Skip to main content
Erschienen in: Inflammation 1/2013

01.02.2013

Paeoniflorin Attenuates Lipopolysaccharide-Induced Permeability of Endothelial Cells: Involvements of F-Actin Expression and Phosphorylations of PI3K/Akt and PKC

verfasst von: Huan Xu, Jie Song, Xinghua Gao, Zhao Xu, Xianxiang Xu, Yufeng Xia, Yue Dai

Erschienen in: Inflammation | Ausgabe 1/2013

Einloggen, um Zugang zu erhalten

Abstract

This study aimed to investigate the effects of paeoniflorin, the main active ingredient of the medicinal plant Paeonia lactiflora Pall., on the permeability of endothelial cells induced by lipopolysaccharide (LPS) and the underlying mechanisms. Human umbilical vein endothelial cells (HUVECs) were stimulated by LPS. Extravasated FITC-dextran reflecting permeability was assessed by multimode microplate reader, and the migration of bis-carboxyethyl-carboxyfluorescein acetoxy-methyl-labeled human acute monocytic leukemia cell line and leukemia cell line cells through HUVECs were analyzed by fluorescence microscopy. The phosphorylations of phosphatidylinositol 3-kinase (PI3K)/Akt, protein kinase C (PKC), and cofilin in HUVECs were assessed by western blotting, and the F-actin level was detected by laser scanning confocal microscopy. After LPS stimulation, inflammatory endothelial cells exhibited significantly increased permeability. Paeoniflorin (10, 30, and 100 μM) inhibited dextran extravasation and leukocyte migration through HUVECs induced by LPS in a concentration-dependent manner. Moreover, paeoniflorin was able to suppress the phosphorylations of PI3K/Akt, PKC, and cofilin, as well as F-actin reorganization in HUVECs induced by LPS. These findings revealed that paeoniflorin partly blocked LPS-induced endothelium permeability, supporting a new explanation for its anti-inflammatory effects.
Literatur
1.
Zurück zum Zitat Fang, S., W. Zhu, Y. Zhang, Y. Shu, and P. Liu. 2012. Paeoniflorin modulates multidrug resistance of a human gastric cancer cell line via the inhibition of NF-Κb activation. Molecular Medicine Report 5: 351–356. Fang, S., W. Zhu, Y. Zhang, Y. Shu, and P. Liu. 2012. Paeoniflorin modulates multidrug resistance of a human gastric cancer cell line via the inhibition of NF-Κb activation. Molecular Medicine Report 5: 351–356.
2.
Zurück zum Zitat Xu, H., X.H. Gao, J. Song, F.Y. Wang, Z. Xu, D. Lu, X.X. Xu, Y.F. Xia, and Y. Dai. 2010. Peoniflorin prevents the adhesion between inflammatory endothelial cells and leukocytes through inhibiting the activation of MAPKs and NF-κB. Drug Development Research 71: 275–284.CrossRef Xu, H., X.H. Gao, J. Song, F.Y. Wang, Z. Xu, D. Lu, X.X. Xu, Y.F. Xia, and Y. Dai. 2010. Peoniflorin prevents the adhesion between inflammatory endothelial cells and leukocytes through inhibiting the activation of MAPKs and NF-κB. Drug Development Research 71: 275–284.CrossRef
3.
Zurück zum Zitat Vandenbroucke, E., D. Mehta, R. Minshall, and A.B. Malik. 2008. Regulation of endothelial junctional permeability. Annals of the New York Academy of Sciences 1123: 134–145.PubMedCrossRef Vandenbroucke, E., D. Mehta, R. Minshall, and A.B. Malik. 2008. Regulation of endothelial junctional permeability. Annals of the New York Academy of Sciences 1123: 134–145.PubMedCrossRef
4.
