Skip to main content
Erschienen in: Cancer Cell International 1/2018

Open Access 01.12.2018 | Review

PEG10 as an oncogene: expression regulatory mechanisms and role in tumor progression

verfasst von: Tian Xie, Shan Pan, Hang Zheng, Zilv Luo, Kingsley M. Tembo, Muhammad Jamal, Zhongyang Yu, Yao Yu, Jing Xia, Qian Yin, Meng Wang, Wen Yuan, Qiuping Zhang, Jie Xiong

Erschienen in: Cancer Cell International | Ausgabe 1/2018

Abstract

Cancer is a major public health problem as one of the leading causes of death worldwide. Deciphering the molecular regulation mechanisms of tumor progression can make way for tumor diagnosis and therapy. Paternally expressed gene 10 (PEG10), located on human chromosome 7q21.3, has turned out to be an oncogene implicated in the proliferation, apoptosis and metastasis of tumors. PEG10 has been found to be positively expressed in a variety of cancers with seemingly complex expression regulation mechanisms. In this review, we focus on the most vital factors influencing PEG10 expression and recapitulate some of the currently known and potential mechanisms of PEG10 affecting tumor progression, as understanding the molecular regulatory mechanisms of tumor progression can provide potential PEG10 related diagnosis and biomarker specific targeted therapies.
Hinweise
Tian Xie and Shan Pan contributed equally to this work
Abkürzungen
PEG10
paternally expressed gene 10
MyEF-3
murine myelin expression factor 3
CpG
cytosine-phosphate-guanine
UTR
untranslated region
ORF
open reading frame
HCC
hepatocellular carcinoma
B-CLL
B-cell chronic lymphocytic leukemia
GEO
Gene Expression Omnibus
OS
overall survival
RFS
recurrence-free survival
AR
androgen receptor
ChIP
chromatin immunoprecipitation
GSK3β
glycogen synthase kinase-3β
USP11
ubiquitin-specific protease 11
TGF-β
transforming growth factor β
B-ALL
B-cell acute lymphoblastic leukemia
TNF-α
tumor necrosis factor-α
EMT
epithelial–mesenchymal transition
MMPs
matrix metalloproteinases
TIMPs
tissue inhibitor of metalloproteinases
DCs
dendritic cells
Ad
adenovirus
TAA
tumor associated antigen
CTLs
cytotoxic T lymphocytes
IFN-γ
interferon-γ
MLL1
mixed lineage leukemia 1
H3K4me3
trimethylation of H3K4

Background

Paternally expressed gene 10 (PEG10), shows 61.4% homology with murine myelin expression factor 3 (MyEF-3), which encodes a distinctive protein functioning as a transcriptional factor during brain development. Conservation of CCHC-type zinc finger motif suggests that PEG10 may also function as a transcriptional factor [13]. PEG10 gene is highly conserved in eutherian mammals which indicates its essential functions, and its protein shows high similarity to retroviral gag-pol proteins [4, 5]. Researches on mice suggest that peg10 plays an important role in placenta formation and adipocyte differentiation, and its knockout can cause embryonic lethality [5, 6]. PEG10 is strongly expressed in placenta, ovary and testis as well as somatic adult organs including brain, kidney and lung [1, 79]. However, dysregulated expression of PEG10 has been closely associated with the cell proliferation, apoptosis and development of malignancies. However, the comprehensive mechanism of the regulation of PEG10 expression is still in its infancy.
This review will be an update on the current state of PEG10 in cancer related researches. We try to gain insights into the factors mostly influencing PEG10 expression and the profound mechanisms of PEG10 in tumor progression and potential PEG10 related therapeutic targets.

The structure of PEG10 gene

PEG10 is derived from the Ty3/Gypsy retrotransposon family which is located on human chromosome 7q21.3 in a head-to-head orientation with another paternally expressed gene SGCE. There is an 800 bp CpG (cytosine-phosphate-guanine) island between SGCE and PEG10. Li et al. [10] found epigenetic silencing of PEG10 by promoter methylation led to the low expression of PEG10 mRNA, but the activation of PEG10 was not necessarily associated with hypomethylation. Suzuki et al. [11] analyzed the CpG island methylation status and found that the methylation started about 60 bp downstream from the transcription start site of PEG10, suggesting that it is the methylation of downstream regulatory elements rather the promoter methylation that inhibits maternal transcription.
PEG10 gene consists of two exons, separated by a 6.8 kb intron, and its major transcript is 6639 bp (NM_001172438.2) [12]. The exon 1 of PEG10 contains the 5′-untranslated region (UTR) and exon 2 contains two overlapping open reading frames (ORFs) and a 4 kb 3′-UTR sequence [13]. The ORF1 codes for the gag-like PEG10-RF1 protein with a coiled-coil domain in N-terminal and a zinc finger domain in C-terminal, while the pol-like PEG10-RF2 protein is synthesized by a programmed-1 frameshift translation. During the programmed − 1 frameshifting, the ORF1 and the ORF2 translated a gag-pol-like fusion protein named PEG10-RF1/2 from one mRNA (Fig. 1) [4, 14]. Evidence suggests that the translation of PEG10 is also initiated at CUG codon except for the conventional AUG codon [12]. This new finding will add novel cognition to the PEG10’s − 1 frameshifting translation mechanism.

The expression levels of PEG10 in cancers

The expression levels of PEG10 in normal and cancer tissues

We searched NCBI Gene database to access the expression levels of PEG10 in normal tissues [15]. As shown in Fig. 2a, PEG10 is relatively highly expressed in placenta, adrenal, ovary, testis and brain, but the expression levels are pretty low in other tissues, which are consistent with the previous literature [1, 79]. As shown in Table 1, several studies have reported PEG10 is positively expressed in a variety of cancers such as hepatocellular carcinoma (HCC) [9, 1619], pancreatic carcinoma [20], breast cancer [10], prostate cancer [10], gallbladder carcinoma [21], thyroid cancer [22], oral squamous cell carcinoma [23], colon cancer [24], enchondromas [25] and B-cell chronic lymphocytic leukemia (B-CLL) [26]. Worth noting was that the amplification of PEG10 gene copy numbers detected in HCC also contributed to PEG10 overexpression [17, 2729].
Table 1
The expression of PEG10 in cancer patients and cancer cell lines
Tumors
Type
Methods
Expression
References
HCC
Primary HCC
IHC
15/16a
[9]
HCC tissues and cell lines
cDNA microarray
Significantly higher
[16]
HCC cell lines
QPCR
18/20b
[17]
Primary HCC
QPCR
Significantly higher
HCC tissues
IHC
148/218a
[19]
Pancreatic carcinoma
Pancreatic carcinoma tissues
IHC
85/160b
[20]
Breast cancer
Ductal carcinoma
IHC
6/11a
[10]
Invasive ductal carcinomas
IHC
7/22a
Breast cancer tissue (n = 161)
IHC
36%a
Prostate cancer
Prostate cancer tissue (n = 30)
IHC
37%a
[10]
Gallbladder carcinoma
Gallbladder adenocarcinoma tissues
IHC
52/108a
[21]
Thyroid cancer
24 thyroid cancer tissues and 14 normal thyroid tissues
QPCR
Significantly higher (P = 0.034)
[22]
OSCC
OSCC tissues
QPCR
83/118b
[23]
Colon cancer
Colon cancer tissues
QPCR and WB
9/20a
[24]
Enchondromas
Enchondromas tissues
IHC and QPCR
Strongly positive expression
[25]
B-CLL
B-CLL PBMNCs
QPCR
40/42b
[26]
IHC immunohistochemistry, QPCR quantitative polymerase chain reaction, OSCC oral squamous cell carcinoma, WB western blot, PBMNC peripheral blood mononuclear cell
aProportion of PEG10-positive tumor tissues/cells
bProportion of tumor tissues/cells occurred PEG10 upregulation compared to normal tissues/cells
To further confirm the expression levels of PEG10 in cancers, we used Gene Expression Omnibus (GEO) datasets to analyze [30]. As shown in Table 2 and Fig. 2b, we observed that PEG10 was overexpressed in several cancers especially HCC and breast cancer. However, PEG10 was shown to be downregulated in pancreatic carcinoma and colorectal cancer, which may be contradictory with the previous literatures. These contradictory results may be due to the data we analyzed were at mRNA level, which may not represent the protein level exactly. In addition, although PEG10 was not shown to be overexpressed in some tumors with regard to the result we analyzed, it may be highly expressed in some specific tumor subtypes since the results we showed are overall. For example, Akamatsu et al. [31] reported that PEG10 was upregulated in neuroendocrine tumors such as neuroendocrine prostate cancer and lung cancer but no significant upregulation in other subtypes.
Table 2
Basic information of the 14 GEO datasets
Cancer type
Accession number
Number of samples (tumor/normal)
P-value
References
Upregulated
Hepatocellular carcinoma
GSE14520
233/233
< 0.0001
[57, 58]
Breast carcinoma
GSE10780
42/143
0.0002
[59]
Gastric cancer
GSE13861
71/19
0.0388
[60]
Ovarian cancer
GSE14407
12/12
0.0438
[61]
Downregulated
Pancreatic cancer
GSE28735
45/45
0.0003
[62, 63]
Colorectal cancer
GSE32323
17/17
0.0011
[64]
Insignificant
Melanoma
GSE3189
45/7
0.0848
[65]
Bladder cancer
GSE3167
41/9
0.1243
[66]
Acute lymphoblastic leukemia
GSE26713
117/7
0.2168
[67]
Renal clear cell carcinoma
GSE36895
23/23
0.2445
[68]
Esophageal carcinoma
GSE23400
53/53
0.2526
[69, 70]
Nasopharyngeal carcinoma
GSE12452
31/10
0.2710
[7173]
Lung cancer
GSE30219
293/14
0.2938
[74]
Prostate cancer
GSE6919
58/58
0.7478
[75, 76]
P-values were acquired through t-test for the comparison of PEG10 expression between cancer and normal

