Skip to main content
Erschienen in: Cardiovascular Toxicology 3/2016

17.06.2015

Peroxisome Proliferator-Activated Receptor-α Inhibition Protects Against Doxorubicin-Induced Cardiotoxicity in Mice

verfasst von: Mahdieh Rahmatollahi, Somayeh Mahmoodi Baram, Reza Rahimian, Seyed Soheil Saeedi Saravi, Ahmad Reza Dehpour

Erschienen in: Cardiovascular Toxicology | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Abstract

Doxorubicin is an effective chemotherapeutic drug against a considerable number of malignancies. However, its toxic effects on myocardium are confirmed as major limit of utilization. PPAR-α is highly expressed in the heart, and its activation leads to an increased cardiac fatty acid oxidation and cardiomyocyte necrosis. This study was performed to adjust the hypothesis that PPAR-α receptor inhibition protects against doxorubicin-induced cardiac dysfunction in mice. Male Balb/c mice were used in this study. Left atria were isolated, and their contractility was measured in response to electrical field stimulation in a standard organ bath. PPAR-α activity was measured using specific PPAR-α antibody in an ELISA-based system coated with double-strand DNA containing PPAR-α response element sequence. Moreover, cardiac MDA and TNF-α levels were measured by ELISA method. Following incubation with doxorubicin (35 µM), a significant reduction in atrial contractility was observed (P < 0.001). Pretreatment of animals with a selective PPAR-α antagonist, GW6471, significantly improved doxorubicin-induced atrial dysfunction (P < 0.001). Furthermore, pretreatment of the mice with a non-selective cannabinoid agonist, WIN55212-2, significantly decreased PPAR-α activity in cardiac tissue, subsequently leading to significant improvement in doxorubicin-induced atrial dysfunction (P < 0.001). Also, GW6471 and WIN significantly reduced cardiac MDA and TNF-α levels compared with animals receiving doxorubicin (P < 0.001). The study showed that inhibition of PPAR-α is associated with protection against doxorubicin-induced cardiotoxicity in mice, and cannabinoids can potentiate the protection by PPAR-α blockade. Moreover, PPAR-α may be considered as a target to prevent cardiotoxicity induced by doxorubicin in patients undergoing chemotherapy.
Literatur
1.
Zurück zum Zitat Ludke, A. R., Al-Shudiefat, A. A., Dhingra, S., Jassal, D. S., & Singal, P. K. (2009). A concise description of cardioprotective strategies in doxorubicin-induced cardiotoxicity. Canadian Journal of Physiology and Pharmacology, 87, 756–763.CrossRefPubMed Ludke, A. R., Al-Shudiefat, A. A., Dhingra, S., Jassal, D. S., & Singal, P. K. (2009). A concise description of cardioprotective strategies in doxorubicin-induced cardiotoxicity. Canadian Journal of Physiology and Pharmacology, 87, 756–763.CrossRefPubMed
2.
Zurück zum Zitat Richard, C., Ghibu, S., Delemasure-Chalumeau, S., Guilland, J. C., Des Rosiers, C., Zeller, M., et al. (2011). Oxidative stress and myocardial gene alterations associated with doxorubicin-induced cardiotoxicity in rats persist for 2 months after treatment cessation. Journal of Pharmacology and Experimental Therapeutics, 339, 807–814.CrossRefPubMed Richard, C., Ghibu, S., Delemasure-Chalumeau, S., Guilland, J. C., Des Rosiers, C., Zeller, M., et al. (2011). Oxidative stress and myocardial gene alterations associated with doxorubicin-induced cardiotoxicity in rats persist for 2 months after treatment cessation. Journal of Pharmacology and Experimental Therapeutics, 339, 807–814.CrossRefPubMed
3.
Zurück zum Zitat Xi, L., Zhu, S. G., Das, A., Chen, Q., Durrant, D., Hobbs, D. C., et al. (2012). Dietary inorganic nitrate alleviates doxorubicin cardiotoxicity: Mechanisms and implications. Nitric Oxide, 26, 274–284.CrossRefPubMedPubMedCentral Xi, L., Zhu, S. G., Das, A., Chen, Q., Durrant, D., Hobbs, D. C., et al. (2012). Dietary inorganic nitrate alleviates doxorubicin cardiotoxicity: Mechanisms and implications. Nitric Oxide, 26, 274–284.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Chatterjee, K., Zhang, J., Honbo, N., & Karlinerbc, J. S. (2010). Doxorubicin cardiomyopathy. Cardiology, 115, 155–162.CrossRefPubMed Chatterjee, K., Zhang, J., Honbo, N., & Karlinerbc, J. S. (2010). Doxorubicin cardiomyopathy. Cardiology, 115, 155–162.CrossRefPubMed
5.