Zurück zum Zitat Prasain, N., and T. Stevens. 2009. The actin cytoskeleton in endothelial cell phenotypes. Microvascular Research 77: 53–63.PubMedCrossRef Prasain, N., and T. Stevens. 2009. The actin cytoskeleton in endothelial cell phenotypes. Microvascular Research 77: 53–63.PubMedCrossRef
5.
Zurück zum Zitat Geiger, B., A. Bershadsky, R. Pankov, and K.M. Yamada. 2001. Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk. Nature Reviews Molecular Cell Biology 2: 793–805.PubMedCrossRef Geiger, B., A. Bershadsky, R. Pankov, and K.M. Yamada. 2001. Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk. Nature Reviews Molecular Cell Biology 2: 793–805.PubMedCrossRef
6.
Zurück zum Zitat Patterson, C.E., and H. Lum. 2001. Update on pulmonary edema: the role and regulation of endothelial barrier function. Endothelium-New York 8: 75–105. Patterson, C.E., and H. Lum. 2001. Update on pulmonary edema: the role and regulation of endothelial barrier function. Endothelium-New York 8: 75–105.
7.
Zurück zum Zitat Curtis, T.M., P.J. McKeown-Longo, P.A. Vincent, S.M. Homan, E.M. Wheatley, and T.M. Saba. 1995. Fibronectin attenuates increased endothelial monolayer permeability after RGD peptide, anti-alpha 5 beta 1, or TNF-alpha exposure. The American Journal of Physiology 269: L248–L260.PubMed Curtis, T.M., P.J. McKeown-Longo, P.A. Vincent, S.M. Homan, E.M. Wheatley, and T.M. Saba. 1995. Fibronectin attenuates increased endothelial monolayer permeability after RGD peptide, anti-alpha 5 beta 1, or TNF-alpha exposure. The American Journal of Physiology 269: L248–L260.PubMed
8.
Zurück zum Zitat Dolly, M., and B.M. Asrar. 2006. Signaling mechanisms regulating endothelial permeability. Physiological Reviews 86: 279–367.CrossRef Dolly, M., and B.M. Asrar. 2006. Signaling mechanisms regulating endothelial permeability. Physiological Reviews 86: 279–367.CrossRef
9.
Zurück zum Zitat Bogatcheva, N.V., and A.D. Verin. 2008. The role of cytoskeleton in the regulation of vascular endothelial barrier function. Microvascular Research 76: 202–207.PubMedCrossRef Bogatcheva, N.V., and A.D. Verin. 2008. The role of cytoskeleton in the regulation of vascular endothelial barrier function. Microvascular Research 76: 202–207.PubMedCrossRef
10.
Zurück zum Zitat Lai, C.H., K.H. Kuo, and J.M. Leo. 2005. Critical role of actin in modulating BBB permeability. Brain Research Reviews 50: 7–13.PubMedCrossRef Lai, C.H., K.H. Kuo, and J.M. Leo. 2005. Critical role of actin in modulating BBB permeability. Brain Research Reviews 50: 7–13.PubMedCrossRef
11.
Zurück zum Zitat Lee, S.H., and R. Dominguez. 2010. Regulation of actin cytoskeleton dynamics in cells. Molecules and Cells 29: 311–325.PubMedCrossRef Lee, S.H., and R. Dominguez. 2010. Regulation of actin cytoskeleton dynamics in cells. Molecules and Cells 29: 311–325.PubMedCrossRef
12.
Zurück zum Zitat Gohla, A., and G.M. Bokoch. 2002. 14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin. Current Biology 12: 1704–1710.PubMedCrossRef Gohla, A., and G.M. Bokoch. 2002. 14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin. Current Biology 12: 1704–1710.PubMedCrossRef
13.
Zurück zum Zitat Dreiza, C.M., C.M. Brophy, P. Komalavilas, E.J. Furnish, L. Joshi, M.A. Pallero, J.E. Murphy-Ullrich, M. von Rechenberg, Y.S. Ho, B. Richardson, N. Xu, Y. Zhen, J.M. Peltier, and A. Panitch. 2005. Transducible heat shock protein 20 (HSP20) phosphopeptide alters cytoskeletal dynamics. The FASEB Journal 19: 261–263. Dreiza, C.M., C.M. Brophy, P. Komalavilas, E.J. Furnish, L. Joshi, M.A. Pallero, J.E. Murphy-Ullrich, M. von Rechenberg, Y.S. Ho, B. Richardson, N. Xu, Y. Zhen, J.M. Peltier, and A. Panitch. 2005. Transducible heat shock protein 20 (HSP20) phosphopeptide alters cytoskeletal dynamics. The FASEB Journal 19: 261–263.