PEG10 overexpression is correlated with poor clinicopathological characteristics

Many studies have shown that the expression of PEG10 is closely related to the prognosis of clinicopathological characteristics. Ge et al. [32] conducted meta-analysis to systematically evaluate the correlations between PEG10 and the clinicopathological characteristics in patients with solid tumors. They found that PEG10 overexpression was associated with the higher risk of solid tumors incidence, lower degree of differentiation, increased lymph node metastasis and advanced TNM stage. Moreover, a high level of PEG10 expression was closely correlated to poor overall survival (OS) and it could be used as an independent prognostic biomarker for patients with solid tumors. Furthermore, Bang et al. [19] indicated that PEG10 protein could be a potential biomarker for predicting early recurrence and recurrence-free survival (RFS) in HCC patients after curative resection, even in those with normal serum α-fetoprotein levels.

Factors regulating the expression levels of PEG10

The expression level of PEG10 is regulated by many factors. Transcription factors like E2F, c-MYC and androgen receptor (AR) have been reported to participate in PEG10 expression regulation. Wang et al. [18] reported that both E2F-1 and -4 could directly bind to the PEG10 promoter, and upregulate its transcription in HCC, which was confirmed by chromatin immunoprecipitation (ChIP) and dual luciferase report assay. E2F-1’s direct upregulation of PEG10 expression via binding to the PEG10 promoter was also verified in prostate and pancreatic cancer [18, 20, 31]. Besides, in lung cancer cells, GSK3β/USP11/E2F-1/PEG10 pathway was shown to play an imperative role in PEG10 overexpression [33]. Li et al. [10] reported that c-MYC knockdown in Panc1 cells resulted in a subsequent PEG10 downregulation, and ChIP assays validated that PEG10 was a direct downstream target of c-MYC. In prostate cancer, AR was confirmed to bind to the PEG10 promoter region, thus repressing the transcription of PEG10. Treating prostate cancer cells with synthetic androgen R1881 resulted in an increased AR occupancy at the PEG10 promoter, while decreased when treated with AR antagonist Enzalutamide [31].
Transforming growth factor β (TGF-β) signaling pathway plays a biphasic role in cancer progression [34]. In HCC, PEG10 was increased after treating HepG2 cells with TGF-β1 [44]. However, the mutual inhibition effect of PEG10 and TGF-β signaling was found in chondrosarcoma and enchondroma [25]. Shinohara et al. proposed that TGF-β might inhibit PEG10 expression through the downregulation of c-MYC [10, 25, 35]. Besides, Wang et al. suggested that TGF-β might also inhibit the expression of PEG10 by keeping Rb dephosphorylated to inhibit the release of E2F [18, 36].
Several miRNAs have also been proven to regulate the expression level of PEG10. In HCC, miR-122 repressed the translation level of PEG10 via directly binding to sites 2310 and 2403 in PEG10 3′-UTR [37, 38]. Additionally, miR-491 has also been confirmed to negatively regulate the expression of PEG10 directly in colorectal cancer [24].

Functions of PEG10 and the mechanisms thereof

PEG10 promotes tumor proliferation

Uncontrolled proliferation is an important factor in tumor progression. Numerous researches have reported that PEG10 plays a significant role in promoting the cancer proliferation. The proliferation ability of cancer cells was improved after overexpressing PEG10 in HCC, while decreasing endogenous expression of PEG10 showed prominent growth retardation [9]. PEG10’s role in proliferation was also confirmed in colorectal cancer cell line HCT-116, as Curcumin was able to diminish the proliferation effect by upregulating the expression of miR-491 [24]. In addition, our data revealed that the proliferation ability of Raji cells and A549 cells was decreased after being transfected with PEG10 siRNA [39, 40], and that PEG10 promoted breast cancer cell proliferation after being overexpressed [41]. The function of PEG10 was also certified in gastric cancer, where knockdown of PEG10 in MKN7 cells reduced anchorage-independent colony formation [42]. Additionally, it has also been reported that GSK3β increases the interaction of E2F1 with USP11, which results in the deubiquitination and stabilization of E2F1, which in turn activates PEG10 expression to promote proliferation in A549 [33]. Furthermore, c-MYC protein binds to E-box sequences in the first PEG10 intron and activates its transcription, which further promotes the proliferation of several tumor cells [10, 33]. In vivo experiments showed that volume and weight of the tumors obtained from xenograft tumorigenicity assays were both lower and the Ki-67 score reduced significantly after PEG10 knockdown [20, 31]. The underlying mechanism of PEG10 promoting the proliferation may be due to its cell-cycling promoting effect. In pancreatic and neuroendocrine prostate cancers, the levels of p21, p27 (cell-cycle-dependent kinase inhibitors) and Cyclin E1 (which accumulates at G0/G1 to S phase and reduced smoothly from S to G2/M phase) were upregulated after PEG10 knockdown, which indicate PEG10 drives cell cycle progression from G0/G1 to S phase [20, 31].

PEG10 inhibits the apoptosis of cancer cells

Apoptosis is a physiological process of programmed cell death, which is indispensable in cell development and homeostasis [43]. Dysfunction in apoptosis pathways is a typical characteristic of cancer cells. As an oncogene, PEG10 also has been shown to play an anti-apoptosis role in cancer progression. In Raji cells and HCT-116 cells, PEG10 was found to inhibit the apoptosis of cancer cells [24, 39], while in HepG2 cells PEG10 was shown to increase Bcl-2 expression and decrease Bax expression, and diminish apoptosis induced by doxorubicin [44]. PEG10 overexpression decreases cell death mediated by SIAH1 in HCC, while SIAH1 also reduces the amount of PEG10 protein, thus inducing growth arrest and apoptosis in hepatoma cells [9, 45]. In addition, mRNA interference of PEG10 in human hepatocyte L02 cells resulted in elevated expression levels of anti-apoptosis protein BCL-xL [18]. Similarly, our early studies have also demonstrated that in B-cell acute lymphoblastic leukemia (B-ALL) and B-cell chronic lymphocytic leukemia (B-CLL), CXCL13 and CCL19 together upregulate PEG10 expression in CD23+CD5+ or CD19+CD34+ B cells and then hamper the activation of caspase-3 and caspase-8 to gain the apoptosis resistance induced by tumor necrosis factor-α (TNF-α) [46, 47].