Zurück zum Zitat Simůnek, T., Stérba, M., Popelová, O., Adamcová, M., Hrdina, R., & Gersl, V. (2009). Anthracycline-induced cardiotoxicity: Overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacological Reports, 61, 154–171.CrossRefPubMed Simůnek, T., Stérba, M., Popelová, O., Adamcová, M., Hrdina, R., & Gersl, V. (2009). Anthracycline-induced cardiotoxicity: Overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacological Reports, 61, 154–171.CrossRefPubMed
6.
Zurück zum Zitat Hydock, D. S., Lien, C. Y., & Hayward, R. (2009). Anandamide preserves cardiac function and geometry in an acute doxorubicin cardiotoxicity rat model. Journal of Cardiovascular Pharmacology and Therapeutics, 14, 59–67.CrossRefPubMed Hydock, D. S., Lien, C. Y., & Hayward, R. (2009). Anandamide preserves cardiac function and geometry in an acute doxorubicin cardiotoxicity rat model. Journal of Cardiovascular Pharmacology and Therapeutics, 14, 59–67.CrossRefPubMed
7.
Zurück zum Zitat Seely, K. A., Prather, P. L., James, L. P., & Moran, J. H. (2011). Marijuana-based drugs: Innovative therapeutics or designer drugs of abuse? Molecular Interventions, 11(1), 36–51.CrossRefPubMedPubMedCentral Seely, K. A., Prather, P. L., James, L. P., & Moran, J. H. (2011). Marijuana-based drugs: Innovative therapeutics or designer drugs of abuse? Molecular Interventions, 11(1), 36–51.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat González, C., Herradón, E., Abalo, R., Vera, G., Pérez-Nievas, B. G., Leza, J. C., et al. (2011). Cannabinoid/agonist WIN 55,212-2 reduces cardiac ischaemia–reperfusion injury in Zucker diabetic fatty rats: Role of CB2 receptors and iNOS/eNOS. Diabetes/Metabolism Research and Reviews, 27, 331–340.CrossRefPubMed González, C., Herradón, E., Abalo, R., Vera, G., Pérez-Nievas, B. G., Leza, J. C., et al. (2011). Cannabinoid/agonist WIN 55,212-2 reduces cardiac ischaemia–reperfusion injury in Zucker diabetic fatty rats: Role of CB2 receptors and iNOS/eNOS. Diabetes/Metabolism Research and Reviews, 27, 331–340.CrossRefPubMed
9.
Zurück zum Zitat Hajrasouliha, A. R., Tavakoli, S., Ghasemi, M., Jabehdar-Maralani, P., Sadeghipour, H., Ebrahimi, F., et al. (2008). Endogenous cannabinoids contribute to remote ischemic preconditioning via cannabinoid CB2 receptors in the rat heart. European Journal of Pharmacology, 28, 246–252.CrossRef Hajrasouliha, A. R., Tavakoli, S., Ghasemi, M., Jabehdar-Maralani, P., Sadeghipour, H., Ebrahimi, F., et al. (2008). Endogenous cannabinoids contribute to remote ischemic preconditioning via cannabinoid CB2 receptors in the rat heart. European Journal of Pharmacology, 28, 246–252.CrossRef
10.
Zurück zum Zitat Hiley, C. R., & Ford, W. R. (2004). Cannabinoid pharmacology in the cardiovascular system: Potential protective mechanisms through lipid signaling. Biological Reviews, 79, 187–205.CrossRefPubMed Hiley, C. R., & Ford, W. R. (2004). Cannabinoid pharmacology in the cardiovascular system: Potential protective mechanisms through lipid signaling. Biological Reviews, 79, 187–205.CrossRefPubMed
11.
