Skip to main content
Erschienen in: Journal of Clinical Immunology 6/2008

01.11.2008

Peripherally Induced Treg: Mode, Stability, and Role in Specific Tolerance

verfasst von: Irina Apostolou, Panos Verginis, Karsten Kretschmer, Julia Polansky, Jochen Hühn, Harald von Boehmer

Erschienen in: Journal of Clinical Immunology | Ausgabe 6/2008

Einloggen, um Zugang zu erhalten

Abstract

Foxp3-expressing regulatory T cells (Treg) have an essential function of preventing autoimmune disease in man and mouse. Foxp3 binds to forkhead motifs of about 1,100 genes and the strength of binding increases upon phorbol 12-myristate 13-acetate/ionomycin stimulation. In Foxp3-expressing T cell hybridomas, Foxp3 promoter binding does not lead to activation or suppression of genes which becomes only visible after T cell activation. These findings are in line with observations by others that Foxp3 exerts important functions in collaboration with T cell receptor (TCR)-dependent transcription factors in a DNA-binding complex. Tregs can be generated when developing T cells encounter TCR agonist ligands in the thymus. This process apparently depends on costimulatory signals. In contrast, extrathymic conversion of naïve T cells into Tregs appears to depend on transforming growth factor (TGF)-β and is inhibited by costimulation. In fact, dendritic cell-derived retinoic acid helps the conversion process by counteracting the negative impact of costimulation. Tregs induced by subimmunogenic antigen delivery in vivo are much more stable than Tregs induced by antigenic stimulation in the presence of TGF-β in vitro which correlates with the extent of demethylation of the Foxp3 locus. Tregs can be induced by conversion of antigen-specific T cells that occur with a very low frequency in wt mice. Conversion of naïve cluster of differentiation (CD)4 T cells into Tregs by a single peptide of HY antigens results in complete antigen-specific tolerance to an entire set of HY epitopes recognized by CD4 as well as CD8 T cells when presented with male skin or hemopoietic grafts.
Literatur
1.
Zurück zum Zitat Itoh M, Takahashi T, Sakaguchi N, et al. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol 1999;162:5317–26.PubMed Itoh M, Takahashi T, Sakaguchi N, et al. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol 1999;162:5317–26.PubMed
2.
Zurück zum Zitat Bruder D, Probst-Kepper M, Westendorf AM, et al. Neuropilin-1: a surface marker of regulatory T cells. Eur J Immunol 2004;34:623–30.PubMedCrossRef Bruder D, Probst-Kepper M, Westendorf AM, et al. Neuropilin-1: a surface marker of regulatory T cells. Eur J Immunol 2004;34:623–30.PubMedCrossRef
3.
Zurück zum Zitat Huehn J, Siegmund K, Lehmann JC, et al. Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells. J Exp Med 2004;199:303–13.PubMedCrossRef Huehn J, Siegmund K, Lehmann JC, et al. Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells. J Exp Med 2004;199:303–13.PubMedCrossRef
4.
Zurück zum Zitat Hansen W, Loser K, Westendorf AM, et al. G protein-coupled receptor 83 overexpression in naive CD4+CD25- T cells leads to the induction of Foxp3+ regulatory T cells in vivo. J Immunol 2006;177:209–15.PubMed Hansen W, Loser K, Westendorf AM, et al. G protein-coupled receptor 83 overexpression in naive CD4+CD25- T cells leads to the induction of Foxp3+ regulatory T cells in vivo. J Immunol 2006;177:209–15.PubMed
5.
Zurück zum Zitat Shimizu J, Yamazaki S, Takahashi T, et al. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 2002;3:135–4.CrossRef Shimizu J, Yamazaki S, Takahashi T, et al. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 2002;3:135–4.CrossRef
