res 78:2952–2965CrossRef Jacob F, Alam S, Konantz M, Liang CY, Kohler RS, Everest-Dass AV, Huang YL, Rimmer N, Fedier A, Schötzau A et al (2018) Transition of mesenchymal and epithelial cancer cells depends on α1–4 galactosyltransferase-mediated glycosphingolipids. Cancer Res 78:2952–2965CrossRef
Zurück zum Zitat Janse van Rensburg HJ, Yang X (2016) The roles of the Hippo pathway in cancer metastasis. Cell Signal 28:1761–1772CrossRef Janse van Rensburg HJ, Yang X (2016) The roles of the Hippo pathway in cancer metastasis. Cell Signal 28:1761–1772CrossRef
Zurück zum Zitat Jiménez-Velasco A, Román-Gómez J, Agirre X, Barrios M, Navarro G, Vázquez I, Prósper F, Torres A, Heiniger A (2005) Downregulation of the large tumor suppressor 2 (LATS2/KPM) gene is associated with poor prognosis in acute lymphoblastic leukemia. Leukemia 19:2347–2350CrossRef Jiménez-Velasco A, Román-Gómez J, Agirre X, Barrios M, Navarro G, Vázquez I, Prósper F, Torres A, Heiniger A (2005) Downregulation of the large tumor suppressor 2 (LATS2/KPM) gene is associated with poor prognosis in acute lymphoblastic leukemia. Leukemia 19:2347–2350CrossRef
Zurück zum Zitat Kawahara M, Hori T, Chonabayashi K, Oka T, Sudol M, Uchiyama T (2008) Kpm/Lats2 is linked to chemosensitivity of leukemic cells through the stabilization of p73. Blood 112:3856–3866CrossRef Kawahara M, Hori T, Chonabayashi K, Oka T, Sudol M, Uchiyama T (2008) Kpm/Lats2 is linked to chemosensitivity of leukemic cells through the stabilization of p73. Blood 112:3856–3866CrossRef
Zurück zum Zitat Kohler RS, Kettelhack H, Knipprath-Mészaros AM, Fedier A, Schoetzau A, Jacob F, Heinzelmann-Schwarz V (2017) MELK expression in ovarian cancer correlates with poor outcome and its inhibition by OTSSP167 abrogates proliferation and viability of ovarian cancer cells. Gynecol Oncol 145:159–166CrossRef Kohler RS, Kettelhack H, Knipprath-Mészaros AM, Fedier A, Schoetzau A, Jacob F, Heinzelmann-Schwarz V (2017) MELK expression in ovarian cancer correlates with poor outcome and its inhibition by OTSSP167 abrogates proliferation and viability of ovarian cancer cells. Gynecol Oncol 145:159–166CrossRef
Zurück zum Zitat Lei QY, Zhang H, Zhao B, Zha ZY, Bai F, Pei XH, Zhao S, Xiong Y, Guan KL (2008) TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol Cell Biol 28:2426–2436CrossRef Lei QY, Zhang H, Zhao B, Zha ZY, Bai F, Pei XH, Zhao S, Xiong Y, Guan KL (2008) TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol Cell Biol 28:2426–2436CrossRef
Zurück zum Zitat Lin XY, Zhang XP, Wu JH, Qiu XS, Wang EH (2014) Expression of LATS1 contributes to good prognosis and can negatively regulate YAP oncoprotein in non-small-cell lung cancer. Tumour Biol 35:6435–6443CrossRef Lin XY, Zhang XP, Wu JH, Qiu XS, Wang EH (2014) Expression of LATS1 contributes to good prognosis and can negatively regulate YAP oncoprotein in non-small-cell lung cancer. Tumour Biol 35:6435–6443CrossRef
Zurück zum Zitat Masuda H, Ozols RF, Lai GM, Fojo A, Rothenberg M, Hamilton TC (1988) Increased DNA repair as a mechanism of acquired resistance to cis-diamminedichloroplatinum (II) in human ovarian cancer cell lines. Cancer Res 48:5713–5716PubMed Masuda H, Ozols RF, Lai GM, Fojo A, Rothenberg M, Hamilton TC (1988) Increased DNA repair as a mechanism of acquired resistance to cis-diamminedichloroplatinum (II) in human ovarian cancer cell lines. Cancer Res 48:5713–5716PubMed