Zurück zum Zitat De Petrocellis, L., & Di Marzo, V. (2009). Role of endocannabinoids and endovanilloids in Ca2+ signalling. Cell calcium, 45(6), 611–624.CrossRefPubMed De Petrocellis, L., & Di Marzo, V. (2009). Role of endocannabinoids and endovanilloids in Ca2+ signalling. Cell calcium, 45(6), 611–624.CrossRefPubMed
13.
Zurück zum Zitat Ravingerova, T., Adameova, A., Carnicka, S., Nemcekova, M., Kelly, T., Matejikova, J., et al. (2001). The role of PPAR in myocardial response to ischemia in normal and diseased heart. General Physiology and Biophysics, 30, 329–341.CrossRef Ravingerova, T., Adameova, A., Carnicka, S., Nemcekova, M., Kelly, T., Matejikova, J., et al. (2001). The role of PPAR in myocardial response to ischemia in normal and diseased heart. General Physiology and Biophysics, 30, 329–341.CrossRef
14.
15.
Zurück zum Zitat Oyekan, A. (2011). PPARs and their effects on the cardiovascular system. Clinical and Experimental Hypertension, 33, 287–293.CrossRefPubMed Oyekan, A. (2011). PPARs and their effects on the cardiovascular system. Clinical and Experimental Hypertension, 33, 287–293.CrossRefPubMed
16.
Zurück zum Zitat Pruimboom-Brees, I., Haghpassand, M., Royer, L., Brees, D., Aldinger, C., Reagan, W., et al. (2006). A critical role for peroxisomal proliferator-activated receptor-alpha nuclear receptors in the development of cardiomyocyte degeneration and necrosis. The American Journal of Pathology, 169, 750–760.CrossRefPubMedPubMedCentral Pruimboom-Brees, I., Haghpassand, M., Royer, L., Brees, D., Aldinger, C., Reagan, W., et al. (2006). A critical role for peroxisomal proliferator-activated receptor-alpha nuclear receptors in the development of cardiomyocyte degeneration and necrosis. The American Journal of Pathology, 169, 750–760.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Feridooni, T., Hotchkiss, A., Remley-Carr, S., Saga, Y., & Pasumarthi, K. B. (2011). Cardiomyocyte specific ablation of p53 is not sufficient to block doxorubicin induced cardiac fibrosis and associated cytoskeletal changes. PLoS One, 6, e22801.CrossRefPubMedPubMedCentral Feridooni, T., Hotchkiss, A., Remley-Carr, S., Saga, Y., & Pasumarthi, K. B. (2011). Cardiomyocyte specific ablation of p53 is not sufficient to block doxorubicin induced cardiac fibrosis and associated cytoskeletal changes. PLoS One, 6, e22801.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Di Filippo, C., Rossi, F., Rossi, S., & D’Amico, M. (2004). Cannabinoid CB2 receptor activation reduces mouse myocardial ischemia-reperfusion injury: Involvement of cytokine/chemokines and PMN. Journal of Leukocyte Biology, 75, 453–459.CrossRefPubMed Di Filippo, C., Rossi, F., Rossi, S., & D’Amico, M. (2004). Cannabinoid CB2 receptor activation reduces mouse myocardial ischemia-reperfusion injury: Involvement of cytokine/chemokines and PMN. Journal of Leukocyte Biology, 75, 453–459.CrossRefPubMed
19.
Zurück zum Zitat de Jong, J., Schoofs, P. R., Onderwater, R. C., van der Vijgh, W. J., Pinedo, H. M., & Bast, A. (1990). Isolated mouse atrium as a model to study anthracycline cardiotoxicity: The role of the beta-adrenoceptor system and reactive oxygen species. Research Communications in Chemical Pathology and Pharmacology, 68, 275–289.PubMed de Jong, J., Schoofs, P. R., Onderwater, R. C., van der Vijgh, W. J., Pinedo, H. M., & Bast, A. (1990). Isolated mouse atrium as a model to study anthracycline cardiotoxicity: The role of the beta-adrenoceptor system and reactive oxygen species. Research Communications in Chemical Pathology and Pharmacology, 68, 275–289.PubMed
20.
