Skip to main content
Erschienen in: World Journal of Surgery 12/2021

Open Access 21.08.2021 | Surgery in Low and Middle Income Countries

Outcomes of Renal Trauma in Indian Urban Tertiary Healthcare Centres: A Multicentre Cohort Study

Erschienen in: World Journal of Surgery | Ausgabe 12/2021

Abstract

Background

Renal trauma is present in 0.5–5% of patients admitted for trauma. Advancements in radiologic imaging and minimal-invasive techniques have led to decreased need for surgical intervention. We used a large trauma cohort to characterise renal trauma patients, their management and outcomes.

Methods

We analysed “Towards Improved Trauma Care Outcomes in India” cohort from four urban tertiary public hospitals in India between 1st September 2013 and 31st December 2015. The data of patients with renal trauma were extracted using International Classification of Diseases 10 codes and analysed for demographic and clinical details.

Results

A total of 16,047 trauma patients were included in this cohort. Abdominal trauma comprised 1119 (7%) cases, of which 144 (13%) had renal trauma. Renal trauma was present in 1% of all the patients admitted for trauma. The mean age was 28 years (SD-14.7). A total of 119 (83%) patients were male. Majority (93%) were due to blunt injuries. Road traffic injuries were the most common mechanism (53%) followed by falls (29%). Most renal injuries (89%) were associated with other organ injuries. Seven of the 144 (5%) patients required nephrectomy. Three patients had grade V trauma; all underwent nephrectomy. The 30-day in-hospital mortality, in patients with renal trauma, was 17% (24/144).

Conclusion

Most renal trauma patients were managed nonoperatively. 89% of patients with renal trauma had concomitant injuries. The renal trauma profile from this large cohort may be generalisable to urban contexts in India and other low- and middle-income countries.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Injuries account for 10% of global mortality which translates to around 4.5 million annual deaths [1]. It is estimated that more than 1000 non-fatal injuries occur for every injury related death [2, 3]. Globally, renal trauma is present in approximately 0.5–5% of patients with traumatic injury and 10–20% of patients with abdominal trauma [46].
The American Association for the Surgery of Trauma (AAST) classifies renal trauma into five grades of increasing severity [7]. Advances in imaging and endovascular techniques in high-income settings (HICs) have resulted in an increase in nonoperative management of renal trauma, including those with high AAST grades (III–V) [810]. Nephrectomy in these settings is often reserved for patients with persistent shock or sepsis, or when endovascular techniques or intensive care facilities are limited [10, 11].
Several recent studies from India and other low- and middle-income countries (LMICs) have also described renal trauma management with a nonoperative approach but these are all single centre studies with small sample sizes [1214]. We used a large trauma cohort encompassing four public urban tertiary healthcare centres in India [15] to characterise patients with renal trauma and observe their management and outcomes.

Methods

Study design

We analysed the prospective multicentre cohort “Towards Improved Trauma Care Outcomes (TITCO) in India” [15] cohort from four urban tertiary public hospitals in India between 1st September 2013 and 31st December 2015.

Study setting

The four hospitals included in the TITCO cohort provide Level 1 trauma services to an urban Indian population. Level 1 trauma care facilities in India provide the highest level of definitive and comprehensive coverage of all surgical specialities round the clock [16]. These hospitals in metropolitan cities (Mumbai-2; Delhi-1; Kolkata-1) received direct admissions as well as referrals from other hospitals. The participating hospitals were Jai Prakash Narayan Apex Trauma Centre of All India Institute of Medical Sciences (AIIMS), New Delhi; Lokmanya Tilak Municipal General Hospital (LTMGH) and King Edward Memorial (KEM) Hospital, Mumbai and Seth Sukhlal Karnani Memorial Hospital (SSKM), Kolkata. All sites had expertise and availability for endourology and interventional radiology.
All the study sites had availability of endourology and endovascular modalities like angioembolisation; however, the details of its utility for management of renal trauma have not been mentioned or captured in the data registry. Also, although these modalities were available at these hospitals during the study period, their utility was reserved mainly for elective procedures and not readily available as a part of emergency care of trauma patients.