PEG10 promotes metastasis of cancer cells

Tumor metastasis is an important factor in promoting poor prognosis in cancer patients and is mainly characterized by the migration, invasion and epithelial–mesenchymal transition (EMT) of cancer cells. It has been shown that PEG10 is overexpressed in metastatic prostate cancer and rectal adenocarcinoma versus primary and benign tumors, thus indicating that PEG10 may be involved in cancer metastasis [31, 48]. Our studies revealed that suppressing the expression of PEG10 in human Raji cells and A549 cells resulted in the reduction of migration and invasion capabilities of cells, and the decrease of matrix metalloproteinases (MMPs) like MMP-2 and -9 [39, 40]. In addition, we also observed that overexpression of PEG10 promoted the migration and invasion of breast cancer cell line MDA-MB-231 cells, in which the expression levels of MMP-1, -2 and -9 were increased while that of TIMP-1 and -2 decreased [41]. Besides, PEG10 also turned out to promote pancreatic cancer cells migration and invasion through ERK/MMP7 pathway [20]. In HCC, overexpression of PEG10 in HepG2 cells decreased the expression levels of epithelial marker protein E-cadherin and increased the expression levels of mesenchymal marker protein vimentin. PEG10 may be involved in the activation of canonical TGF-β pathway to promote the EMT of cancers. Although PEG10 could inhibit TGF-β receptors to block TGF-β pathway and may diminish the inhibition of proliferation induced by TGF-β signaling, the invasion and EMT induced by TGF-β could be removed after PEG10 knockdown [44]. In prostate cancer cells, after TGF-β treatment, PEG10 knockdown decreased Smad2 and Smad3 phosphorylation, SBE-4 (which contains four copies of Smad binding elements) luciferase reporter activity and decreased the expression of mesenchymal transcription factor Snail1 and Zeb1 (which are the direct mediators of the TGF-β pathway) [31]. A series of clinical investigations revealed that HCC [19], gallbladder cancer [21, 49], lung cancer [40], oral squamous cell carcinoma [23], pancreatic cancer [20] and gastric cancer [42] are more vulnerable to metastasis or invasion with PEG10 overexpression. A diagram of the expression regulation factors of PEG10 and the underlying mechanisms of the oncogenic role of PEG10 in cancer progression is shown in Fig. 3.

Therapy

Immunotherapy of HCC

Recent years have witnessed the rapid development of carcinoma immunotherapy. Dendritic cells (DCs) are powerful professional antigen presenting cells which were discovered in 1973 and have been used in anti-tumor immunotherapy since the 1980s. In 2010, the first therapeutic tumor DCs vaccine sipuleucel-T for the treatment of metastatic prostate cancer was approved by the US Food and Drug Administration (FDA) based on its confirmed safe and non-toxic side effects [50]. After being transfected with recombinant adenovirus (Ad) vectors encoding tumor associated antigen (TAA), DCs are able to process the TAA to peptides and then bind them to MHC class I molecules for recognition by CD8+ T cells. Besides, DCs express costimulators to provide the signals needed for differentiation of CD8+ T cells into anti-tumor specific cytotoxic T lymphocytes (CTLs) which are able to recognize and kill tumor cells without a requirement for costimulation [5053].
Numerous evidence demonstrated that PEG10 was overexpressed in HCC and contributed to the oncogenesis, thus it might be a TAA of HCC. Peng et al. [54] transfected DCs with PEG10 recombinant Ad and found the DCs could specifically elicit CTLs to secrete interferon-γ (IFN-γ) and lyse HepG2. This Ad-PEG10 transduced DCs could induce an anti-tumor immune response against PEG10 positive HCC with HLA-A2 restricted both in vitro and in vivo. The findings indicate that DCs transfected with Ad-PEG10 might be an ideal target for HCC immunotherapy.

Others

In recent years, there have been growing interest in RNA-targeted therapies [55]. As described above, PEG10 may be a target for intervention in cancer. Using antisense oligonucleotides or siRNA to interfering PEG10 mRNA for treatment can be taken into consideration. Besides, to further explore the mechanisms of PEG10 promoting tumor progression and find it is which domain of PEG10 protein that actually works, may pave the path for the design of the small molecular inhibitors which may also be an effective strategy for PEG10 inactivation. In addition, Kempinska et al. [56] demonstrated that the menin–MLL1 complex binds to PEG10 gene directly and catalyzes H3K4me3 to upregulate the expression of PEG10 through the epigenetic mechanism. The menin–MLL inhibitor MI-503 showed an anti-tumor effect of HCC, and the underlying mechanism may be owing to the indirect downregulation of PEG10. Therefore, exploring the agents that can inhibit the function of PEG10 indirectly may also be a potential approach for tumor therapy.

Conclusions

PEG10 is an imprinting gene that plays a key role in tumor proliferation, apoptosis and metastasis. The studies of PEG10 in tumors mainly focused on HCC, but in recent years extensive studies have shown that PEG10 also contributes to the progression of many types of cancer. The expression level of PEG10 is regulated by several factors, but their effects may vary in different tumors. Since PEG10 is highly expressed in tumors, it may serve as a TAA which can be utilized in tumor immunotherapy or a potential target for new anti-cancer regimens and cancer diagnosis. Nevertheless, further studies are needed to gain insights into the molecular mechanisms of the role PEG10 played in cancer.

Authors’ contributions

TX and SP performed the selection of literature and drafted the manuscript. HZ, ZL, ZY and YY collected the related references. JX, QY, MW and WY prepared the figures. KMT and MJ revised the language. QZ and JX carried out the design of the review. All authors contributed to this manuscript. All authors read and approved the final manuscript.

Acknowledgements

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

The datasets analyzed during the current study are available in the NCBI Gene database (https://​www.​ncbi.​nlm.​nih.​gov/​gene/​) and GEO database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​).
Not applicable.
Not applicable.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81770180).

