Skip to main content
Erschienen in: Clinical Pharmacokinetics 11/2008

01.11.2008 | Original Research Article

Pharmacokinetic/Pharmacodynamic Modelling of Venlafaxine

Pupillary Light Reflex as a Test System for Noradrenergic Effects

verfasst von: Andreas Lindauer, Timo Siepmann, Reinhard Oertel, Angelika Jung, Tjalf Ziemssen, Ulrich Jaehde, Wilhelm Kirch, Martin Siepmann

Erschienen in: Clinical Pharmacokinetics | Ausgabe 11/2008

Einloggen, um Zugang zu erhalten

Abstract

Background and objective: Venlafaxine and its major active metabolite O-desmethylvenlafaxine selectively inhibit serotonin and norepinephrine reuptake from the synaptic gap. The inhibition of norepinephrine uptake is assumed to enhance antidepressant efficacy when venlafaxine is given at higher therapeutic doses. Thus investigation of the concentration-response relationship of noradrenergic effects is of clinical interest. We used pupillography as a test system for the pharmacodynamic response to venlafaxine, since it had been shown to be useful for assessment of noradrenergic effects on the autonomous nervous system. The aim of the study was to develop a pharmacokinetic/pharmacodynamic model by means of nonlinear mixed-effects modelling in order to describe the time course of the noradrenergic response to venlafaxine.
Subjects and methods: Twelve healthy male subjects received venlafaxine 37.5 mg or placebo orally twice daily for 7 days and subsequently 75 mg or placebo twice daily for another 7 days. After a 14-day washout phase, the two groups were crossed over. After the last dose of venlafaxine or placebo on day 14, blood samples were drawn to determine venlafaxine and O-desmethylvenlafaxine concentrations and the amplitude and recovery time of the pupillary light reflex were measured. A pharmacokinetic/pharmacodynamic model was developed to describe the data using nonlinear mixed-effects modelling.
Results: The pharmacokinetic part of the model could be simultaneously fitted to both venlafaxine and O-desmethylvenlafaxine data, yielding precise parameter estimates that were similar to published data. The model detected high variability of the intrinsic clearance of venlafaxine (94.8%), most likely due to cytochrome P450 2D6 polymorphism. Rapid development of tolerance of the pupillary light reflex parameters was seen and could be successfully accounted for in the pharmacodynamic part of the model. The half-life of development and regression of tolerance was estimated to be 30 minutes for the amplitude and 40 minutes for the recovery time.
Conclusion: The time course of the effect and the concentration-response relationship were successfully described by a pharmacokinetic/pharmacodynamic model that takes into account the rapid development of tolerance of pupillary light reflex parameters. This provides a basis for further investigations of the applicability of pupillography as a surrogate measurement of the effectivity of antidepressant drugs with norepinephrine reuptake-inhibiting properties.
Fußnoten
1
The use of trade names is for product identification purposes only and does not imply endorsement.
 
