Skip to main content
Erschienen in: Knee Surgery, Sports Traumatology, Arthroscopy 11/2009

01.11.2009 | Experimental Study

Perfusion and cyclic compression of mesenchymal cell-loaded and clinically applicable osteochondral grafts

verfasst von: Carl Haasper, Michael Colditz, Stefan Budde, Eric Hesse, Thomas Tschernig, Michael Frink, Christian Krettek, Christof Hurschler, Michael Jagodzinski

Erschienen in: Knee Surgery, Sports Traumatology, Arthroscopy | Ausgabe 11/2009

Einloggen, um Zugang zu erhalten

Abstract

Osteochondral lesions are often seen in orthopedics, but the available treatment strategies are limited in success. Regenerative medicine provides novel concepts for curing them. The purpose of this study was to test the effects of perfusion and cyclic compression on cell differentiation and mechanical properties using a custom-made biomechanoreactor in a recently established system of human bone marrow stromal cells (hBMSC) cultured in a 3-D collagen I-bone hybrid matrix out of commercially available and separately in human-certified products. Seeded hBMSC were viable for 88 ± 8.9% during the entire experimental period in the constructs. GAG and DNA levels did not change. Perfusion induced collagen II and cyclic compression increased collagen X expression. Matrix stiffness was significantly increased after 28 days of cyclic compression. Cyclic compression of cell-loaded hybrid constructs enhanced chondrocyte differentiation and matrix stiffness. This system is a promising tool with a view to a later clinical application.
Literatur
1.
Zurück zum Zitat Angele P, Kujat R, Nerlich M, Yoo J, Goldberg V, Johnstone B (1999) Engineering of osteochondral tissue with bone marrow mesenchymal progenitor cells in a derivatized hyaluronan-gelatin composite sponge. Tissue Eng 5:545–554CrossRefPubMed Angele P, Kujat R, Nerlich M, Yoo J, Goldberg V, Johnstone B (1999) Engineering of osteochondral tissue with bone marrow mesenchymal progenitor cells in a derivatized hyaluronan-gelatin composite sponge. Tissue Eng 5:545–554CrossRefPubMed
2.
Zurück zum Zitat Angele P, Yoo JU, Smith C, Mansour J, Jepsen KJ, Nerlich M, Johnstone B (2003) Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J Orthop Res 21:451–457CrossRefPubMed Angele P, Yoo JU, Smith C, Mansour J, Jepsen KJ, Nerlich M, Johnstone B (2003) Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J Orthop Res 21:451–457CrossRefPubMed
3.
Zurück zum Zitat Aubin JE, Triffitt JT (2002) Mesenchymal stem cells and osteoblast differentiation. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology, 2nd edn. Academic Press, San Diego, pp 59–81 Aubin JE, Triffitt JT (2002) Mesenchymal stem cells and osteoblast differentiation. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology, 2nd edn. Academic Press, San Diego, pp 59–81
4.
Zurück zum Zitat Bancroft GN, Sikavitsas VI, van den DJ, Sheffield TL, Ambrose CG, Jansen JA, Mikos AG (2002) Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc Natl Acad Sci USA 99:12600–12605 Bancroft GN, Sikavitsas VI, van den DJ, Sheffield TL, Ambrose CG, Jansen JA, Mikos AG (2002) Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc Natl Acad Sci USA 99:12600–12605
5.
Zurück zum Zitat Brown TD, Johnston RC, Saltzman CL, Marsh JL, Buckwalter JA (2006) Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J Orthop Trauma 20:739–744CrossRefPubMed Brown TD, Johnston RC, Saltzman CL, Marsh JL, Buckwalter JA (2006) Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J Orthop Trauma 20:739–744CrossRefPubMed