Zurück zum Zitat Meng Z, Moroishi T, Guan KL (2016) Mechanisms of Hippo pathway regulation. Genes Dev 30:1–17CrossRef Meng Z, Moroishi T, Guan KL (2016) Mechanisms of Hippo pathway regulation. Genes Dev 30:1–17CrossRef
Zurück zum Zitat Morinaga N, Shitara Y, Yanagita Y, Koida T, Kimura M, Asao T, Kimijima I, Takenoshita S, Hirota T, Saya H et al (2000) Molecular analysis of the h-warts/LATS1 gene in human breast cancer. Int J Oncol 17:1125–1129PubMed Morinaga N, Shitara Y, Yanagita Y, Koida T, Kimura M, Asao T, Kimijima I, Takenoshita S, Hirota T, Saya H et al (2000) Molecular analysis of the h-warts/LATS1 gene in human breast cancer. Int J Oncol 17:1125–1129PubMed
Zurück zum Zitat Moroishi T, Hansen CG, Guan KL (2015) The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer 15:73–79CrossRef Moroishi T, Hansen CG, Guan KL (2015) The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer 15:73–79CrossRef
Zurück zum Zitat Nozaki M, Yabuta N, Fukuzawa M, Mukai S, Okamoto A, Sasakura T, Fukushima K, Naito Y, Longmore GD, Nojima H (2019) LATS1/2 kinases trigger self-renewal of cancer stem cells in aggressive oral cancer. Oncotarget 10:1014–1030CrossRef Nozaki M, Yabuta N, Fukuzawa M, Mukai S, Okamoto A, Sasakura T, Fukushima K, Naito Y, Longmore GD, Nojima H (2019) LATS1/2 kinases trigger self-renewal of cancer stem cells in aggressive oral cancer. Oncotarget 10:1014–1030CrossRef
Zurück zum Zitat Ozols RF (2006) Challenges for chemotherapy in ovarian cancer. Ann Oncol 17(Suppl 5):v181–v187CrossRef Ozols RF (2006) Challenges for chemotherapy in ovarian cancer. Ann Oncol 17(Suppl 5):v181–v187CrossRef
Zurück zum Zitat Plouffe SW, Hong AW, Guan KL (2015) Disease implications of the Hippo/YAP pathway. Trends Mol Med 21:212–222CrossRef Plouffe SW, Hong AW, Guan KL (2015) Disease implications of the Hippo/YAP pathway. Trends Mol Med 21:212–222CrossRef
Zurück zum Zitat Son MW, Song GJ, Jang SH, Hong SA, Oh MH, Lee JH, Baek MJ, Lee MS (2017) Clinicopathological significance of large tumor suppressor (LATS) expression in gastric cancer. Gastric Cancer 17:363–373CrossRef Son MW, Song GJ, Jang SH, Hong SA, Oh MH, Lee JH, Baek MJ, Lee MS (2017) Clinicopathological significance of large tumor suppressor (LATS) expression in gastric cancer. Gastric Cancer 17:363–373CrossRef
Zurück zum Zitat Takahashi Y, Miyoshi Y, Takahata C, Irahara N, Taguchi T, Tamaki Y, Noguchi S (2005) Down-regulation of LATS1 and LATS2 mRNA expression by promoter hypermethylation and its association with biologically aggressive phenotype in human breast cancers. Clin Cancer Res 11:1380–1385CrossRef Takahashi Y, Miyoshi Y, Takahata C, Irahara N, Taguchi T, Tamaki Y, Noguchi S (2005) Down-regulation of LATS1 and LATS2 mRNA expression by promoter hypermethylation and its association with biologically aggressive phenotype in human breast cancers. Clin Cancer Res 11:1380–1385CrossRef
Zurück zum Zitat Takahashi Y, Miyoshi Y, Morimoto K, Taguchi T, Tamaki Y, Noguchi S (2007) Low LATS2 mRNA level can predict favorable response to epirubicin plus cyclophosphamide, but not to docetaxel, in breast cancers. J Cancer Res Clin Oncol 133:501–509CrossRef Takahashi Y, Miyoshi Y, Morimoto K, Taguchi T, Tamaki Y, Noguchi S (2007) Low LATS2 mRNA level can predict favorable response to epirubicin plus cyclophosphamide, but not to docetaxel, in breast cancers. J Cancer Res Clin Oncol 133:501–509CrossRef