Eligibility criteria

The TITCO cohort included all trauma patients who presented to the emergency departments (EDs) of the study hospitals and were admitted for further treatment. Patients who died after arrival but before admission were also included. Patients with isolated limb injury or who were dead on arrival were not included. Patients were followed up for 30 days from the date of admission or until death or discharge from hospital, whichever was longer. The data of patients with renal trauma with or without other organ injuries, from this cohort, were extracted using the International Classification of Diseases 10 codes (ICD-10 Version:2010) [17], ICD code S37.0 specific for renal trauma.

Data collection

Data were collected prospectively by research officers with a postgraduate degree in health sciences. The research officers received training before the data collection and guidance from the investigators on a weekly basis during the period of data collection. They worked daily through an 8-h shift in rotations with morning, evening and night duties. They used a standardised intake form for data collection and made entries by directly observing the doctors and paramedical staff, engaged in trauma care during their respective duty hours. The data for the patients admitted outside the duty hours were retrieved from patient’s medical records the subsequent day. They uploaded the data to a central database weekly and the team of investigators from each centre checked the data periodically to ensure quality and consistency of data elements. The Injury Severity Score (ISS) was calculated based on the details of injury, imaging and operative findings by a certified abbreviated injury scale specialist.

Study variables

We analysed the data of patients with renal trauma for the characteristics including age and gender, mechanism of injury, heart rate (HR) and systolic blood pressure (SBP), Glasgow Coma Score (GCS) and Injury Severity Score (ISS). The data also included information on haemoglobin levels, blood urea nitrogen levels, contrast enhanced computerised tomography (CECT) findings, surgical interventions if any, length of hospital stay and blood transfusion details.
We categorised each renal injury into AAST grades based on the CECT reports and/or operative findings. The renal injuries whose description was not detailed in the CECT reports or operative notes were not assigned any grade and marked as non-gradable (NG).
All the collaborating centres approved the TITCO study in their respective institutional review board, and a waiver of informed consent was granted. This study used anonymised data from the TITCO cohort.

Quantitative variables and statistical methods

All continuous variables were represented as median and interquartile range and categorical variables as counts and percentages. Age was represented as mean with standard deviation. The data analysis was performed using Microsoft Excel statistical software 2019.

Result

Over the study period, 16,047 trauma patients were admitted and enrolled in the TITCO cohort. Abdominal trauma comprised 1119 (7%) cases, of which 144 (13%) had renal trauma. Renal trauma was present in 1% of patients admitted for trauma (Fig. 1).
The demographic and clinical profile of the patients with renal trauma listed is shown in Table 1. The mean age was 28 years (SD-14.7), age following a unimodal distribution, with young adults (20–40 years), being the most affected (Fig. 2). A total of 119 (83%) patients were male. Blunt trauma was the predominant mode of injury (93%). Road traffic injuries (RTIs) were the commonest mechanism (53%) followed by falls (29%). On sub-categorisation of patients with renal trauma due to RTIs, we observed that pedestrians and motorcyclists constituted around 47% (36/76) of patients having renal trauma. Grade V renal trauma was seen in motorcyclists and drivers. 76% of patients with renal trauma had no or mild traumatic brain injury (TBI) with GCS 13–15. 3% and 14% patients had moderate (GCS 9–12) and severe (GCS ≤ 8) TBI, respectively. The median ISS was 17 (IQR- 9–21). Patients with grade IV and V renal trauma had predominantly severe (16–25) and profound (26–75) ISS. However, the ISS in these patients did not correlate with the need for surgical intervention. A total of 24 (17%) patients with renal trauma were hypotensive (SBP < 90 mm Hg) on presentation and 50 (35%) had tachycardia (HR > 100 beats/minute) (Table 1).
Table 1
Demographics and Clinical Profile of Patients with Renal Trauma
Variables
Value N = 144
N (%)
Missing values (n)
Age
28 (14.7)
0
Males
119 (83)
0
Adults (> 18 years of age)
115 (80)
0
Mechanism of injury (MOI)
 Road traffic injury
 Falls
 Assault
 Railway injuries
 Others
76 (53)
41 (29)
14 (10)
5 (4)
8 (6)
0
Blunt injury
134 (93)
0
Isolated renal trauma
Renal trauma + Concomitant trauma
16 (11)
128 (89)
0
AAST grade
 I
 II
 III
 IV
 V
 NG
14 (10)
45 (31)
37 (26)
27 (19)
3 (2)
18 (13)
 