6.
Zurück zum Zitat Cancedda R, Bianchi G, Derubeis A, Quarto R (2003) Cell therapy for bone disease: a review of current status. Stem Cells 21:610–619CrossRefPubMed Cancedda R, Bianchi G, Derubeis A, Quarto R (2003) Cell therapy for bone disease: a review of current status. Stem Cells 21:610–619CrossRefPubMed
8.
Zurück zum Zitat Caplan AI, Bruder SP (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 7:259–264CrossRefPubMed Caplan AI, Bruder SP (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 7:259–264CrossRefPubMed
9.
Zurück zum Zitat Catelas I, Sese N, Wu BM, Dunn JCY, Helgerson S, Tawil B (2006) Human mesenchymal stem cell proliferation and osteogenic differentiation in fibrin gels in vitro. Tissue Eng 12:2385–2396CrossRefPubMed Catelas I, Sese N, Wu BM, Dunn JCY, Helgerson S, Tawil B (2006) Human mesenchymal stem cell proliferation and osteogenic differentiation in fibrin gels in vitro. Tissue Eng 12:2385–2396CrossRefPubMed
10.
Zurück zum Zitat Evans CH, Ghivizzani SC, Robbins PD (2006) Gene therapy for arthritis: what next? Arthritis Rheum 54:1714–1729CrossRefPubMed Evans CH, Ghivizzani SC, Robbins PD (2006) Gene therapy for arthritis: what next? Arthritis Rheum 54:1714–1729CrossRefPubMed
11.
Zurück zum Zitat Haasper C, Zeichen J, Meister R, Krettek C, Jagodzinski M (2008) Tissue engineering of osteochondral constructs in vitro using bioreactors. Injury 39:S66–S76CrossRefPubMed Haasper C, Zeichen J, Meister R, Krettek C, Jagodzinski M (2008) Tissue engineering of osteochondral constructs in vitro using bioreactors. Injury 39:S66–S76CrossRefPubMed
12.
Zurück zum Zitat Haasper C, Colditz M, Kirsch L, Tschernig T, Viering J, Graubner G, Runtemund A, Zeichen J, Meller R, Glasmacher B, Windhagen H, Krettek C, Hurschler C, Jagodzinski M (2008) A system for engineering an osteochondral construct in the shape of an articular surface: preliminary results. Ann Anat 190:351–359CrossRefPubMed Haasper C, Colditz M, Kirsch L, Tschernig T, Viering J, Graubner G, Runtemund A, Zeichen J, Meller R, Glasmacher B, Windhagen H, Krettek C, Hurschler C, Jagodzinski M (2008) A system for engineering an osteochondral construct in the shape of an articular surface: preliminary results. Ann Anat 190:351–359CrossRefPubMed
13.
Zurück zum Zitat Haasper C, Jagodzinski M, Drescher M, Meller R, Wehmeier M, Krettek C, Hesse E (2008) Cyclic strain induces FosB and initiates osteogenic differentiation of mesenchymal cells. Exp Toxicol Pathol 59:355–363PubMed Haasper C, Jagodzinski M, Drescher M, Meller R, Wehmeier M, Krettek C, Hesse E (2008) Cyclic strain induces FosB and initiates osteogenic differentiation of mesenchymal cells. Exp Toxicol Pathol 59:355–363PubMed
14.
Zurück zum Zitat Hankemeier S, Keus M, Zeichen J, Jagodzinski M, Barkhausen T, Bosch U, Krettek C, van Griensven M (2005) Modulation of proliferation and differentiation of human bone marrow stromal cells by fibroblast growth factor 2: potential implications for tissue engineering of tendons and ligaments. Tissue Eng 11:41–49CrossRefPubMed Hankemeier S, Keus M, Zeichen J, Jagodzinski M, Barkhausen T, Bosch U, Krettek C, van Griensven M (2005) Modulation of proliferation and differentiation of human bone marrow stromal cells by fibroblast growth factor 2: potential implications for tissue engineering of tendons and ligaments. Tissue Eng 11:41–49CrossRefPubMed
15.
