Skip to main content
Erschienen in: Discover Oncology 2/2017

23.01.2017 | Original Paper

Over-Expression of Activin-βC Is Associated with Murine and Human Prostate Disease.

verfasst von: Edward C. Ottley, Karen L. Reader, Kailun Lee, Francesco E. Marino, Helen D. Nicholson, Gail P. Risbridger, Elspeth Gold

Erschienen in: Discover Oncology | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

Activins are members of the TGF-β superfamily and have been linked to prostate cancer. There are four mammalian activin subunits (βA, βB, βC, and βE) that dimerize to form functional proteins. The role of activin-A (βAA) has been relatively well characterized and has been shown to generally inhibit growth in the prostate. In contrast, little is known about the biological function of the βC and βE subunits. Previous work indicated activin-C (βCC) to be an antagonist of activin-A. This is important because resistance to activin-A growth inhibition occurs during prostate cancer progression. This paradox is not currently well understood. Hence, we hypothesize that local expression of the activin-βC subunit antagonizes activin-A-dependent growth inhibition and represents a key factor contributing to acquired insensitivity to activin-A observed in prostate cancer progression. To test our hypothesis, we characterized the ventral prostate lobes of 9-month-old transgenic mice over-expressing activin-βC and examined the expression of activin-βA, activin-βC, and the activin intracellular signaling factor, Smad-2, in human prostate diseases. Prostate epithelial cell hyperplasia, low-grade prostatic intraepithelial neoplasia (PIN) lesions, alterations in cell proliferation, and reduced Smad-2 nuclear localization were evident in mice over-expressing activin-βC. Increased activin-βA and -βC subunit immunoreactive scores and decreased Smad-2 nuclear localization were also evident in human prostate cancer. This study suggests that over-expression of activin-βC is associated with murine and human prostate pathologies. We conclude that the activin-βC subunit may have therapeutic and/or diagnostic implications in human prostate disease.
Literatur
1.
Zurück zum Zitat Gold E, Risbridger G (2012) Activins and activin antagonists in the prostate and prostate cancer. Mol Cell Endocrinol 359(1):107–112CrossRefPubMed Gold E, Risbridger G (2012) Activins and activin antagonists in the prostate and prostate cancer. Mol Cell Endocrinol 359(1):107–112CrossRefPubMed
3.
Zurück zum Zitat Risbridger GP, Ellem SJ, McPherson SJ (2007) Estrogen action on the prostate gland: a critical mix of endocrine and paracrine signaling. J Mol Endocrinol 39(3):183–188CrossRefPubMed Risbridger GP, Ellem SJ, McPherson SJ (2007) Estrogen action on the prostate gland: a critical mix of endocrine and paracrine signaling. J Mol Endocrinol 39(3):183–188CrossRefPubMed
4.
Zurück zum Zitat McPherson SJ, Thomas TZ, Wang H, Gurusinghe CJ, Risbridger GP (1997) Growth inhibitory response to activin A and B by human prostate tumour cell lines, LNCaP and DU145. J Endocrinol 154(3):535–545CrossRefPubMed McPherson SJ, Thomas TZ, Wang H, Gurusinghe CJ, Risbridger GP (1997) Growth inhibitory response to activin A and B by human prostate tumour cell lines, LNCaP and DU145. J Endocrinol 154(3):535–545CrossRefPubMed
5.
Zurück zum Zitat Shi Y, Massagué J (2003) Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113(6):685–700CrossRefPubMed Shi Y, Massagué J (2003) Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113(6):685–700CrossRefPubMed
6.
Zurück zum Zitat Loomans HA, Andl CD (2014) Intertwining of activin A and TGFβ signaling: dual roles in cancer progression and cancer cell invasion. Cancers (Basel) 7(1):70–91CrossRef Loomans HA, Andl CD (2014) Intertwining of activin A and TGFβ signaling: dual roles in cancer progression and cancer cell invasion. Cancers (Basel) 7(1):70–91CrossRef
7.