6.
Zurück zum Zitat Bachmann MF, Kohler G, Ecabert B, et al. Cutting edge: lymphoproliferative disease in the absence of CTLA-4 is not T cell autonomous. J Immunol 1999;163:1128–31.PubMed Bachmann MF, Kohler G, Ecabert B, et al. Cutting edge: lymphoproliferative disease in the absence of CTLA-4 is not T cell autonomous. J Immunol 1999;163:1128–31.PubMed
7.
Zurück zum Zitat Liu W, Putnam AL, Xu-Yu Z, et al. CD127 expression inversely correlates with Foxp3 and suppressive function of human CD4+ Treg cells. J Exp Med 2006;203:1701–11.PubMedCrossRef Liu W, Putnam AL, Xu-Yu Z, et al. CD127 expression inversely correlates with Foxp3 and suppressive function of human CD4+ Treg cells. J Exp Med 2006;203:1701–11.PubMedCrossRef
8.
Zurück zum Zitat Kretschmer K, Apostolou I, Hawiger D, et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol 2005;6:1219–27.PubMedCrossRef Kretschmer K, Apostolou I, Hawiger D, et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol 2005;6:1219–27.PubMedCrossRef
9.
Zurück zum Zitat Fontenot JD, Rasmussen JP, Williams LM, et al. Regulatory T cell lineage specification by the forkhead transcription factor Foxp3. Immunity 2005;22:329–41.PubMedCrossRef Fontenot JD, Rasmussen JP, Williams LM, et al. Regulatory T cell lineage specification by the forkhead transcription factor Foxp3. Immunity 2005;22:329–41.PubMedCrossRef
10.
Zurück zum Zitat Wan YY, Flavell RA. Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc Natl Acad Sci USA 2005;102:5126–31.PubMedCrossRef Wan YY, Flavell RA. Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc Natl Acad Sci USA 2005;102:5126–31.PubMedCrossRef
11.
Zurück zum Zitat Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003;4:330–6.PubMedCrossRef Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003;4:330–6.PubMedCrossRef
12.
Zurück zum Zitat Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003;299:1057–61.PubMedCrossRef Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003;299:1057–61.PubMedCrossRef
13.
Zurück zum Zitat Jaeckel E, von Boehmer H, Manns MP. Antigen-specific FoxP3-transduced T-cells can control established type 1 diabetes. Diabetes 2005;54:306–10.PubMedCrossRef Jaeckel E, von Boehmer H, Manns MP. Antigen-specific FoxP3-transduced T-cells can control established type 1 diabetes. Diabetes 2005;54:306–10.PubMedCrossRef
14.
Zurück zum Zitat Tang Q, Henriksen KJ, Bi M, et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 2004;199:1455–65.PubMedCrossRef Tang Q, Henriksen KJ, Bi M, et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 2004;199:1455–65.PubMedCrossRef
15.
Zurück zum Zitat Tarbell KV, Yamazaki S, Olson K, et al. CD25+CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med 2004;199:1467–77.PubMedCrossRef Tarbell KV, Yamazaki S, Olson K, et al. CD25+CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med 2004;199:1467–77.PubMedCrossRef
16.
Zurück zum Zitat Wu Y, Borde M, Heissmeyer V, et al. Foxp3 controls regulatory T cell function through cooperation with NFAT. Cell 2006;126:375–87.PubMedCrossRef Wu Y, Borde M, Heissmeyer V, et al. Foxp3 controls regulatory T cell function through cooperation with NFAT. Cell 2006;126:375–87.PubMedCrossRef
17.
Zurück zum Zitat Gavin MA, Rasmussen JP, Fontenot JD, et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 2007;445:771–5.PubMedCrossRef Gavin MA, Rasmussen JP, Fontenot JD, et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 2007;445:771–5.PubMedCrossRef
18.