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Ono R, Kobayashi S, Wagatsuma H, Aisaka K, Kohda T, Kaneko-Ishino T, Ishino F. A retrotransposon-derived gene, PEG10, is a novel imprinted gene located on human chromosome 7q21. Genomics. 2001;73:232–7.CrossRefPubMed Ono R, Kobayashi S, Wagatsuma H, Aisaka K, Kohda T, Kaneko-Ishino T, Ishino F. A retrotransposon-derived gene, PEG10, is a novel imprinted gene located on human chromosome 7q21. Genomics. 2001;73:232–7.CrossRefPubMed
2.
Zurück zum Zitat Youngson NA, Kocialkowski S, Peel N, Ferguson-Smith AC. A small family of sushi-class retrotransposon-derived genes in mammals and their relation to genomic imprinting. J Mol Evol. 2005;61:481–90.CrossRefPubMed Youngson NA, Kocialkowski S, Peel N, Ferguson-Smith AC. A small family of sushi-class retrotransposon-derived genes in mammals and their relation to genomic imprinting. J Mol Evol. 2005;61:481–90.CrossRefPubMed
3.
Zurück zum Zitat Steplewski A, Krynska B, Tretiakova A, Haas S, Khalili K, Amini S. MyEF-3, a developmentally controlled brain-derived nuclear protein which specifically interacts with myelin basic protein proximal regulatory sequences. Biochem Biophys Res Commun. 1998;243:295–301.CrossRefPubMed Steplewski A, Krynska B, Tretiakova A, Haas S, Khalili K, Amini S. MyEF-3, a developmentally controlled brain-derived nuclear protein which specifically interacts with myelin basic protein proximal regulatory sequences. Biochem Biophys Res Commun. 1998;243:295–301.CrossRefPubMed
4.
Zurück zum Zitat Clark MB, Janicke M, Gottesbuhren U, Kleffmann T, Legge M, Poole ES, Tate WP. Mammalian gene PEG10 expresses two reading frames by high efficiency − 1 frameshifting in embryonic-associated tissues. J Biol Chem. 2007;282:37359–69.CrossRefPubMed Clark MB, Janicke M, Gottesbuhren U, Kleffmann T, Legge M, Poole ES, Tate WP. Mammalian gene PEG10 expresses two reading frames by high efficiency − 1 frameshifting in embryonic-associated tissues. J Biol Chem. 2007;282:37359–69.CrossRefPubMed
5.
Zurück zum Zitat Ono R, Nakamura K, Inoue K, Naruse M, Usami T, Wakisaka-Saito N, Hino T, Suzuki-Migishima R, Ogonuki N, Miki H, et al. Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat Genet. 2006;38:101–6.CrossRefPubMed Ono R, Nakamura K, Inoue K, Naruse M, Usami T, Wakisaka-Saito N, Hino T, Suzuki-Migishima R, Ogonuki N, Miki H, et al. Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat Genet. 2006;38:101–6.CrossRefPubMed
6.
Zurück zum Zitat Hishida T, Naito K, Osada S, Nishizuka M, Imagawa M. peg10, an imprinted gene, plays a crucial role in adipocyte differentiation. FEBS Lett. 2007;581:4272–8.CrossRefPubMed Hishida T, Naito K, Osada S, Nishizuka M, Imagawa M. peg10, an imprinted gene, plays a crucial role in adipocyte differentiation. FEBS Lett. 2007;581:4272–8.CrossRefPubMed
7.
Zurück zum Zitat Ono R, Shiura H, Aburatani H, Kohda T, Kaneko-Ishino T, Ishino F. Identification of a large novel imprinted gene cluster on mouse proximal chromosome 6. Genome Res. 2003;13:1696–705.CrossRefPubMedPubMedCentral Ono R, Shiura H, Aburatani H, Kohda T, Kaneko-Ishino T, Ishino F. Identification of a large novel imprinted gene cluster on mouse proximal chromosome 6. Genome Res. 2003;13:1696–705.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Smallwood A, Papageorghiou A, Nicolaides K, Alley MK, Jim A, Nargund G, Ojha K, Campbell S, Banerjee S. Temporal regulation of the expression of syncytin (HERV-W), maternally imprinted PEG10, and SGCE in human placenta. Biol Reprod. 2003;69:286–93.CrossRefPubMed Smallwood A, Papageorghiou A, Nicolaides K, Alley MK, Jim A, Nargund G, Ojha K, Campbell S, Banerjee S. Temporal regulation of the expression of syncytin (HERV-W), maternally imprinted PEG10, and SGCE in human placenta. Biol Reprod. 2003;69:286–93.CrossRefPubMed
9.
Zurück zum Zitat Okabe H, Satoh S, Furukawa Y, Kato T, Hasegawa S, Nakajima Y, Yamaoka Y, Nakamura Y. Involvement of PEG10 in human hepatocellular carcinogenesis through interaction with SIAH1. Cancer Res. 2003;63:3043–8.PubMed Okabe H, Satoh S, Furukawa Y, Kato T, Hasegawa S, Nakajima Y, Yamaoka Y, Nakamura Y. Involvement of PEG10 in human hepatocellular carcinogenesis through interaction with SIAH1. Cancer Res. 2003;63:3043–8.PubMed
10.
Zurück zum Zitat Li CM, Margolin AA, Salas M, Memeo L, Mansukhani M, Hibshoosh H, Szabolcs M, Klinakis A, Tycko B. PEG10 is a c-MYC target gene in cancer cells. Cancer Res. 2006;66:665–72.CrossRefPubMed Li CM, Margolin AA, Salas M, Memeo L, Mansukhani M, Hibshoosh H, Szabolcs M, Klinakis A, Tycko B. PEG10 is a c-MYC target gene in cancer cells. Cancer Res. 2006;66:665–72.CrossRefPubMed
11.
Zurück zum Zitat Suzuki S, Ono R, Narita T, Pask AJ, Shaw G, Wang C, Kohda T, Alsop AE, Marshall Graves JA, Kohara Y, et al. Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting. PLoS Genet. 2007;3:e55.CrossRefPubMedPubMedCentral Suzuki S, Ono R, Narita T, Pask AJ, Shaw G, Wang C, Kohda T, Alsop AE, Marshall Graves JA, Kohara Y, et al. Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting. PLoS Genet. 2007;3:e55.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Lux H, Flammann H, Hafner M, Lux A. Genetic and molecular analyses of PEG10 reveal new aspects of genomic organization, transcription and translation. PLoS ONE. 2010;5:e8686.CrossRefPubMedPubMedCentral Lux H, Flammann H, Hafner M, Lux A. Genetic and molecular analyses of PEG10 reveal new aspects of genomic organization, transcription and translation. PLoS ONE. 2010;5:e8686.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Volff J, Korting C, Schartl M. Ty3/Gypsy retrotransposon fossils in mammalian genomes: did they evolve into new cellular functions? Mol Biol Evol. 2001;18:266–70.CrossRefPubMed Volff J, Korting C, Schartl M. Ty3/Gypsy retrotransposon fossils in mammalian genomes: did they evolve into new cellular functions? Mol Biol Evol. 2001;18:266–70.CrossRefPubMed
14.
Zurück zum Zitat Shigemoto K, Brennan J, Walls E, Watson CJ, Stott D, Rigby PWJ, Reith AD. Identification and characterisation of a developmentally regulated mammalian gene that utilises-1 programmed ribosomal frameshifting. Nucleic Acids Res. 2001;29:4079–88.CrossRefPubMedPubMedCentral Shigemoto K, Brennan J, Walls E, Watson CJ, Stott D, Rigby PWJ, Reith AD. Identification and characterisation of a developmentally regulated mammalian gene that utilises-1 programmed ribosomal frameshifting. Nucleic Acids Res. 2001;29:4079–88.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Tsou AP, Chuang YC, Su JY, Yang CW, Liao YL, Liu WK, Chiu JH, Chou CK. Overexpression of a novel imprinted gene, PEG10, in human hepatocellular carcinoma and in regenerating mouse livers. J Biomed Sci. 2003;10:625–35.PubMed Tsou AP, Chuang YC, Su JY, Yang CW, Liao YL, Liu WK, Chiu JH, Chou CK. Overexpression of a novel imprinted gene, PEG10, in human hepatocellular carcinoma and in regenerating mouse livers. J Biomed Sci. 2003;10:625–35.PubMed