HR
90 (80–109)
2
Tachycardia (HR > 100 bpm)
50 (35)
 
SBP
115 (102–124)
4
Hypotension (SBP < 90 mmHg)
24 (17)
 
GCS
 Severe TBI (≤ 8)
 Moderate TBI (9–12)
 Mild TBI (13–15)
20 (14)
5 (3)
109 (76)
10
ISS
17 (9–21)
34
Haemoglobin (gm/dl)
11.6 (9.6–13.2)
10
Blood transfusion in the first 24 h
39 (27)
 
Blood urea nitrogen (mg/dl)
27 (20.3–35.5)
11
Length of stay (days)
6 (4–15)
1
Continuous variables are represented by median and interquartile range
Categorical variables are represented as counts and percentages
Age represented as mean and standard deviation, TBI- Traumatic Brain Injury
All percentages rounded up to the closest integer, NG- Non-Gradable based on CECT or operative findings
Most patients with renal trauma (89%) had other concomitant organ injuries. Only 16 (11%) patients had isolated renal trauma. Splenic (30%) and liver (27%) injuries were most associated with renal trauma (Fig. 3).
Operative management (OM) for the kidney was performed in 10 patients. Seven of the 144 (5%) patients had nephrectomy. Of the seven patients who underwent nephrectomy, five were operated within the first 24 h of admission while the remaining two had delayed nephrectomy (beyond 24 h, exact timing unknown). Three patients underwent primary repair of renal injury (renorrhaphy).
Three patients had grade V trauma; all underwent nephrectomy due to haemodynamic instability. One fourth of patients with grade IV trauma (n = 7) underwent OM; 4 patients underwent nephrectomy, none due to haemodynamic instability; 3 had primary repair of the renal injury (Table 2).
Table 2
Management of renal trauma based on the AAST grades
Grade
NOM
OM (Renal repair/associated injuries)
OM
Nephrectomy
Nephrectomy
rate
Isolated renal trauma
Mortality
I (n = 14)
12
0/2
0
0
0
3 (21%)
II (n( = 45)
33
0/12
0
0
2
9 (20%)
III (n = 37)
28
0/9
0
0
9
3 (8%)
IV (n = 27)
16
3/6*
4
15%
4
4 (15%)
V (n = 3)
0
0/0
3
100%
0
1 (33%)
NG (n = 18)
13
0/5
0
0
1
4 (22%)
*2 of the 3 patients undergoing OM for renal repair were also operated for concomitant splenectomy. Hence 3/6, wherein 2 patients are common on both sides
OM- Operative Management, NOM- Nonoperative Management, NG- Non-Gradable
The 30-day in-hospital mortality in patients with renal trauma was 17% (24/144). The mortality in patients with renal trauma as per AAST grades is shown in Table 2. However, due to overall small number of patients with renal trauma with very few patients having isolated renal trauma, its contribution to the mortality could not be determined.