14.
Zurück zum Zitat Ghosh, M., X. Song, G. Mouneimne, M. Sidani, D.S. Lawrence, and J.S. Condeelis. 2004. Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304: 743–746.PubMedCrossRef Ghosh, M., X. Song, G. Mouneimne, M. Sidani, D.S. Lawrence, and J.S. Condeelis. 2004. Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304: 743–746.PubMedCrossRef
15.
Zurück zum Zitat Maciver, S.K., and P.J. Hussey. 2002. The ADF/cofilin family: actin-remodeling proteins. Genome Biology 3: 3007.1–3007.12.CrossRef Maciver, S.K., and P.J. Hussey. 2002. The ADF/cofilin family: actin-remodeling proteins. Genome Biology 3: 3007.1–3007.12.CrossRef
16.
Zurück zum Zitat Bamburg, J.R., A. McGough, and S. Ono. 1999. Putting a new twist on actin: ADF/cofilins modulate actin dynamics. Trends in Cell Biology 9: 364–370.PubMedCrossRef Bamburg, J.R., A. McGough, and S. Ono. 1999. Putting a new twist on actin: ADF/cofilins modulate actin dynamics. Trends in Cell Biology 9: 364–370.PubMedCrossRef
17.
Zurück zum Zitat Li, S., Q.B. He, and K.S. Zhou. 2003. The research of vascular permeability between Protein kinase C and endothelial cytoskeletal protein. Journal Chinese of Microcirculation 7: 184–190. Li, S., Q.B. He, and K.S. Zhou. 2003. The research of vascular permeability between Protein kinase C and endothelial cytoskeletal protein. Journal Chinese of Microcirculation 7: 184–190.
18.
Zurück zum Zitat Mattila, P., M.L. Majuri, S. Tiisala, and R. Renkonen. 1994. Expression of six protein kinase C isotypes in endothelial cells. Life Sciences 55: 1253–1260.PubMedCrossRef Mattila, P., M.L. Majuri, S. Tiisala, and R. Renkonen. 1994. Expression of six protein kinase C isotypes in endothelial cells. Life Sciences 55: 1253–1260.PubMedCrossRef
19.
Zurück zum Zitat Haller, H., W. Ziegler, C. Lindschau, and F.C. Luft. 1996. Endothelial cell tyrosine kinase receptor and G protein-coupled receptor activation involves distinct protein kinase C isoforms. Arteriosclerosis, Thrombosis, and Vascular Biology 16: 678–686.PubMedCrossRef Haller, H., W. Ziegler, C. Lindschau, and F.C. Luft. 1996. Endothelial cell tyrosine kinase receptor and G protein-coupled receptor activation involves distinct protein kinase C isoforms. Arteriosclerosis, Thrombosis, and Vascular Biology 16: 678–686.PubMedCrossRef
20.
Zurück zum Zitat Tang, S., K.G. Morgan, C. Parker, and J.A. Ware. 1997. Requirement for protein kinase C theta for cell cycle progression and formation of actin stress fibers and filopodia in vascular endothelial cells. Journal of Biological Chemistry 272: 28704–28711.PubMedCrossRef Tang, S., K.G. Morgan, C. Parker, and J.A. Ware. 1997. Requirement for protein kinase C theta for cell cycle progression and formation of actin stress fibers and filopodia in vascular endothelial cells. Journal of Biological Chemistry 272: 28704–28711.PubMedCrossRef
21.