Zurück zum Zitat Lau AL, Kumar TR, Nishimori K, Bonadio J, Matzuk MM (2000) Activin βC and βE genes are not essential for mouse liver growth, differentiation, and regeneration. Mol Cell Biol 20(16):6127–6137CrossRefPubMedPubMedCentral Lau AL, Kumar TR, Nishimori K, Bonadio J, Matzuk MM (2000) Activin βC and βE genes are not essential for mouse liver growth, differentiation, and regeneration. Mol Cell Biol 20(16):6127–6137CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Gold E, Jetly N, O'Bryan MK, Meachem S, Srinivasan D, Behuria S, Sanchez-Partida LG, Woodruff T, Hedwards S, Wang H, McDougall H, Casey V, Niranjan B, Patella S, Risbridger G (2009) Activin C antagonizes activin A in vitro and overexpression leads to pathologies in vivo. Am J Pathol 174(1):184–195CrossRefPubMedPubMedCentral Gold E, Jetly N, O'Bryan MK, Meachem S, Srinivasan D, Behuria S, Sanchez-Partida LG, Woodruff T, Hedwards S, Wang H, McDougall H, Casey V, Niranjan B, Patella S, Risbridger G (2009) Activin C antagonizes activin A in vitro and overexpression leads to pathologies in vivo. Am J Pathol 174(1):184–195CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Gold E, Marino FE, Harrison C, Makanji Y, Risbridger G (2013) Activin-βc reduces reproductive tumour progression and abolishes cancer-associated cachexia in inhibin-deficient mice. J Pathol 229(4):599–607CrossRefPubMed Gold E, Marino FE, Harrison C, Makanji Y, Risbridger G (2013) Activin-βc reduces reproductive tumour progression and abolishes cancer-associated cachexia in inhibin-deficient mice. J Pathol 229(4):599–607CrossRefPubMed
10.
Zurück zum Zitat Marino FE, Risbridger G, Gold E (2014) The inhibin/activin signalling pathway in human gonadal and adrenal cancers. Mol Hum Reprod 20(12):1223–1237CrossRefPubMed Marino FE, Risbridger G, Gold E (2014) The inhibin/activin signalling pathway in human gonadal and adrenal cancers. Mol Hum Reprod 20(12):1223–1237CrossRefPubMed
11.
Zurück zum Zitat Risbridger GP, Schmitt JF, Robertson DM (2001) Activins and inhibins in endocrine and other tumors. Endocr Rev 22(6):836–858CrossRefPubMed Risbridger GP, Schmitt JF, Robertson DM (2001) Activins and inhibins in endocrine and other tumors. Endocr Rev 22(6):836–858CrossRefPubMed
12.
Zurück zum Zitat McKenzie S, Kyprianou N (2006) Apoptosis evasion: the role of survival pathways in prostate cancer progression and therapeutic resistance. J Cell Biochem 97(1):18–32CrossRefPubMedPubMedCentral McKenzie S, Kyprianou N (2006) Apoptosis evasion: the role of survival pathways in prostate cancer progression and therapeutic resistance. J Cell Biochem 97(1):18–32CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Ottley E, Gold E (2012) Insensitivity to the growth inhibitory effects of activin A: an acquired capability in prostate cancer progression. Cytokine Growth Factor Rev 23(3):119–125CrossRefPubMed Ottley E, Gold E (2012) Insensitivity to the growth inhibitory effects of activin A: an acquired capability in prostate cancer progression. Cytokine Growth Factor Rev 23(3):119–125CrossRefPubMed
14.
Zurück zum Zitat Furst B, Zhang Z, Ying S (1995) Expression of activin and activin receptors in human prostatic carcinoma cell line du145. Int J Oncol 7(2):239–243PubMed Furst B, Zhang Z, Ying S (1995) Expression of activin and activin receptors in human prostatic carcinoma cell line du145. Int J Oncol 7(2):239–243PubMed
15.
Zurück zum Zitat Dalkin AC, Gilrain JT, Bradshaw D, Myers CE (1996) Activin inhibition of prostate cancer cell growth: selective actions on androgen-responsive LNCaP cells. Endocrinology 137(12):5230–5235PubMed Dalkin AC, Gilrain JT, Bradshaw D, Myers CE (1996) Activin inhibition of prostate cancer cell growth: selective actions on androgen-responsive LNCaP cells. Endocrinology 137(12):5230–5235PubMed
16.
Zurück zum Zitat Incorvaia L, Badalamenti G, Rini G, Arcara C, Fricano S, Sferrazza C, Di Trapani D, Gebbia N, Leto G (2007) MMP-2, MMP-9 and activin A blood levels in patients with breast cancer or prostate cancer metastatic to the bone. Anticancer Res 27(3B):1519–1525PubMed Incorvaia L, Badalamenti G, Rini G, Arcara C, Fricano S, Sferrazza C, Di Trapani D, Gebbia N, Leto G (2007) MMP-2, MMP-9 and activin A blood levels in patients with breast cancer or prostate cancer metastatic to the bone. Anticancer Res 27(3B):1519–1525PubMed
17.