17.
Zurück zum Zitat Ip WK, Lai PB, Wong NL, Sy SM, Beheshti B, Squire JA, Wong N. Identification of PEG10 as a progression related biomarker for hepatocellular carcinoma. Cancer Lett. 2007;250:284–91.CrossRefPubMed Ip WK, Lai PB, Wong NL, Sy SM, Beheshti B, Squire JA, Wong N. Identification of PEG10 as a progression related biomarker for hepatocellular carcinoma. Cancer Lett. 2007;250:284–91.CrossRefPubMed
18.
Zurück zum Zitat Wang C, Xiao Y, Hu Z, Chen Y, Liu N, Hu G. PEG10 directly regulated by E2Fs might have a role in the development of hepatocellular carcinoma. FEBS Lett. 2008;582:2793–8.CrossRefPubMed Wang C, Xiao Y, Hu Z, Chen Y, Liu N, Hu G. PEG10 directly regulated by E2Fs might have a role in the development of hepatocellular carcinoma. FEBS Lett. 2008;582:2793–8.CrossRefPubMed
19.
Zurück zum Zitat Bang H, Ha SY, Hwang SH, Park CK. Expression of PEG10 is associated with poor survival and tumor recurrence in hepatocellular carcinoma. Cancer Res Treat. 2015;47:844–52.CrossRefPubMedPubMedCentral Bang H, Ha SY, Hwang SH, Park CK. Expression of PEG10 is associated with poor survival and tumor recurrence in hepatocellular carcinoma. Cancer Res Treat. 2015;47:844–52.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Peng YP, Zhu Y, Yin LD, Zhang JJ, Wei JS, Liu X, Liu XC, Gao WT, Jiang KR, Miao Y. PEG10 overexpression induced by E2F-1 promotes cell proliferation, migration, and invasion in pancreatic cancer. J Exp Clin Cancer Res. 2017;36:30.CrossRefPubMedPubMedCentral Peng YP, Zhu Y, Yin LD, Zhang JJ, Wei JS, Liu X, Liu XC, Gao WT, Jiang KR, Miao Y. PEG10 overexpression induced by E2F-1 promotes cell proliferation, migration, and invasion in pancreatic cancer. J Exp Clin Cancer Res. 2017;36:30.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Liu DC, Yang ZL, Jiang S. Identification of PEG10 and TSG101 as carcinogenesis, progression, and poor-prognosis related biomarkers for gallbladder adenocarcinoma. Pathol Oncol Res. 2011;17:859–66.CrossRefPubMed Liu DC, Yang ZL, Jiang S. Identification of PEG10 and TSG101 as carcinogenesis, progression, and poor-prognosis related biomarkers for gallbladder adenocarcinoma. Pathol Oncol Res. 2011;17:859–66.CrossRefPubMed
22.
Zurück zum Zitat Boot A, Oosting J, de Miranda NF, Zhang Y, Corver WE, van de Water B, Morreau H, van Wezel T. Imprinted survival genes preclude loss of heterozygosity of chromosome 7 in cancer cells. J Pathol. 2016;240:72–83.CrossRefPubMed Boot A, Oosting J, de Miranda NF, Zhang Y, Corver WE, van de Water B, Morreau H, van Wezel T. Imprinted survival genes preclude loss of heterozygosity of chromosome 7 in cancer cells. J Pathol. 2016;240:72–83.CrossRefPubMed
23.
Zurück zum Zitat Singh SS, Kumar R, Kushwaha VS, Bhatt M, Singh A, Mishra A, Ram H, Parmar D, Gupta R. Expression of radioresistant gene PEG10 in OSCC patients and its prognostic significance. Asian Pac J Cancer Prev. 2017;18:1513–8.PubMed Singh SS, Kumar R, Kushwaha VS, Bhatt M, Singh A, Mishra A, Ram H, Parmar D, Gupta R. Expression of radioresistant gene PEG10 in OSCC patients and its prognostic significance. Asian Pac J Cancer Prev. 2017;18:1513–8.PubMed
24.
Zurück zum Zitat Li B, Shi C, Li B, Zhao JM, Wang L. The effects of Curcumin on HCT-116 cells proliferation and apoptosis via the miR-491/PEG10 pathway. J Cell Biochem. 2018;119:3091–8.CrossRefPubMed Li B, Shi C, Li B, Zhao JM, Wang L. The effects of Curcumin on HCT-116 cells proliferation and apoptosis via the miR-491/PEG10 pathway. J Cell Biochem. 2018;119:3091–8.CrossRefPubMed
25.
Zurück zum Zitat Shinohara N, Maeda S, Yahiro Y, Sakuma D, Matsuyama K, Imamura K, Kawamura I, Setoguchi T, Ishidou Y, Nagano S, Komiya S. TGF-beta signalling and PEG10 are mutually exclusive and inhibitory in chondrosarcoma cells. Sci Rep. 2017;7:13494.CrossRefPubMedPubMedCentral Shinohara N, Maeda S, Yahiro Y, Sakuma D, Matsuyama K, Imamura K, Kawamura I, Setoguchi T, Ishidou Y, Nagano S, Komiya S. TGF-beta signalling and PEG10 are mutually exclusive and inhibitory in chondrosarcoma cells. Sci Rep. 2017;7:13494.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Kainz B, Shehata M, Bilban M, Kienle D, Heintel D, Kromer-Holzinger E, Le T, Krober A, Heller G, Schwarzinger I, et al. Overexpression of the paternally expressed gene 10 (PEG10) from the imprinted locus on chromosome 7q21 in high-risk B-cell chronic lymphocytic leukemia. Int J Cancer. 2007;121:1984–93.CrossRefPubMed Kainz B, Shehata M, Bilban M, Kienle D, Heintel D, Kromer-Holzinger E, Le T, Krober A, Heller G, Schwarzinger I, et al. Overexpression of the paternally expressed gene 10 (PEG10) from the imprinted locus on chromosome 7q21 in high-risk B-cell chronic lymphocytic leukemia. Int J Cancer. 2007;121:1984–93.CrossRefPubMed
27.
Zurück zum Zitat Tsuji K, Yasui K, Gen Y, Endo M, Dohi O, Zen K, Mitsuyoshi H, Minami M, Itoh Y, Taniwaki M, et al. PEG10 is a probable target for the amplification at 7q21 detected in hepatocellular carcinoma. Cancer Genet Cytogenet. 2010;198:118–25.CrossRefPubMed Tsuji K, Yasui K, Gen Y, Endo M, Dohi O, Zen K, Mitsuyoshi H, Minami M, Itoh Y, Taniwaki M, et al. PEG10 is a probable target for the amplification at 7q21 detected in hepatocellular carcinoma. Cancer Genet Cytogenet. 2010;198:118–25.CrossRefPubMed
28.
Zurück zum Zitat Huang J, Sheng HH, Shen T, Hu YJ, Xiao HS, Zhang Q, Zhang QH, Han ZG. Correlation between genomic DNA copy number alterations and transcriptional expression in hepatitis B virus-associated hepatocellular carcinoma. FEBS Lett. 2006;580:3571–81.CrossRefPubMed Huang J, Sheng HH, Shen T, Hu YJ, Xiao HS, Zhang Q, Zhang QH, Han ZG. Correlation between genomic DNA copy number alterations and transcriptional expression in hepatitis B virus-associated hepatocellular carcinoma. FEBS Lett. 2006;580:3571–81.CrossRefPubMed
29.
Zurück zum Zitat Dong H, Zhang H, Liang J, Yan H, Chen Y, Shen Y, Kong Y, Wang S, Zhao G, Jin W. Digital karyotyping reveals probable target genes at 7q21.3 locus in hepatocellular carcinoma. BMC Med Genomics. 2011;4:60.CrossRefPubMedPubMedCentral Dong H, Zhang H, Liang J, Yan H, Chen Y, Shen Y, Kong Y, Wang S, Zhao G, Jin W. Digital karyotyping reveals probable target genes at 7q21.3 locus in hepatocellular carcinoma. BMC Med Genomics. 2011;4:60.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Akamatsu S, Wyatt AW, Lin D, Lysakowski S, Zhang F, Kim S, Tse C, Wang K, Mo F, Haegert A, et al. The placental gene PEG10 promotes progression of neuroendocrine prostate cancer. Cell Rep. 2015;12:922–36.CrossRefPubMed Akamatsu S, Wyatt AW, Lin D, Lysakowski S, Zhang F, Kim S, Tse C, Wang K, Mo F, Haegert A, et al. The placental gene PEG10 promotes progression of neuroendocrine prostate cancer. Cell Rep. 2015;12:922–36.CrossRefPubMed
32.