Zurück zum Zitat Costa, B., Comelli, F., Bettoni, I., Colleoni, M., & Giagnoni, G. (2008). The endogenous fatty acid amide, palmitoylethanolamide, has anti-allodynic and anti-hyperalgesic effects in a murine model of neuropathic pain: Involvement of CB(1), TRPV1 and PPARγ receptors and neurotrophic factors. Pain, 139, 541–550.CrossRefPubMed Costa, B., Comelli, F., Bettoni, I., Colleoni, M., & Giagnoni, G. (2008). The endogenous fatty acid amide, palmitoylethanolamide, has anti-allodynic and anti-hyperalgesic effects in a murine model of neuropathic pain: Involvement of CB(1), TRPV1 and PPARγ receptors and neurotrophic factors. Pain, 139, 541–550.CrossRefPubMed
21.
Zurück zum Zitat Hajiasgharzadeh, K., Mirnajafi-Zadeh, J., & Mani, A. R. (2001). Interleukin-6 impairs chronotropic responsiveness to cholinergic stimulation and decreases heart rate variability in mice. European Journal of Pharmacology, 673, 70–77.CrossRef Hajiasgharzadeh, K., Mirnajafi-Zadeh, J., & Mani, A. R. (2001). Interleukin-6 impairs chronotropic responsiveness to cholinergic stimulation and decreases heart rate variability in mice. European Journal of Pharmacology, 673, 70–77.CrossRef
22.
Zurück zum Zitat Haddadian, Z., Eftekhari, G., Mazloom, R., Jazaeri, F., Dehpour, A. R., & Mani, A. R. (2013). Effect of endotoxin on heart rate dynamics in rats with cirrhosis. Autonomic Neuroscience, 177, 104–113.CrossRefPubMed Haddadian, Z., Eftekhari, G., Mazloom, R., Jazaeri, F., Dehpour, A. R., & Mani, A. R. (2013). Effect of endotoxin on heart rate dynamics in rats with cirrhosis. Autonomic Neuroscience, 177, 104–113.CrossRefPubMed
23.
Zurück zum Zitat Rahimian, R., Fakhfouri, G., Daneshmand, A., Mohammadi, H., Bahremand, A., Rasouli, M. R., et al. (2010). Adenosine A2A receptors and uric acid mediate protective effects of inosine against TNBS-induced colitis in rats. European Journal of Pharmacology, 649(1–3), 376–381.CrossRefPubMed Rahimian, R., Fakhfouri, G., Daneshmand, A., Mohammadi, H., Bahremand, A., Rasouli, M. R., et al. (2010). Adenosine A2A receptors and uric acid mediate protective effects of inosine against TNBS-induced colitis in rats. European Journal of Pharmacology, 649(1–3), 376–381.CrossRefPubMed
24.
Zurück zum Zitat Sly, L. M., Rauh, M. J., Kalesnikoff, J., Song, C. H., & Krystal, G. (2004). LPS-induced upregulation of SHIP is essential for endotoxin tolerance. Immunity, 21, 227–239.CrossRefPubMed Sly, L. M., Rauh, M. J., Kalesnikoff, J., Song, C. H., & Krystal, G. (2004). LPS-induced upregulation of SHIP is essential for endotoxin tolerance. Immunity, 21, 227–239.CrossRefPubMed
25.
Zurück zum Zitat Mitra, M. S., Donthamsetty, S., White, B., Latendresse, J. R., & Mehendale, H. M. (2007). Mechanism of protection of moderately diet restricted rats against doxorubicin-induced acute cardiotoxicity. Toxicology and Applied Pharmacology, 225, 90–101.CrossRefPubMed Mitra, M. S., Donthamsetty, S., White, B., Latendresse, J. R., & Mehendale, H. M. (2007). Mechanism of protection of moderately diet restricted rats against doxorubicin-induced acute cardiotoxicity. Toxicology and Applied Pharmacology, 225, 90–101.CrossRefPubMed
26.
Zurück zum Zitat Mitra, M. S., Donthamsetty, S., White, B., & Mehendale, H. M. (2008). High fat diet-fed obese rats are highly sensitive to doxorubicin-induced cardiotoxicity. Toxicology and Applied Pharmacology, 231, 413–422.CrossRefPubMed Mitra, M. S., Donthamsetty, S., White, B., & Mehendale, H. M. (2008). High fat diet-fed obese rats are highly sensitive to doxorubicin-induced cardiotoxicity. Toxicology and Applied Pharmacology, 231, 413–422.CrossRefPubMed
27.