Discussion

We found renal trauma to be present in around 1% of patients admitted for trauma and 13% of patients with abdominal trauma in this Indian cohort. This is comparable to global trauma literature with renal trauma present in around 0.5–5% of patients admitted for trauma and 8–20% of patients with abdominal trauma [4, 6, 7, 18].
Most patients were managed conservatively (NOM) with only 7 (5%) undergoing nephrectomy. Nephrectomies were only performed in patients with grade IV & V renal trauma. Indian centres have previously reported nephrectomy rates of 12–16%, with those in grade V approaching 90% [12, 19]. A study from South Africa, a setting similar to the Indian LMIC context, demonstrated high nephrectomy rates of 40% for grade IV and 89% for grade V in predominantly blunt renal trauma [20]. Contrary to this, another South African study from a tertiary level major trauma centre utilising endovascular and endourological interventions for trauma management, demonstrated nephrectomy rates of 10.5% for grade IV and 25% for grade V patients with blunt renal trauma [21]. A genitourinary trauma study by the AAST demonstrated nephrectomy rates of 15% for grade IV and 62% for grade V [10], and a Canadian study by Mann et al. demonstrated only a 4% nephrectomy rate for high-grade renal trauma [22]. As compared to HICs and LMIC setups practicing minimally invasive endovascular and endourological techniques, the nephrectomy rate was higher in our cohort for grade V renal trauma. However, a true comparison may not be feasible due to the small number of patients with grade V renal trauma in our cohort and all of these patients being hemodynamically unstable, at least upon arrival. Further, while angioembolisation was available in all the centres included in this study, utilisation of these resources is not recorded in our dataset. Additionally, access to these resources in the emergency trauma setting can be variable based on time of day and existing case volume.
Renal trauma often occurs as a part of polytrauma. 89% of renal trauma patients in this study had concomitant injuries. The most common organs affected were the spleen and the liver. This is comparable to the literature around the world with 80–95% patients having associated organ injuries [7, 23, 24]. We observed a relatively high mortality in patients with low-grade renal trauma and other concomitant injuries. This high mortality was likely due to serious concomitant injuries, as isolated renal trauma in our cohort was rare.
The mean age of patients afflicted with renal trauma in this study was 28 years. Age demonstrated a unimodal distribution with young adults being the most affected. We also observed a male predominance. Blunt injuries, particularly RTIs and falls, were the most common mechanism . This is similar to the global literature, wherein patients afflicted with renal trauma have been predominantly young, with a mean age between 30 and 40; mostly male, reflecting 70–90% of cases; and due to blunt trauma mechanism, particularly road traffic injury [7, 23, 25]. Renal trauma was observed mainly in pedestrians and motorcyclists among the RTIs. Pedestrians and motorcyclists are vulnerable to renal trauma, and these injuries may be unique to LMIC settings like India [10] and may form basis for future work.
A strength of this analysis is the large dataset, representing multiple level 1 public urban healthcare centres across India, allowing a more complete representation of the renal trauma patient profile, injury grade, and management strategies employed.
A limitation of our analysis is the limited information on the use of endovascular therapies. Additional research is needed to understand the impact of the availability of endovascular therapy, or its absence, on the management of high-grade renal trauma in the Indian context.

Conclusion

Renal trauma is present in 1% of patients admitted for trauma and 13% of patients with abdominal trauma. Most renal trauma patients were managed nonoperatively. Most patients (89%) with renal trauma had concomitant injuries. The renal trauma profile from this large cohort may be generalisable to other urban healthcare centres in India and urban contexts in other LMICs.

Acknowledgements

We thank the Thursday Truth Seekers (TTS) and the Towards Improved Trauma Care Outcomes (TITCO), India, research team for their support.

Declarations

Conflict of interest

There is no conflict of interest to disclose from any of the authors.
The TITCO project was granted waivers of informed consent from all study centres. The study received approval from the institutional ethics committee of the four centres involved in the study. The ethics approval registration numbers were EC/NP-279/2013 RP-01/2013 from the All India Institute of Medical Sciences Ethics Committee, IEC/11/13 from the Lokmanya Tilak Municipal Medical College and Lokmanya Tilak Municipal General Hospital institutional ethics Committee, IEC/279 from the Institute of Post Graduate Medical Education and Research (IPGME&R) Research Oversight Committee (Institutional Ethics Committee) and IEC(I)OUT/222/14 from the Seth GS Medical College and King Edward Memorial Hospital Institutional Ethics Committee.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

Die Chirurgie

Print-Titel

Das Abo mit mehr Tiefe

Mit der Zeitschrift Die Chirurgie erhalten Sie zusätzlich Online-Zugriff auf weitere 43 chirurgische Fachzeitschriften, CME-Fortbildungen, Webinare, Vorbereitungskursen zur Facharztprüfung und die digitale Enzyklopädie e.Medpedia.

Bis 30. April 2024 bestellen und im ersten Jahr nur 199 € zahlen!