Zurück zum Zitat Marson A, Kretschmer K, Frampton GM, et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 2007;445:931–5.PubMedCrossRef Marson A, Kretschmer K, Frampton GM, et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 2007;445:931–5.PubMedCrossRef
19.
Zurück zum Zitat Klein L, Khazaie K, von Boehmer H. In vivo dynamics of antigen-specific regulatory T cells not predicted from behavior in vitro. Proc Natl Acad Sci USA 2003;100:8886–91.PubMedCrossRef Klein L, Khazaie K, von Boehmer H. In vivo dynamics of antigen-specific regulatory T cells not predicted from behavior in vitro. Proc Natl Acad Sci USA 2003;100:8886–91.PubMedCrossRef
20.
Zurück zum Zitat von Boehmer H. Mechanisms of suppression by suppressor T cells. Nat Immunol 2005;6:338–44.CrossRef von Boehmer H. Mechanisms of suppression by suppressor T cells. Nat Immunol 2005;6:338–44.CrossRef
21.
Zurück zum Zitat von Boehmer H. Selection of the T-cell repertoire: receptor-controlled checkpoints in T-cell development. Adv Immunol 2004;84:201–38.CrossRef von Boehmer H. Selection of the T-cell repertoire: receptor-controlled checkpoints in T-cell development. Adv Immunol 2004;84:201–38.CrossRef
22.
Zurück zum Zitat Jordan MS, Boesteanu A, Reed AJ, et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2001;2:301–6.PubMedCrossRef Jordan MS, Boesteanu A, Reed AJ, et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2001;2:301–6.PubMedCrossRef
23.
Zurück zum Zitat Apostolou I, Sarukhan A, Klein L, et al. Origin of regulatory T cells with known specificity for antigen. Nat Immunol 2002;3:756–63.PubMed Apostolou I, Sarukhan A, Klein L, et al. Origin of regulatory T cells with known specificity for antigen. Nat Immunol 2002;3:756–63.PubMed
24.
Zurück zum Zitat Tai X, Cowan M, Feigenbaum L, et al. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat Immunol 2002;6:152–62.CrossRef Tai X, Cowan M, Feigenbaum L, et al. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat Immunol 2002;6:152–62.CrossRef
25.
Zurück zum Zitat Vafiadis P, Bennett ST, Todd JA, et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet 1997;15:289–9.CrossRef Vafiadis P, Bennett ST, Todd JA, et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet 1997;15:289–9.CrossRef
26.
Zurück zum Zitat Derbinski J, Schulte A, Kyewski B, et al. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2001;2:1032–9.PubMedCrossRef Derbinski J, Schulte A, Kyewski B, et al. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2001;2:1032–9.PubMedCrossRef
27.
Zurück zum Zitat Aschenbrenner K, D’Cruz LM, Vollmann EH, et al. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat Immunol 2007;8:351–8.PubMedCrossRef Aschenbrenner K, D’Cruz LM, Vollmann EH, et al. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat Immunol 2007;8:351–8.PubMedCrossRef
28.
Zurück zum Zitat Liston A, Gray DH, Lesage S, et al. Gene dosage—limiting role of Aire in thymic expression, clonal deletion, and organ-specific autoimmunity. J Exp Med 2004;200:1015–26.PubMedCrossRef Liston A, Gray DH, Lesage S, et al. Gene dosage—limiting role of Aire in thymic expression, clonal deletion, and organ-specific autoimmunity. J Exp Med 2004;200:1015–26.PubMedCrossRef
29.
Zurück zum Zitat Anderson MS, Venanzi ES, Chen Z, et al. The cellular mechanism of Aire control of T cell tolerance. Immunity 2005;23:227–39.PubMedCrossRef Anderson MS, Venanzi ES, Chen Z, et al. The cellular mechanism of Aire control of T cell tolerance. Immunity 2005;23:227–39.PubMedCrossRef
30.