Zurück zum Zitat Ge H, Yan Y, Wu D, Huang Y, Tian F. Prognostic value of PEG10 in Asian solid tumors: a meta-analysis. Clin Chim Acta. 2018;483:197–203.CrossRefPubMed Ge H, Yan Y, Wu D, Huang Y, Tian F. Prognostic value of PEG10 in Asian solid tumors: a meta-analysis. Clin Chim Acta. 2018;483:197–203.CrossRefPubMed
33.
Zurück zum Zitat Wang D, Zhao J, Li S, Wei J, Nan L, Mallampalli RK, Weathington NM, Ma H, Zhao Y. Phosphorylated E2F1 is stabilized by nuclear USP11 to drive Peg10 gene expression and activate lung epithelial cells. J Mol Cell Biol. 2018;10:60–73.CrossRefPubMed Wang D, Zhao J, Li S, Wei J, Nan L, Mallampalli RK, Weathington NM, Ma H, Zhao Y. Phosphorylated E2F1 is stabilized by nuclear USP11 to drive Peg10 gene expression and activate lung epithelial cells. J Mol Cell Biol. 2018;10:60–73.CrossRefPubMed
35.
Zurück zum Zitat Yagi K, Furuhashi M, Aoki H, Goto D, Kuwano H, Sugamura K, Miyazono K, Kato M. c-myc is a downstream target of the Smad pathway. J Biol Chem. 2002;277:854–61.CrossRefPubMed Yagi K, Furuhashi M, Aoki H, Goto D, Kuwano H, Sugamura K, Miyazono K, Kato M. c-myc is a downstream target of the Smad pathway. J Biol Chem. 2002;277:854–61.CrossRefPubMed
36.
Zurück zum Zitat Li JM, Hu PPC, Shen X, Yu Y, Wang XF. E2F4-RB and E2F4-p107 complexes suppress gene expression by transforming growth factor beta through E2F binding sites. Proc Natl Acad Sci USA. 1997;94:4948–53.CrossRefPubMed Li JM, Hu PPC, Shen X, Yu Y, Wang XF. E2F4-RB and E2F4-p107 complexes suppress gene expression by transforming growth factor beta through E2F binding sites. Proc Natl Acad Sci USA. 1997;94:4948–53.CrossRefPubMed
37.
Zurück zum Zitat Shyu YC, Lee TL, Lu MJ, Chen JR, Chien RN, Chen HY, Lin JF, Tsou AP, Chen YH, Hsieh CW, Huang TS. miR-122-mediated translational repression of PEG10 and its suppression in human hepatocellular carcinoma. J Transl Med. 2016;14:200.CrossRefPubMedPubMedCentral Shyu YC, Lee TL, Lu MJ, Chen JR, Chien RN, Chen HY, Lin JF, Tsou AP, Chen YH, Hsieh CW, Huang TS. miR-122-mediated translational repression of PEG10 and its suppression in human hepatocellular carcinoma. J Transl Med. 2016;14:200.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Li J, Huang L, Xiao X, Chen Y, Wang X, Zhou Z, Zhang C, Zhang Y. Photoclickable MicroRNA for the intracellular target identification of microRNAs. J Am Chem Soc. 2016;138:15943–9.CrossRefPubMed Li J, Huang L, Xiao X, Chen Y, Wang X, Zhou Z, Zhang C, Zhang Y. Photoclickable MicroRNA for the intracellular target identification of microRNAs. J Am Chem Soc. 2016;138:15943–9.CrossRefPubMed
39.
Zurück zum Zitat Xiong J, Qin J, Zheng Y, Peng X, Luo Y, Meng X. PEG10 promotes the migration of human Burkitt’s lymphoma cells by up-regulating the expression of matrix metalloproteinase-2 and -9. Clin Invest Med. 2012;35:E117–25.CrossRefPubMed Xiong J, Qin J, Zheng Y, Peng X, Luo Y, Meng X. PEG10 promotes the migration of human Burkitt’s lymphoma cells by up-regulating the expression of matrix metalloproteinase-2 and -9. Clin Invest Med. 2012;35:E117–25.CrossRefPubMed
40.
Zurück zum Zitat Deng X, Hu Y, Ding Q, Han R, Guo Q, Qin J, Li J, Xiao R, Tian S, Hu W, et al. PEG10 plays a crucial role in human lung cancer proliferation, progression, prognosis and metastasis. Oncol Rep. 2014;32:2159–67.CrossRefPubMed Deng X, Hu Y, Ding Q, Han R, Guo Q, Qin J, Li J, Xiao R, Tian S, Hu W, et al. PEG10 plays a crucial role in human lung cancer proliferation, progression, prognosis and metastasis. Oncol Rep. 2014;32:2159–67.CrossRefPubMed
41.
Zurück zum Zitat Li X, Xiao R, Tembo K, Hao L, Xiong M, Pan S, Yang X, Yuan W, Xiong J, Zhang Q. PEG10 promotes human breast cancer cell proliferation, migration and invasion. Int J Oncol. 2016;48:1933–42.CrossRefPubMed Li X, Xiao R, Tembo K, Hao L, Xiong M, Pan S, Yang X, Yuan W, Xiong J, Zhang Q. PEG10 promotes human breast cancer cell proliferation, migration and invasion. Int J Oncol. 2016;48:1933–42.CrossRefPubMed
42.
Zurück zum Zitat Ishii S, Yamashita K, Harada H, Ushiku H, Tanaka T, Nishizawa N, Yokoi K, Washio M, Ema A, Mieno H, et al. The H19-PEG10/IGF2BP3 axis promotes gastric cancer progression in patients with high lymph node ratios. Oncotarget. 2017;8:74567–81.PubMedPubMedCentral Ishii S, Yamashita K, Harada H, Ushiku H, Tanaka T, Nishizawa N, Yokoi K, Washio M, Ema A, Mieno H, et al. The H19-PEG10/IGF2BP3 axis promotes gastric cancer progression in patients with high lymph node ratios. Oncotarget. 2017;8:74567–81.PubMedPubMedCentral
43.
Zurück zum Zitat Khan KH, Blanco-Codesido M, Molife LR. Cancer therapeutics: targeting the apoptotic pathway. Crit Rev Oncol Hematol. 2014;90:200–19.CrossRefPubMed Khan KH, Blanco-Codesido M, Molife LR. Cancer therapeutics: targeting the apoptotic pathway. Crit Rev Oncol Hematol. 2014;90:200–19.CrossRefPubMed
44.
Zurück zum Zitat Zhang M, Sui C, Dai B, Shen W, Lu J, Yang J. PEG10 is imperative for TGF-beta1-induced epithelial–mesenchymal transition in hepatocellular carcinoma. Oncol Rep. 2017;37:510–8.CrossRefPubMed Zhang M, Sui C, Dai B, Shen W, Lu J, Yang J. PEG10 is imperative for TGF-beta1-induced epithelial–mesenchymal transition in hepatocellular carcinoma. Oncol Rep. 2017;37:510–8.CrossRefPubMed
45.
Zurück zum Zitat Yoshibayashi H, Okabe H, Satoh S, Hida K, Kawashima K, Hamasu S, Nomura A, Hasegawa S, Ikai I, Sakai Y. SIAH1 causes growth arrest and apoptosis in hepatoma cells through beta-catenin degradation-dependent and -independent mechanisms. Oncol Rep. 2007;17:549–56.PubMed Yoshibayashi H, Okabe H, Satoh S, Hida K, Kawashima K, Hamasu S, Nomura A, Hasegawa S, Ikai I, Sakai Y. SIAH1 causes growth arrest and apoptosis in hepatoma cells through beta-catenin degradation-dependent and -independent mechanisms. Oncol Rep. 2007;17:549–56.PubMed
46.
Zurück zum Zitat Hu C, Xiong J, Zhang L, Huang B, Zhang Q, Li Q, Yang M, Wu Y, Wu Q, Shen Q, et al. PEG10 activation by co-stimulation of CXCR5 and CCR7 essentially contributes to resistance to apoptosis in CD19+CD34+ B cells from patients with B cell lineage acute and chronic lymphocytic leukemia. Cell Mol Immunol. 2004;1:280–94.PubMed Hu C, Xiong J, Zhang L, Huang B, Zhang Q, Li Q, Yang M, Wu Y, Wu Q, Shen Q, et al. PEG10 activation by co-stimulation of CXCR5 and CCR7 essentially contributes to resistance to apoptosis in CD19+CD34+ B cells from patients with B cell lineage acute and chronic lymphocytic leukemia. Cell Mol Immunol. 2004;1:280–94.PubMed
47.
Zurück zum Zitat Chunsong H, Yuling H, Li W, Jie X, Gang Z, Qiuping Z, Qingping G, Kejian Z, Li Q, Chang AE, et al. CXC chemokine ligand 13 and CC chemokine ligand 19 cooperatively render resistance to apoptosis in B cell lineage acute and chronic lymphocytic leukemia CD23+CD5+ B cells. J Immunol. 2006;177:6713–22.CrossRefPubMed Chunsong H, Yuling H, Li W, Jie X, Gang Z, Qiuping Z, Qingping G, Kejian Z, Li Q, Chang AE, et al. CXC chemokine ligand 13 and CC chemokine ligand 19 cooperatively render resistance to apoptosis in B cell lineage acute and chronic lymphocytic leukemia CD23+CD5+ B cells. J Immunol. 2006;177:6713–22.CrossRefPubMed