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Literatur
7.
Zurück zum Zitat Knipe H, Gaillard F (2018) AAST kidney injury scale. Radiopedia. Knipe H, Gaillard F (2018) AAST kidney injury scale. Radiopedia.
9.
Zurück zum Zitat Kirkpatrick B, Nima B, Benjamin B et al (2018) Use of angioembolization in urology: a review. Transl Androl Urol 7:535–544CrossRef Kirkpatrick B, Nima B, Benjamin B et al (2018) Use of angioembolization in urology: a review. Transl Androl Urol 7:535–544CrossRef
10.
Zurück zum Zitat Keihani S, Xu Y, Presson AP et al (2018) Contemporary management of high-grade renal trauma: results from the American association for the surgery of trauma genitourinary trauma study. J Trauma Acute Care Surg 84(3):418–425CrossRef Keihani S, Xu Y, Presson AP et al (2018) Contemporary management of high-grade renal trauma: results from the American association for the surgery of trauma genitourinary trauma study. J Trauma Acute Care Surg 84(3):418–425CrossRef
12.
Zurück zum Zitat Prasad NH, Devraj R, Chandriah GR et al (2014) Predictors of nephrectomy in high grade blunt renal trauma patients treated primarily with conservative intent. Indian J Urol 30:158–160CrossRef Prasad NH, Devraj R, Chandriah GR et al (2014) Predictors of nephrectomy in high grade blunt renal trauma patients treated primarily with conservative intent. Indian J Urol 30:158–160CrossRef
14.
Zurück zum Zitat Syarif PAM, Kholis K et al (2020) Renal trauma: a 5-year retrospective review in single institution. Afr J Urol 26:61CrossRef Syarif PAM, Kholis K et al (2020) Renal trauma: a 5-year retrospective review in single institution. Afr J Urol 26:61CrossRef
16.
Zurück zum Zitat Capacity Building for developing Trauma Care Facilities in Govt. Hospitals- MoHFW, India 2018 Capacity Building for developing Trauma Care Facilities in Govt. Hospitals- MoHFW, India 2018
17.
Zurück zum Zitat ICD-10- International classification of diseases, Tenth Revision- CDC National Center for Health Statistics. ICD-10- International classification of diseases, Tenth Revision- CDC National Center for Health Statistics.
19.
Zurück zum Zitat Rajendra BN, Sharma V, Basavaraj MK et al (2017) Grade V renal injury- short- and long-term outcomes. Open J Trauma 1:020–025CrossRef Rajendra BN, Sharma V, Basavaraj MK et al (2017) Grade V renal injury- short- and long-term outcomes. Open J Trauma 1:020–025CrossRef
20.
Zurück zum Zitat Pillay V, Pillay M, Hardcastle T (2019) Renal trauma in a trauma intensive care unit population. S Afr J Surg 57(4):29–32CrossRef Pillay V, Pillay M, Hardcastle T (2019) Renal trauma in a trauma intensive care unit population. S Afr J Surg 57(4):29–32CrossRef
Metadaten
Titel
Outcomes of Renal Trauma in Indian Urban Tertiary Healthcare Centres: A Multicentre Cohort Study
Publikationsdatum
21.08.2021
Erschienen in
World Journal of Surgery / Ausgabe 12/2021
Print ISSN: 0364-2313
Elektronische ISSN: 1432-2323
DOI
https://doi.org/10.1007/s00268-021-06293-z

Weitere Artikel der Ausgabe 12/2021

World Journal of Surgery 12/2021 Zur Ausgabe

Surgical Symposium Contribution

“Modern Endovascular Therapy”

Wie erfolgreich ist eine Re-Ablation nach Rezidiv?

23.04.2024 Ablationstherapie Nachrichten

Nach der Katheterablation von Vorhofflimmern kommt es bei etwa einem Drittel der Patienten zu Rezidiven, meist binnen eines Jahres. Wie sich spätere Rückfälle auf die Erfolgschancen einer erneuten Ablation auswirken, haben Schweizer Kardiologen erforscht.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Mehr Schaden als Nutzen durch präoperatives Aussetzen von GLP-1-Agonisten?

23.04.2024 Operationsvorbereitung Nachrichten

Derzeit wird empfohlen, eine Therapie mit GLP-1-Rezeptoragonisten präoperativ zu unterbrechen. Eine neue Studie nährt jedoch Zweifel an der Notwendigkeit der Maßnahme.

Ureterstriktur: Innovative OP-Technik bewährt sich

19.04.2024 EAU 2024 Kongressbericht

Die Ureterstriktur ist eine relativ seltene Komplikation, trotzdem bedarf sie einer differenzierten Versorgung. In komplexen Fällen wird dies durch die roboterassistierte OP-Technik gewährleistet. Erste Resultate ermutigen.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.