Zurück zum Zitat Hao Y, Legrand N, Freitas AA. The clone size of peripheral CD8 T cells is regulated by TCR promiscuity. J Exp Med 2006;203:1643–9.PubMedCrossRef Hao Y, Legrand N, Freitas AA. The clone size of peripheral CD8 T cells is regulated by TCR promiscuity. J Exp Med 2006;203:1643–9.PubMedCrossRef
31.
Zurück zum Zitat Kretschmer K, Apostolou I, Jaeckel E, et al. Making regulatory T cells with defined antigen specificity: role in autoimmunity and cancer. Immunol Rev 2006;212:163–9.PubMedCrossRef Kretschmer K, Apostolou I, Jaeckel E, et al. Making regulatory T cells with defined antigen specificity: role in autoimmunity and cancer. Immunol Rev 2006;212:163–9.PubMedCrossRef
32.
Zurück zum Zitat Apostolou I, Von Boehmer H. In vivo instruction of suppressor commitment in naive T cells. J Exp Med 2004;199:1401–8.PubMedCrossRef Apostolou I, Von Boehmer H. In vivo instruction of suppressor commitment in naive T cells. J Exp Med 2004;199:1401–8.PubMedCrossRef
33.
Zurück zum Zitat Polansky JK, Kretschmer K, Freyer J, Floess S, Garbe A, Baron U, Olek S, Hamann A, von Boehmer H, Huehn J. DNA methylation controls Foxp3 gene expression. Eur J Immunol 2008;38:1654–6.PubMedCrossRef Polansky JK, Kretschmer K, Freyer J, Floess S, Garbe A, Baron U, Olek S, Hamann A, von Boehmer H, Huehn J. DNA methylation controls Foxp3 gene expression. Eur J Immunol 2008;38:1654–6.PubMedCrossRef
34.
Zurück zum Zitat Verginis P, McLaughlin KA, Wucherpfennig KW. Induction of antigen-specific regulatory T cells in wild-type mice: visualization and mode of suppression. Proc Natl Acad Sci USA 2008;105:3479–84.PubMedCrossRef Verginis P, McLaughlin KA, Wucherpfennig KW. Induction of antigen-specific regulatory T cells in wild-type mice: visualization and mode of suppression. Proc Natl Acad Sci USA 2008;105:3479–84.PubMedCrossRef
35.
Zurück zum Zitat Benson MJ, Pino-Lagos K, Rosemblatt M, et al. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J Exp Med 2007;204:1765–74.PubMedCrossRef Benson MJ, Pino-Lagos K, Rosemblatt M, et al. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J Exp Med 2007;204:1765–74.PubMedCrossRef
36.
Zurück zum Zitat Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 2007;204:1757–64.PubMedCrossRef Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 2007;204:1757–64.PubMedCrossRef
37.
Zurück zum Zitat Sun CM, Hall JA, Blank RB, et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 Treg cells via retinoic acid. J Exp Med 2007;204:1775–85.PubMedCrossRef Sun CM, Hall JA, Blank RB, et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 Treg cells via retinoic acid. J Exp Med 2007;204:1775–85.PubMedCrossRef
38.
Zurück zum Zitat von Boehmer H. Oral tolerance: is it all retinoic acid? J Exp Med 2007;204:1737–9.CrossRef von Boehmer H. Oral tolerance: is it all retinoic acid? J Exp Med 2007;204:1737–9.CrossRef
39.
Zurück zum Zitat Mempel TR, Pittet MJ, Khazaie K, et al. Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity 2006;25:129–41.PubMedCrossRef Mempel TR, Pittet MJ, Khazaie K, et al. Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity 2006;25:129–41.PubMedCrossRef
Metadaten
Titel
Peripherally Induced Treg: Mode, Stability, and Role in Specific Tolerance
verfasst von
Irina Apostolou
Panos Verginis
Karsten Kretschmer
Julia Polansky
Jochen Hühn
Harald von Boehmer
Publikationsdatum
01.11.2008
Verlag
Springer US
Erschienen in
Journal of Clinical Immunology / Ausgabe 6/2008
Print ISSN: 0271-9142
Elektronische ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-008-9254-8

Weitere Artikel der Ausgabe 6/2008

Journal of Clinical Immunology 6/2008 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.