48.
Zurück zum Zitat Hua Y, Ma X, Liu X, Yuan X, Qin H, Zhang X. Identification of the potential biomarkers for the metastasis of rectal adenocarcinoma. APMIS. 2017;125:93–100.CrossRefPubMed Hua Y, Ma X, Liu X, Yuan X, Qin H, Zhang X. Identification of the potential biomarkers for the metastasis of rectal adenocarcinoma. APMIS. 2017;125:93–100.CrossRefPubMed
49.
Zurück zum Zitat Liu Z, Yang Z, Liu D, Li D, Zou Q, Yuan Y, Li J, Liang L, Chen M, Chen S. TSG101 and PEG10 are prognostic markers in squamous cell/adenosquamous carcinomas and adenocarcinoma of the gallbladder. Oncol Lett. 2014;7:1128–38.CrossRefPubMedPubMedCentral Liu Z, Yang Z, Liu D, Li D, Zou Q, Yuan Y, Li J, Liang L, Chen M, Chen S. TSG101 and PEG10 are prognostic markers in squamous cell/adenosquamous carcinomas and adenocarcinoma of the gallbladder. Oncol Lett. 2014;7:1128–38.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Xia D, Moyana T, Xiang J. Combinational adenovirus-mediated gene therapy and dendritic cell vaccine in combating well-established tumors. Cell Res. 2006;16:241–59.CrossRefPubMed Xia D, Moyana T, Xiang J. Combinational adenovirus-mediated gene therapy and dendritic cell vaccine in combating well-established tumors. Cell Res. 2006;16:241–59.CrossRefPubMed
54.
Zurück zum Zitat Peng W, Zhao G, Ma Y, Yu H, Wang X. Dendritic cells transfected with PEG10 recombinant adenovirus elicit anti-tumor immune response in vitro and in vivo. Vaccine. 2011;29:3501–6.CrossRefPubMed Peng W, Zhao G, Ma Y, Yu H, Wang X. Dendritic cells transfected with PEG10 recombinant adenovirus elicit anti-tumor immune response in vitro and in vivo. Vaccine. 2011;29:3501–6.CrossRefPubMed
55.
Zurück zum Zitat Crooke ST, Witztum JL, Bennett CF, Baker BF. RNA-targeted therapeutics. Cell Metab. 2018;27:714–39.CrossRefPubMed Crooke ST, Witztum JL, Bennett CF, Baker BF. RNA-targeted therapeutics. Cell Metab. 2018;27:714–39.CrossRefPubMed
56.
Zurück zum Zitat Kempinska K, Malik B, Borkin D, Klossowski S, Shukla S, Miao H, Wang J, Cierpicki T, Grembecka J. Pharmacologic inhibition of the Menin–MLL interaction leads to transcriptional repression of PEG10 and blocks hepatocellular carcinoma. Mol Cancer Ther. 2018;17:26–38.CrossRefPubMed Kempinska K, Malik B, Borkin D, Klossowski S, Shukla S, Miao H, Wang J, Cierpicki T, Grembecka J. Pharmacologic inhibition of the Menin–MLL interaction leads to transcriptional repression of PEG10 and blocks hepatocellular carcinoma. Mol Cancer Ther. 2018;17:26–38.CrossRefPubMed
57.
Zurück zum Zitat Roessler S, Jia HL, Budhu A, Forgues M, Ye QH, Lee JS, Thorgeirsson SS, Sun Z, Tang ZY, Qin LX, Wang XW. A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients. Cancer Res. 2010;70:10202–12.CrossRefPubMedPubMedCentral Roessler S, Jia HL, Budhu A, Forgues M, Ye QH, Lee JS, Thorgeirsson SS, Sun Z, Tang ZY, Qin LX, Wang XW. A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients. Cancer Res. 2010;70:10202–12.CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Roessler S, Long EL, Budhu A, Chen Y, Zhao X, Ji J, Walker R, Jia HL, Ye QH, Qin LX, et al. Integrative genomic identification of genes on 8p associated with hepatocellular carcinoma progression and patient survival. Gastroenterology. 2012;142(957–966):e912. Roessler S, Long EL, Budhu A, Chen Y, Zhao X, Ji J, Walker R, Jia HL, Ye QH, Qin LX, et al. Integrative genomic identification of genes on 8p associated with hepatocellular carcinoma progression and patient survival. Gastroenterology. 2012;142(957–966):e912.
59.
Zurück zum Zitat Chen DT, Nasir A, Culhane A, Venkataramu C, Fulp W, Rubio R, Wang T, Agrawal D, McCarthy SM, Gruidl M, et al. Proliferative genes dominate malignancy-risk gene signature in histologically-normal breast tissue. Breast Cancer Res Treat. 2010;119:335–46.CrossRefPubMed Chen DT, Nasir A, Culhane A, Venkataramu C, Fulp W, Rubio R, Wang T, Agrawal D, McCarthy SM, Gruidl M, et al. Proliferative genes dominate malignancy-risk gene signature in histologically-normal breast tissue. Breast Cancer Res Treat. 2010;119:335–46.CrossRefPubMed
60.
Zurück zum Zitat Cho JY, Lim JY, Cheong JH, Park YY, Yoon SL, Kim SM, Kim SB, Kim H, Hong SW, Park YN, et al. Gene expression signature-based prognostic risk score in gastric cancer. Clin Cancer Res. 2011;17:1850–7.CrossRefPubMedPubMedCentral Cho JY, Lim JY, Cheong JH, Park YY, Yoon SL, Kim SM, Kim SB, Kim H, Hong SW, Park YN, et al. Gene expression signature-based prognostic risk score in gastric cancer. Clin Cancer Res. 2011;17:1850–7.CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Bowen NJ, Walker LD, Matyunina LV, Logani S, Totten KA, Benigno BB, McDonald JF. Gene expression profiling supports the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as ovarian cancer initiating cells. BMC Med Genomics. 2009;2:71.CrossRefPubMedPubMedCentral Bowen NJ, Walker LD, Matyunina LV, Logani S, Totten KA, Benigno BB, McDonald JF. Gene expression profiling supports the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as ovarian cancer initiating cells. BMC Med Genomics. 2009;2:71.CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Zhang G, Schetter A, He P, Funamizu N, Gaedcke J, Ghadimi BM, Ried T, Hassan R, Yfantis HG, Lee DH, et al. DPEP1 inhibits tumor cell invasiveness, enhances chemosensitivity and predicts clinical outcome in pancreatic ductal adenocarcinoma. PLoS ONE. 2012;7:e31507.CrossRefPubMedPubMedCentral Zhang G, Schetter A, He P, Funamizu N, Gaedcke J, Ghadimi BM, Ried T, Hassan R, Yfantis HG, Lee DH, et al. DPEP1 inhibits tumor cell invasiveness, enhances chemosensitivity and predicts clinical outcome in pancreatic ductal adenocarcinoma. PLoS ONE. 2012;7:e31507.CrossRefPubMedPubMedCentral
63.
Zurück zum Zitat Zhang G, He P, Tan H, Budhu A, Gaedcke J, Ghadimi BM, Ried T, Yfantis HG, Lee DH, Maitra A, et al. Integration of metabolomics and transcriptomics revealed a fatty acid network exerting growth inhibitory effects in human pancreatic cancer. Clin Cancer Res. 2013;19:4983–93.CrossRefPubMedPubMedCentral Zhang G, He P, Tan H, Budhu A, Gaedcke J, Ghadimi BM, Ried T, Yfantis HG, Lee DH, Maitra A, et al. Integration of metabolomics and transcriptomics revealed a fatty acid network exerting growth inhibitory effects in human pancreatic cancer. Clin Cancer Res. 2013;19:4983–93.CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat Khamas A, Ishikawa T, Shimokawa K, Mogushi K, Iida S, Ishiguro M, Mizushima H, Tanaka H, Uetake H, Sugihara K. Screening for epigenetically masked genes in colorectal cancer using 5-Aza-2′-deoxycytidine, microarray and gene expression profile. Cancer Genomics Proteomics. 2012;9:67–75.PubMed Khamas A, Ishikawa T, Shimokawa K, Mogushi K, Iida S, Ishiguro M, Mizushima H, Tanaka H, Uetake H, Sugihara K. Screening for epigenetically masked genes in colorectal cancer using 5-Aza-2′-deoxycytidine, microarray and gene expression profile. Cancer Genomics Proteomics. 2012;9:67–75.PubMed