Zurück zum Zitat Visser S, Yang X (2010) LATS tumor suppressor: a new governor of cellular homeostasis. Cell Cycle 9:3892–3903CrossRef Visser S, Yang X (2010) LATS tumor suppressor: a new governor of cellular homeostasis. Cell Cycle 9:3892–3903CrossRef
Zurück zum Zitat Xu B, Sun D, Wang Z, Weng H, Wu D, Zhang X, Zhou Y, Hu W (2015) Expression of LATS family proteins in ovarian tumors and its significance. Hum Pathol 46:858–867CrossRef Xu B, Sun D, Wang Z, Weng H, Wu D, Zhang X, Zhou Y, Hu W (2015) Expression of LATS family proteins in ovarian tumors and its significance. Hum Pathol 46:858–867CrossRef
Zurück zum Zitat Yeung B, Khanal P, Mehta V, Trinkle-Mulcahy L, Yang X (2018) Identification of Cdk1-LATS-Pin1 as a novel signaling axis in anti-tubulin drug response of cancer cells. Mol Cancer Res 16:1035–1045CrossRef Yeung B, Khanal P, Mehta V, Trinkle-Mulcahy L, Yang X (2018) Identification of Cdk1-LATS-Pin1 as a novel signaling axis in anti-tubulin drug response of cancer cells. Mol Cancer Res 16:1035–1045CrossRef
Zurück zum Zitat Yoshiya N, Adachi S, Misawa Y, Yuzawa H, Honda T, Kanazawa K, Takeuchi S, Tanaka K (1989) Isolation of cisplatin-resistant subline from human ovarian cancer cell line and analysis of its cell-biological characteristics. Nihon Sanka Fujinka Gakkai Zasshi 41:7–14PubMed Yoshiya N, Adachi S, Misawa Y, Yuzawa H, Honda T, Kanazawa K, Takeuchi S, Tanaka K (1989) Isolation of cisplatin-resistant subline from human ovarian cancer cell line and analysis of its cell-biological characteristics. Nihon Sanka Fujinka Gakkai Zasshi 41:7–14PubMed
Zurück zum Zitat Yu FX, Zhao B, Guan KL (2015) Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163:811–828CrossRef Yu FX, Zhao B, Guan KL (2015) Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163:811–828CrossRef
Zurück zum Zitat Zanconato F, Cordenonsi M, Piccolo S (2016) YAP/TAZ at the roots of cancer. Cancer Cell 29:783–803CrossRef Zanconato F, Cordenonsi M, Piccolo S (2016) YAP/TAZ at the roots of cancer. Cancer Cell 29:783–803CrossRef
Zurück zum Zitat Zhang Y, Hu CF, Chen J, Yan LX, Zeng YX, Shao JY (2010) LATS2 is de-methylated and overexpressed in nasopharyngeal carcinoma and predicts poor prognosis. BMC Cancer 10:538CrossRef Zhang Y, Hu CF, Chen J, Yan LX, Zeng YX, Shao JY (2010) LATS2 is de-methylated and overexpressed in nasopharyngeal carcinoma and predicts poor prognosis. BMC Cancer 10:538CrossRef
Zurück zum Zitat Zhang K, Rodriguez-Aznar E, Yabuta N, Owen RJ, Mingot JM, Nojima H, Nieto MA, Longmore GD (2012) Lats2 kinase potentiates Snail1 activity by promoting nuclear retention upon phosphorylation. EMBO J 31:29–43CrossRef Zhang K, Rodriguez-Aznar E, Yabuta N, Owen RJ, Mingot JM, Nojima H, Nieto MA, Longmore GD (2012) Lats2 kinase potentiates Snail1 activity by promoting nuclear retention upon phosphorylation. EMBO J 31:29–43CrossRef
Metadaten
Titel
Outcome in serous ovarian cancer is not associated with LATS expression
verfasst von
Céline Montavon
Gregor R. Stricker
Andreas Schoetzau
Viola Heinzelmann-Schwarz
Francis Jacob
André Fedier
Publikationsdatum
04.10.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Cancer Research and Clinical Oncology / Ausgabe 11/2019
Print ISSN: 0171-5216
Elektronische ISSN: 1432-1335
DOI
https://doi.org/10.1007/s00432-019-03037-4

Weitere Artikel der Ausgabe 11/2019

Journal of Cancer Research and Clinical Oncology 11/2019 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.