Zurück zum Zitat Leto G, Incorvaia L, Badalamenti G, Tumminello FM, Gebbia N, Flandina C, Crescimanno M, Rini G (2006) Activin A circulating levels in patients with bone metastasis from breast or prostate cancer. Clin Exp Metastasis 23(2):117–122CrossRefPubMed Leto G, Incorvaia L, Badalamenti G, Tumminello FM, Gebbia N, Flandina C, Crescimanno M, Rini G (2006) Activin A circulating levels in patients with bone metastasis from breast or prostate cancer. Clin Exp Metastasis 23(2):117–122CrossRefPubMed
18.
Zurück zum Zitat Hofland J, van Weerden WM, Steenbergen J, Dits NF, Jenster G, de Jong FH (2012) Activin A stimulates AKR1C3 expression and growth in human prostate cancer. Endocrinology 153(12):5726–5734CrossRefPubMed Hofland J, van Weerden WM, Steenbergen J, Dits NF, Jenster G, de Jong FH (2012) Activin A stimulates AKR1C3 expression and growth in human prostate cancer. Endocrinology 153(12):5726–5734CrossRefPubMed
19.
Zurück zum Zitat Kang HY, Huang HY, Hsieh CY, Li CF, Shyr CR, Tsai MY, Chang C, Chuang YC, Huang KE (2009) Activin A enhances prostate cancer cell migration through activation of androgen receptor and is overexpressed in metastatic prostate cancer. J Bone Miner Res 24(7):1180–1193CrossRefPubMed Kang HY, Huang HY, Hsieh CY, Li CF, Shyr CR, Tsai MY, Chang C, Chuang YC, Huang KE (2009) Activin A enhances prostate cancer cell migration through activation of androgen receptor and is overexpressed in metastatic prostate cancer. J Bone Miner Res 24(7):1180–1193CrossRefPubMed
20.
Zurück zum Zitat Shappell SB, Thomas GV, Roberts RL, Herbert R, Ittmann MM, Rubin MA, Humphrey PA, Sundberg JP, Rozengurt N, Barrios R (2004) Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the mouse models of human cancer consortium prostate pathology committee. Cancer Res 64(6):2270–2305CrossRefPubMed Shappell SB, Thomas GV, Roberts RL, Herbert R, Ittmann MM, Rubin MA, Humphrey PA, Sundberg JP, Rozengurt N, Barrios R (2004) Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the mouse models of human cancer consortium prostate pathology committee. Cancer Res 64(6):2270–2305CrossRefPubMed
21.
Zurück zum Zitat Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119(3):493–501CrossRefPubMed Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119(3):493–501CrossRefPubMed
22.
Zurück zum Zitat Remmele W, Stegner H (1987) Vorschlag zur einheitlichen Definition eines Immunreaktiven Score (IRS) für den immunhistochemischen Östrogenrezeptor-Nachweis (ER-ICA) im Mammakarzinomgewebe. Pathologe 8(3):138–140PubMed Remmele W, Stegner H (1987) Vorschlag zur einheitlichen Definition eines Immunreaktiven Score (IRS) für den immunhistochemischen Östrogenrezeptor-Nachweis (ER-ICA) im Mammakarzinomgewebe. Pathologe 8(3):138–140PubMed
23.
Zurück zum Zitat Gold E, Zhang X, Wheatley A, Mellor S, Cranfield M, Risbridger G, Groome N, Fleming J (2005) betaA- and betaC-activin, follistatin, activin receptor mRNA and betaC-activin peptide expression during rat liver regeneration. J Mol Endocrinol 34(2):505–515CrossRefPubMed Gold E, Zhang X, Wheatley A, Mellor S, Cranfield M, Risbridger G, Groome N, Fleming J (2005) betaA- and betaC-activin, follistatin, activin receptor mRNA and betaC-activin peptide expression during rat liver regeneration. J Mol Endocrinol 34(2):505–515CrossRefPubMed
24.
Zurück zum Zitat Butler C, Gold E, Risbridger G (2005) Should activin C be more than a fading snapshot in the activin/TGF family album? Cytokine Growth Factor Rev 16(4–5):377–385CrossRefPubMed Butler C, Gold E, Risbridger G (2005) Should activin C be more than a fading snapshot in the activin/TGF family album? Cytokine Growth Factor Rev 16(4–5):377–385CrossRefPubMed
25.
Zurück zum Zitat Jung B, Doctolero RT, Tajima A, Nguyen AK, Keku T, Sandler RS, Carethers JM (2004) Loss of activin receptor type 2 protein expression in microsatellite unstable colon cancers. Gastroenterology 126(3):654–659CrossRefPubMed Jung B, Doctolero RT, Tajima A, Nguyen AK, Keku T, Sandler RS, Carethers JM (2004) Loss of activin receptor type 2 protein expression in microsatellite unstable colon cancers. Gastroenterology 126(3):654–659CrossRefPubMed
26.