Zurück zum Zitat Ignatius A, Blessing H, Liedert A, Schmidt C, Neidlinger-Wilke C, Kaspar D, Friemert B, Claes L (2005) Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices. Biomaterials 26:311–318CrossRefPubMed Ignatius A, Blessing H, Liedert A, Schmidt C, Neidlinger-Wilke C, Kaspar D, Friemert B, Claes L (2005) Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices. Biomaterials 26:311–318CrossRefPubMed
16.
Zurück zum Zitat Jagodzinski M, Drescher M, Zeichen J, Hankemeier S, Krettek C, Bosch U, Griensven M (2004) Effects of cyclic longitudinal mechanical strain and dexamethasone on osteogenic differentiation of human bone marrow stromal cells. Eur Cell Mater 7:35–41PubMed Jagodzinski M, Drescher M, Zeichen J, Hankemeier S, Krettek C, Bosch U, Griensven M (2004) Effects of cyclic longitudinal mechanical strain and dexamethasone on osteogenic differentiation of human bone marrow stromal cells. Eur Cell Mater 7:35–41PubMed
17.
Zurück zum Zitat Jiang J, Nicoll SB, Lu HH (2005) Co-culture of osteoblasts and chondrocytes modulates cellular differentiation in vitro. Biochem Biophys Res Commun 338:762–770CrossRefPubMed Jiang J, Nicoll SB, Lu HH (2005) Co-culture of osteoblasts and chondrocytes modulates cellular differentiation in vitro. Biochem Biophys Res Commun 338:762–770CrossRefPubMed
18.
Zurück zum Zitat Kaspar D, Seidl W, Neidlinger-Wilke C, Ignatius A, Claes L (2000) Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity. J Biomech 33:45–51CrossRefPubMed Kaspar D, Seidl W, Neidlinger-Wilke C, Ignatius A, Claes L (2000) Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity. J Biomech 33:45–51CrossRefPubMed
19.
Zurück zum Zitat Krampera M, Pizzolo G, Aprili G, Franchini M (2006) Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone 39:678–683CrossRefPubMed Krampera M, Pizzolo G, Aprili G, Franchini M (2006) Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone 39:678–683CrossRefPubMed
20.
Zurück zum Zitat Lee CS, Gleghorn JP, Won CN, Cabodi M, Stroock AD, Bonassar LJ (2007) Integration of layered chondrocyte-seeded alginate hydrogel scaffolds. Biomaterials 28:2987–2993CrossRefPubMed Lee CS, Gleghorn JP, Won CN, Cabodi M, Stroock AD, Bonassar LJ (2007) Integration of layered chondrocyte-seeded alginate hydrogel scaffolds. Biomaterials 28:2987–2993CrossRefPubMed
21.
Zurück zum Zitat Magnussen RA, Dunn WR, Carey JL, Spindler KP (2008) Treatment of focal articular cartilage defects in the knee: a systematic review. Clin Orthop Relat Res 466:952–962CrossRefPubMed Magnussen RA, Dunn WR, Carey JL, Spindler KP (2008) Treatment of focal articular cartilage defects in the knee: a systematic review. Clin Orthop Relat Res 466:952–962CrossRefPubMed
22.
Zurück zum Zitat Mauney JR, Sjostorm S, Blumberg J, Horan R, O’Leary JP, Vunjak-Novakovic G, Volloch V, Kaplan DL (2004) Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro. Calcif Tissue Int 74:458–468CrossRefPubMed Mauney JR, Sjostorm S, Blumberg J, Horan R, O’Leary JP, Vunjak-Novakovic G, Volloch V, Kaplan DL (2004) Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro. Calcif Tissue Int 74:458–468CrossRefPubMed
23.
Zurück zum Zitat Perka C, Sittinger M, Schultz O, Spitzer RS, Schlenzka D, Burmester GR (2000) Tissue engineered cartilage repair using cryopreserved and noncryopreserved chondrocytes. Clin Orthop Relat Res 245–254 Perka C, Sittinger M, Schultz O, Spitzer RS, Schlenzka D, Burmester GR (2000) Tissue engineered cartilage repair using cryopreserved and noncryopreserved chondrocytes. Clin Orthop Relat Res 245–254
24.