65.
Zurück zum Zitat Talantov D, Mazumder A, Yu JX, Briggs T, Jiang Y, Backus J, Atkins D, Wang Y. Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin Cancer Res. 2005;11:7234–42.CrossRefPubMed Talantov D, Mazumder A, Yu JX, Briggs T, Jiang Y, Backus J, Atkins D, Wang Y. Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin Cancer Res. 2005;11:7234–42.CrossRefPubMed
66.
Zurück zum Zitat Dyrskjot L, Kruhoffer M, Thykjaer T, Marcussen N, Jensen JL, Moller K, Orntoft TF. Gene expression in the urinary bladder: a common carcinoma in situ gene expression signature exists disregarding histopathological classification. Cancer Res. 2004;64:4040–8.CrossRefPubMed Dyrskjot L, Kruhoffer M, Thykjaer T, Marcussen N, Jensen JL, Moller K, Orntoft TF. Gene expression in the urinary bladder: a common carcinoma in situ gene expression signature exists disregarding histopathological classification. Cancer Res. 2004;64:4040–8.CrossRefPubMed
67.
Zurück zum Zitat Homminga I, Pieters R, Langerak AW, de Rooi JJ, Stubbs A, Verstegen M, Vuerhard M, Buijs-Gladdines J, Kooi C, Klous P, et al. Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. Cancer Cell. 2011;19:484–97.CrossRefPubMed Homminga I, Pieters R, Langerak AW, de Rooi JJ, Stubbs A, Verstegen M, Vuerhard M, Buijs-Gladdines J, Kooi C, Klous P, et al. Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. Cancer Cell. 2011;19:484–97.CrossRefPubMed
68.
Zurück zum Zitat Pena-Llopis S, Vega-Rubin-de-Celis S, Liao A, Leng N, Pavia-Jimenez A, Wang S, Yamasaki T, Zhrebker L, Sivanand S, Spence P, et al. BAP1 loss defines a new class of renal cell carcinoma. Nat Genet. 2012;44:751–9.CrossRefPubMedPubMedCentral Pena-Llopis S, Vega-Rubin-de-Celis S, Liao A, Leng N, Pavia-Jimenez A, Wang S, Yamasaki T, Zhrebker L, Sivanand S, Spence P, et al. BAP1 loss defines a new class of renal cell carcinoma. Nat Genet. 2012;44:751–9.CrossRefPubMedPubMedCentral
69.
Zurück zum Zitat Su H, Hu N, Yang HH, Wang C, Takikita M, Wang QH, Giffen C, Clifford R, Hewitt SM, Shou JZ, et al. Global gene expression profiling and validation in esophageal squamous cell carcinoma and its association with clinical phenotypes. Clin Cancer Res. 2011;17:2955–66.CrossRefPubMedPubMedCentral Su H, Hu N, Yang HH, Wang C, Takikita M, Wang QH, Giffen C, Clifford R, Hewitt SM, Shou JZ, et al. Global gene expression profiling and validation in esophageal squamous cell carcinoma and its association with clinical phenotypes. Clin Cancer Res. 2011;17:2955–66.CrossRefPubMedPubMedCentral
70.
Zurück zum Zitat Li WQ, Hu N, Burton VH, Yang HH, Su H, Conway CM, Wang L, Wang C, Ding T, Xu Y, et al. PLCE1 mRNA and protein expression and survival of patients with esophageal squamous cell carcinoma and gastric adenocarcinoma. Cancer Epidemiol Biomarkers Prev. 2014;23:1579–88.CrossRefPubMedPubMedCentral Li WQ, Hu N, Burton VH, Yang HH, Su H, Conway CM, Wang L, Wang C, Ding T, Xu Y, et al. PLCE1 mRNA and protein expression and survival of patients with esophageal squamous cell carcinoma and gastric adenocarcinoma. Cancer Epidemiol Biomarkers Prev. 2014;23:1579–88.CrossRefPubMedPubMedCentral
71.
Zurück zum Zitat Dodd LE, Sengupta S, Chen IH, den Boon JA, Cheng YJ, Westra W, Newton MA, Mittl BF, McShane L, Chen CJ, et al. Genes involved in DNA repair and nitrosamine metabolism and those located on chromosome 14q32 are dysregulated in nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev. 2006;15:2216–25.CrossRefPubMed Dodd LE, Sengupta S, Chen IH, den Boon JA, Cheng YJ, Westra W, Newton MA, Mittl BF, McShane L, Chen CJ, et al. Genes involved in DNA repair and nitrosamine metabolism and those located on chromosome 14q32 are dysregulated in nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev. 2006;15:2216–25.CrossRefPubMed
72.
Zurück zum Zitat Sengupta S, den Boon JA, Chen IH, Newton MA, Dahl DB, Chen M, Cheng YJ, Westra WH, Chen CJ, Hildesheim A, et al. Genome-wide expression profiling reveals EBV-associated inhibition of MHC class I expression in nasopharyngeal carcinoma. Cancer Res. 2006;66:7999–8006.CrossRefPubMed Sengupta S, den Boon JA, Chen IH, Newton MA, Dahl DB, Chen M, Cheng YJ, Westra WH, Chen CJ, Hildesheim A, et al. Genome-wide expression profiling reveals EBV-associated inhibition of MHC class I expression in nasopharyngeal carcinoma. Cancer Res. 2006;66:7999–8006.CrossRefPubMed
73.
Zurück zum Zitat Hsu WL, Tse KP, Liang S, Chien YC, Su WH, Yu KJ, Cheng YJ, Tsang NM, Hsu MM, Chang KP, et al. Evaluation of human leukocyte antigen-A (HLA-A), other non-HLA markers on chromosome 6p21 and risk of nasopharyngeal carcinoma. PLoS ONE. 2012;7:e42767.CrossRefPubMedPubMedCentral Hsu WL, Tse KP, Liang S, Chien YC, Su WH, Yu KJ, Cheng YJ, Tsang NM, Hsu MM, Chang KP, et al. Evaluation of human leukocyte antigen-A (HLA-A), other non-HLA markers on chromosome 6p21 and risk of nasopharyngeal carcinoma. PLoS ONE. 2012;7:e42767.CrossRefPubMedPubMedCentral
74.
Zurück zum Zitat Rousseaux S, Debernardi A, Jacquiau B, Vitte AL, Vesin A, Nagy-Mignotte H, Moro-Sibilot D, Brichon PY, Lantuejoul S, Hainaut P, et al. Ectopic activation of germline and placental genes identifies aggressive metastasis-prone lung cancers. Sci Transl Med. 2013;5:186ra166.CrossRef Rousseaux S, Debernardi A, Jacquiau B, Vitte AL, Vesin A, Nagy-Mignotte H, Moro-Sibilot D, Brichon PY, Lantuejoul S, Hainaut P, et al. Ectopic activation of germline and placental genes identifies aggressive metastasis-prone lung cancers. Sci Transl Med. 2013;5:186ra166.CrossRef
75.
Zurück zum Zitat Chandran UR, Ma C, Dhir R, Bisceglia M, Lyons-Weiler M, Liang W, Michalopoulos G, Becich M, Monzon FA. Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer. 2007;7:64.CrossRefPubMedPubMedCentral Chandran UR, Ma C, Dhir R, Bisceglia M, Lyons-Weiler M, Liang W, Michalopoulos G, Becich M, Monzon FA. Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer. 2007;7:64.CrossRefPubMedPubMedCentral
76.
Zurück zum Zitat Yu YP, Landsittel D, Jing L, Nelson J, Ren B, Liu L, McDonald C, Thomas R, Dhir R, Finkelstein S, et al. Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol. 2004;22:2790–9.CrossRefPubMed Yu YP, Landsittel D, Jing L, Nelson J, Ren B, Liu L, McDonald C, Thomas R, Dhir R, Finkelstein S, et al. Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol. 2004;22:2790–9.CrossRefPubMed
Metadaten
Titel
PEG10 as an oncogene: expression regulatory mechanisms and role in tumor progression
verfasst von
Tian Xie
Shan Pan
Hang Zheng
Zilv Luo
Kingsley M. Tembo
Muhammad Jamal
Zhongyang Yu
Yao Yu
Jing Xia
Qian Yin
Meng Wang
Wen Yuan
Qiuping Zhang
Jie Xiong
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Cancer Cell International / Ausgabe 1/2018
Elektronische ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-018-0610-3

Weitere Artikel der Ausgabe 1/2018

Cancer Cell International 1/2018 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.