Zurück zum Zitat Hempen PM, Zhang L, Bansal RK, Iacobuzio-Donahue CA, Murphy KM, Maitra A, Vogelstein B, Whitehead RH, Markowitz SD, Willson JK, Yeo CJ, Hruban RH, Kern SE (2003) Evidence of selection for clones having genetic inactivation of the activin A type II receptor (ACVR2) gene in gastrointestinal cancers. Cancer Res 63(5):994–999PubMed Hempen PM, Zhang L, Bansal RK, Iacobuzio-Donahue CA, Murphy KM, Maitra A, Vogelstein B, Whitehead RH, Markowitz SD, Willson JK, Yeo CJ, Hruban RH, Kern SE (2003) Evidence of selection for clones having genetic inactivation of the activin A type II receptor (ACVR2) gene in gastrointestinal cancers. Cancer Res 63(5):994–999PubMed
27.
Zurück zum Zitat Rossi MR, Ionov Y, Bakin AV, Cowell JK (2005) Truncating mutations in the ACVR2 gene attenuates activin signaling in prostate cancer cells. Cancer Genet Cytogenet 163(2):123–129CrossRefPubMed Rossi MR, Ionov Y, Bakin AV, Cowell JK (2005) Truncating mutations in the ACVR2 gene attenuates activin signaling in prostate cancer cells. Cancer Genet Cytogenet 163(2):123–129CrossRefPubMed
28.
Zurück zum Zitat Grusch M, Drucker C, Peter-Vorosmarty B, Erlach N, Lackner A, Losert A, Macheiner D, Schneider WJ, Hermann M, Groome NP, Parzefall W, Berger W, Grasl-Kraupp B, Schulte-Hermann R (2006) Deregulation of the activin/follistatin system in hepatocarcinogenesis. J Hepatol 45(5):673–680CrossRefPubMed Grusch M, Drucker C, Peter-Vorosmarty B, Erlach N, Lackner A, Losert A, Macheiner D, Schneider WJ, Hermann M, Groome NP, Parzefall W, Berger W, Grasl-Kraupp B, Schulte-Hermann R (2006) Deregulation of the activin/follistatin system in hepatocarcinogenesis. J Hepatol 45(5):673–680CrossRefPubMed
29.
Zurück zum Zitat Razanajaona D, Joguet S, Ay AS, Treilleux I, Goddard-Leon S, Bartholin L, Rimokh R (2007) Silencing of FLRG, an antagonist of activin, inhibits human breast tumor cell growth. Cancer Res 67(15):7223–7229CrossRefPubMed Razanajaona D, Joguet S, Ay AS, Treilleux I, Goddard-Leon S, Bartholin L, Rimokh R (2007) Silencing of FLRG, an antagonist of activin, inhibits human breast tumor cell growth. Cancer Res 67(15):7223–7229CrossRefPubMed
30.
Zurück zum Zitat Grusch M, Petz M, Metzner T, Ozturk D, Schneller D, Mikulits W (2010) The crosstalk of RAS with the TGF-beta family during carcinoma progression and its implications for targeted cancer therapy. Curr Cancer Drug Targets 10(8):849–857CrossRefPubMedPubMedCentral Grusch M, Petz M, Metzner T, Ozturk D, Schneller D, Mikulits W (2010) The crosstalk of RAS with the TGF-beta family during carcinoma progression and its implications for targeted cancer therapy. Curr Cancer Drug Targets 10(8):849–857CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Cho B, McMullen M, Pei L, Yates C, Mayo K (2001) Reproductive deficiencies in transgenic mice expressing the rat inhibin α-subunit gene. Endocrinology 142(11):4994 Cho B, McMullen M, Pei L, Yates C, Mayo K (2001) Reproductive deficiencies in transgenic mice expressing the rat inhibin α-subunit gene. Endocrinology 142(11):4994
32.
Zurück zum Zitat McMullen M, Cho B, Yates C, Mayo K (2001) Gonadal pathologies in transgenic mice expressing the rat inhibin α-subunit. Endocrinology 142(11):5005 McMullen M, Cho B, Yates C, Mayo K (2001) Gonadal pathologies in transgenic mice expressing the rat inhibin α-subunit. Endocrinology 142(11):5005
33.
Zurück zum Zitat Jara M, Carballada R, Esponda P (2004) Age-induced apoptosis in the male genital tract of the mouse. Reproduction 127(3):359–366CrossRefPubMed Jara M, Carballada R, Esponda P (2004) Age-induced apoptosis in the male genital tract of the mouse. Reproduction 127(3):359–366CrossRefPubMed
Metadaten
Titel
Over-Expression of Activin-βC Is Associated with Murine and Human Prostate Disease.
verfasst von
Edward C. Ottley
Karen L. Reader
Kailun Lee
Francesco E. Marino
Helen D. Nicholson
Gail P. Risbridger
Elspeth Gold
Publikationsdatum
23.01.2017
Verlag
Springer US
Erschienen in
Discover Oncology / Ausgabe 2/2017
Print ISSN: 1868-8497
Elektronische ISSN: 2730-6011
DOI
https://doi.org/10.1007/s12672-017-0283-8

Weitere Artikel der Ausgabe 2/2017

Discover Oncology 2/2017 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.