Zurück zum Zitat Pound JC, Green DW, Roach HI, Mann S, Oreffo RO (2007) An ex vivo model for chondrogenesis and osteogenesis. Biomaterials 28:2839–2849CrossRefPubMed Pound JC, Green DW, Roach HI, Mann S, Oreffo RO (2007) An ex vivo model for chondrogenesis and osteogenesis. Biomaterials 28:2839–2849CrossRefPubMed
25.
Zurück zum Zitat Schipani E (2005) Hypoxia and HIF-1 alpha in chondrogenesis. Semin Cell Dev Biol 16:539–546CrossRefPubMed Schipani E (2005) Hypoxia and HIF-1 alpha in chondrogenesis. Semin Cell Dev Biol 16:539–546CrossRefPubMed
26.
Zurück zum Zitat Schumann D, Kujat R, Nerlich M, Angele P (2006) Mechanobiological conditioning of stem cells for cartilage tissue engineering. Biomed Mater Eng 16:S37–S52PubMed Schumann D, Kujat R, Nerlich M, Angele P (2006) Mechanobiological conditioning of stem cells for cartilage tissue engineering. Biomed Mater Eng 16:S37–S52PubMed
27.
Zurück zum Zitat Sharma B, Elisseeff J (2004) Engineering structurally organized cartilage and bone tissues. Ann Biochem Eng 32:148–159CrossRef Sharma B, Elisseeff J (2004) Engineering structurally organized cartilage and bone tissues. Ann Biochem Eng 32:148–159CrossRef
28.
Zurück zum Zitat Terraciano V, Hwang N, Moroni L, Park HB, Zhang Z, Mizrahi J, Seliktar D, Elisseeff J (2007) Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells 25:2730–2738CrossRefPubMed Terraciano V, Hwang N, Moroni L, Park HB, Zhang Z, Mizrahi J, Seliktar D, Elisseeff J (2007) Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells 25:2730–2738CrossRefPubMed
29.
Zurück zum Zitat Vunjak-Novakovic G, Meinel L, Altman G, Kaplan D (2005) Bioreactor cultivation of osteochondral grafts. Orthod Craniofac Res 8:209–218CrossRefPubMed Vunjak-Novakovic G, Meinel L, Altman G, Kaplan D (2005) Bioreactor cultivation of osteochondral grafts. Orthod Craniofac Res 8:209–218CrossRefPubMed
30.
Zurück zum Zitat Zhang X, Mitsuru A, Igura K, Takahashi K, Ichinose S, Yamaguchi S, Takahashi TA (2006) Mesenchymal progenitor cells derived from chorionic villi of human placenta for cartilage tissue engineering. Biochem Biophys Res Commun 340:944–952CrossRefPubMed Zhang X, Mitsuru A, Igura K, Takahashi K, Ichinose S, Yamaguchi S, Takahashi TA (2006) Mesenchymal progenitor cells derived from chorionic villi of human placenta for cartilage tissue engineering. Biochem Biophys Res Commun 340:944–952CrossRefPubMed
31.
Zurück zum Zitat Zuscik MJ, Hilton MJ, Zhang X, Chen D, O’Keefe RJ (2008) Regulation of chondrogenesis and chondrocyte differentiation by stress. J Clin Invest 118:429–438CrossRefPubMed Zuscik MJ, Hilton MJ, Zhang X, Chen D, O’Keefe RJ (2008) Regulation of chondrogenesis and chondrocyte differentiation by stress. J Clin Invest 118:429–438CrossRefPubMed
Metadaten
Titel
Perfusion and cyclic compression of mesenchymal cell-loaded and clinically applicable osteochondral grafts
verfasst von
Carl Haasper
Michael Colditz
Stefan Budde
Eric Hesse
Thomas Tschernig
Michael Frink
Christian Krettek
Christof Hurschler
Michael Jagodzinski
Publikationsdatum
01.11.2009
Verlag
Springer-Verlag
Erschienen in
Knee Surgery, Sports Traumatology, Arthroscopy / Ausgabe 11/2009
Print ISSN: 0942-2056
Elektronische ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-009-0791-3

Weitere Artikel der Ausgabe 11/2009

Knee Surgery, Sports Traumatology, Arthroscopy 11/2009 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Arthroskopie kann Knieprothese nicht hinauszögern

25.04.2024 Gonarthrose Nachrichten

Ein arthroskopischer Eingriff bei Kniearthrose macht im Hinblick darauf, ob und wann ein Gelenkersatz fällig wird, offenbar keinen Unterschied.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.