Zurück zum Zitat van Norren, K., van Helvoort, A., Argilés, J. M., van Tuijl, S., Arts, K., Gorselink, M., et al. (2009). Direct effects of doxorubicin on skeletal muscle contribute to fatigue. British Journal of Cancer, 100, 311–314.CrossRefPubMedPubMedCentral van Norren, K., van Helvoort, A., Argilés, J. M., van Tuijl, S., Arts, K., Gorselink, M., et al. (2009). Direct effects of doxorubicin on skeletal muscle contribute to fatigue. British Journal of Cancer, 100, 311–314.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Gaskari, S. A., Liu, H., Moezi, L., Li, Y., Baik, S. K., & Lee, S. S. (2005). Role of endocannabinoids in the pathogenesis of cirrhotic cardiomyopathy in bile duct–ligated rats. British Journal of Pharmacology, 146, 315–323.CrossRefPubMedPubMedCentral Gaskari, S. A., Liu, H., Moezi, L., Li, Y., Baik, S. K., & Lee, S. S. (2005). Role of endocannabinoids in the pathogenesis of cirrhotic cardiomyopathy in bile duct–ligated rats. British Journal of Pharmacology, 146, 315–323.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Guo, J., Guo, Q., Fang, H., Lei, L., Zhang, T., Zhao, J., & Peng, S. (2014). Cardioprotection against doxorubicin by metallothionein Is associated with preservation of mitochondrial biogenesis involving PGC-1α pathway. European Journal of Pharmacology, 737, 117–124.CrossRefPubMed Guo, J., Guo, Q., Fang, H., Lei, L., Zhang, T., Zhao, J., & Peng, S. (2014). Cardioprotection against doxorubicin by metallothionein Is associated with preservation of mitochondrial biogenesis involving PGC-1α pathway. European Journal of Pharmacology, 737, 117–124.CrossRefPubMed
30.
Zurück zum Zitat Ahmed, L. A., & El-Maraghy, S. A. (2013). Nicorandil ameliorates mitochondrial dysfunction in doxorubicin-induced heart failure in rats: Possible mechanism of cardioprotection. Biochemical Pharmacology, 86, 1301–1310.CrossRefPubMed Ahmed, L. A., & El-Maraghy, S. A. (2013). Nicorandil ameliorates mitochondrial dysfunction in doxorubicin-induced heart failure in rats: Possible mechanism of cardioprotection. Biochemical Pharmacology, 86, 1301–1310.CrossRefPubMed
31.
Zurück zum Zitat Yao, H., Shang, Z., Wang, P., Li, S., Zhang, Q., Tian, H., et al. (2015). Protection of luteolin-7-O-glucoside against doxorubicin-induced injury through PTEN/Akt and ERK pathway in H9c2 Cells. Cardiovascular Toxicology. doi:10.1007/s12012-015-9317-z. Yao, H., Shang, Z., Wang, P., Li, S., Zhang, Q., Tian, H., et al. (2015). Protection of luteolin-7-O-glucoside against doxorubicin-induced injury through PTEN/Akt and ERK pathway in H9c2 Cells. Cardiovascular Toxicology. doi:10.​1007/​s12012-015-9317-z.
32.
Zurück zum Zitat Miyazaki, M., Nakagawa, I., Koga, S., Kasahara, Y., & Patricelli, M. P. (2010). Proteomics analysis of cardiac muscle from rats with peroxisomal proliferator-activated receptor alpha (PPAR-alpha) stimulation. Journal of Toxicological Sciences, 35, 31–35.CrossRef Miyazaki, M., Nakagawa, I., Koga, S., Kasahara, Y., & Patricelli, M. P. (2010). Proteomics analysis of cardiac muscle from rats with peroxisomal proliferator-activated receptor alpha (PPAR-alpha) stimulation. Journal of Toxicological Sciences, 35, 31–35.CrossRef
Metadaten
Titel
Peroxisome Proliferator-Activated Receptor-α Inhibition Protects Against Doxorubicin-Induced Cardiotoxicity in Mice
verfasst von
Mahdieh Rahmatollahi
Somayeh Mahmoodi Baram
Reza Rahimian
Seyed Soheil Saeedi Saravi
Ahmad Reza Dehpour
Publikationsdatum
17.06.2015
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 3/2016
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-015-9332-0

Weitere Artikel der Ausgabe 3/2016

Cardiovascular Toxicology 3/2016 Zur Ausgabe