Zurück zum Zitat Liu, Y.M., Y.F. Wang, F.J. Wang, J. Deng, D.H. Wu, H. Su, Y.M. Zhang, N. Wang, D.L. Zhang, and J.P. Ouyang. 2008. The expression of cofilin-1 via PKC pathway induced by hyperglycemia in endothelial cells. The FASEB Journal 22: 964. Liu, Y.M., Y.F. Wang, F.J. Wang, J. Deng, D.H. Wu, H. Su, Y.M. Zhang, N. Wang, D.L. Zhang, and J.P. Ouyang. 2008. The expression of cofilin-1 via PKC pathway induced by hyperglycemia in endothelial cells. The FASEB Journal 22: 964.
22.
Zurück zum Zitat Katso, R., K. Okkenhaug, K. Ahmadi, S. White, J. Timms, and M.D. Waterfield. 2001. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annual Review of Cell and Developmental Biology 17: 615–675.PubMedCrossRef Katso, R., K. Okkenhaug, K. Ahmadi, S. White, J. Timms, and M.D. Waterfield. 2001. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annual Review of Cell and Developmental Biology 17: 615–675.PubMedCrossRef
23.
Zurück zum Zitat Partovian, C., and M. Simons. 2004. Regulation of protein kinase B/Akt activity and Ser473 phosphorylation by protein kinase Calpha in endothelial cells. Cell Communication and Signaling 16: 951–957.CrossRef Partovian, C., and M. Simons. 2004. Regulation of protein kinase B/Akt activity and Ser473 phosphorylation by protein kinase Calpha in endothelial cells. Cell Communication and Signaling 16: 951–957.CrossRef
24.
Zurück zum Zitat Minshall, R.D., E.E. Vandenbroucke, M. Holinstat, A.T. Place, C. Tiruppathi, S.M. Vogel, G.P. van Nieuw Amerongen, D. Mehta, and A.B. Malik. 2010. Role of protein kinase Cζ in thrombin-induced RhoA activation and interendothelial gap formation of human dermal microvessel endothelial cell monolayers. Microvascular Research 80: 240–249.PubMedCrossRef Minshall, R.D., E.E. Vandenbroucke, M. Holinstat, A.T. Place, C. Tiruppathi, S.M. Vogel, G.P. van Nieuw Amerongen, D. Mehta, and A.B. Malik. 2010. Role of protein kinase Cζ in thrombin-induced RhoA activation and interendothelial gap formation of human dermal microvessel endothelial cell monolayers. Microvascular Research 80: 240–249.PubMedCrossRef
Metadaten
Titel
Paeoniflorin Attenuates Lipopolysaccharide-Induced Permeability of Endothelial Cells: Involvements of F-Actin Expression and Phosphorylations of PI3K/Akt and PKC
verfasst von
Huan Xu
Jie Song
Xinghua Gao
Zhao Xu
Xianxiang Xu
Yufeng Xia
Yue Dai
Publikationsdatum
01.02.2013
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2013
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-012-9537-3

Weitere Artikel der Ausgabe 1/2013

Inflammation 1/2013 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhöhte Mortalität bei postpartalem Brustkrebs

07.05.2024 Mammakarzinom Nachrichten

Auch für Trägerinnen von BRCA-Varianten gilt: Erkranken sie fünf bis zehn Jahre nach der letzten Schwangerschaft an Brustkrebs, ist das Sterberisiko besonders hoch.

Hypertherme Chemotherapie bietet Chance auf Blasenerhalt

07.05.2024 Harnblasenkarzinom Nachrichten

Eine hypertherme intravesikale Chemotherapie mit Mitomycin kann für Patienten mit hochriskantem nicht muskelinvasivem Blasenkrebs eine Alternative zur radikalen Zystektomie darstellen. Kölner Urologen berichten über ihre Erfahrungen.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Vorhofflimmern bei Jüngeren gefährlicher als gedacht

06.05.2024 Vorhofflimmern Nachrichten

Immer mehr jüngere Menschen leiden unter Vorhofflimmern. Betroffene unter 65 Jahren haben viele Risikofaktoren und ein signifikant erhöhtes Sterberisiko verglichen mit Gleichaltrigen ohne die Erkrankung.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.