Literatur
1.
Zurück zum Zitat Muth EA, Haskins JT, Moyer JA, et al. Antidepressant biochemical profile of the novel bicyclic compound Wy-45,030, an ethyl cyclohexanol derivative. Biochem Pharmacol 1986 Dec; 35(24): 4493–7PubMedCrossRef Muth EA, Haskins JT, Moyer JA, et al. Antidepressant biochemical profile of the novel bicyclic compound Wy-45,030, an ethyl cyclohexanol derivative. Biochem Pharmacol 1986 Dec; 35(24): 4493–7PubMedCrossRef
2.
Zurück zum Zitat Harvey AT, Rudolph RL, Preskorn SH. Evidence of the dual mechanisms of action of venlafaxine. Arch Gen Psychiatry 2000 May; 57(5): 503–9PubMedCrossRef Harvey AT, Rudolph RL, Preskorn SH. Evidence of the dual mechanisms of action of venlafaxine. Arch Gen Psychiatry 2000 May; 57(5): 503–9PubMedCrossRef
3.
Zurück zum Zitat Lecrubier Y. Clinical utility of venlafaxine in comparison with other antidepressants. Int Clin Psychopharmacol 1995 Mar; 10 Suppl. 2: 29–35PubMedCrossRef Lecrubier Y. Clinical utility of venlafaxine in comparison with other antidepressants. Int Clin Psychopharmacol 1995 Mar; 10 Suppl. 2: 29–35PubMedCrossRef
4.
Zurück zum Zitat Bitsios P, Szabadi E, Bradshaw CM. Comparison of the effects of venlafaxine, paroxetine and desipramine on the pupillary light reflex in man. Psychopharmacology (Berl) 1999 Apr; 143(3): 286–92CrossRef Bitsios P, Szabadi E, Bradshaw CM. Comparison of the effects of venlafaxine, paroxetine and desipramine on the pupillary light reflex in man. Psychopharmacology (Berl) 1999 Apr; 143(3): 286–92CrossRef
5.
Zurück zum Zitat Matoga M, Pehourcq F, Titier K, et al. Rapid high-performance liquid chromatographic measurement of venlafaxine and O-desmethylvenlafaxine in human plasma: application to management of acute intoxications. J Chromatogr B Biomed Sci Appl 2001 Sep; 760(2): 213–8PubMedCrossRef Matoga M, Pehourcq F, Titier K, et al. Rapid high-performance liquid chromatographic measurement of venlafaxine and O-desmethylvenlafaxine in human plasma: application to management of acute intoxications. J Chromatogr B Biomed Sci Appl 2001 Sep; 760(2): 213–8PubMedCrossRef
6.
Zurück zum Zitat Siepmann T, Ziemssen T, Mueck-Weymann M, et al. The effects of venlafaxine on autonomic functions in healthy volunteers. J Clin Psychopharmacol 2007 Dec; 27(6): 687–91PubMedCrossRef Siepmann T, Ziemssen T, Mueck-Weymann M, et al. The effects of venlafaxine on autonomic functions in healthy volunteers. J Clin Psychopharmacol 2007 Dec; 27(6): 687–91PubMedCrossRef
7.
Zurück zum Zitat Taft DR, Iyer GR, Behar L, et al. Application of a first-pass effect model to characterize the pharmacokinetic disposition of venlafaxine after oral administration to human subjects. Drug Metab Dispos 1997 Oct; 25(10): 1215–8PubMed Taft DR, Iyer GR, Behar L, et al. Application of a first-pass effect model to characterize the pharmacokinetic disposition of venlafaxine after oral administration to human subjects. Drug Metab Dispos 1997 Oct; 25(10): 1215–8PubMed
8.
Zurück zum Zitat Howell SR, Husbands GE, Scatina JA, et al. Metabolic disposition of 14C-venlafaxine in mouse, rat, dog, rhesus monkey and man. Xenobiotica 1993 Apr; 23(4): 349–59PubMedCrossRef Howell SR, Husbands GE, Scatina JA, et al. Metabolic disposition of 14C-venlafaxine in mouse, rat, dog, rhesus monkey and man. Xenobiotica 1993 Apr; 23(4): 349–59PubMedCrossRef
9.
Zurück zum Zitat Troy SM, Schultz RW, Parker VD, et al. The effect of renal disease on the disposition of venlafaxine. Clin Pharmacol Ther 1994 Jul; 56(1): 14–21PubMedCrossRef Troy SM, Schultz RW, Parker VD, et al. The effect of renal disease on the disposition of venlafaxine. Clin Pharmacol Ther 1994 Jul; 56(1): 14–21PubMedCrossRef
10.
Zurück zum Zitat Gordi T, Xie R, Huong NV, et al. A semiphysiological pharmacokinetic model for artemisinin in healthy subjects incorporating autoinduction of metabolism and saturable first-pass hepatic extraction. Br J Clin Pharmacol 2005 Feb; 59(2): 189–98PubMedCrossRef Gordi T, Xie R, Huong NV, et al. A semiphysiological pharmacokinetic model for artemisinin in healthy subjects incorporating autoinduction of metabolism and saturable first-pass hepatic extraction. Br J Clin Pharmacol 2005 Feb; 59(2): 189–98PubMedCrossRef
11.
Zurück zum Zitat Rousseau A, Leger F, Le MY, et al. Population pharmacokinetic modeling of oral cyclosporin using NONMEM: comparison of absorption pharmacokinetic models and design of a Bayesian estimator. Ther Drug Monit 2004 Feb; 26(1): 23–30PubMedCrossRef Rousseau A, Leger F, Le MY, et al. Population pharmacokinetic modeling of oral cyclosporin using NONMEM: comparison of absorption pharmacokinetic models and design of a Bayesian estimator. Ther Drug Monit 2004 Feb; 26(1): 23–30PubMedCrossRef
12.
Zurück zum Zitat Parker VD, Richards LS, Nichols AI, et al. The absolute bioavailability of an oral sustained-release formulation of desvenlafaxine succinate in healthy subjects. Clin Pharmacol Ther 2005 Feb; 77(2): P47CrossRef Parker VD, Richards LS, Nichols AI, et al. The absolute bioavailability of an oral sustained-release formulation of desvenlafaxine succinate in healthy subjects. Clin Pharmacol Ther 2005 Feb; 77(2): P47CrossRef
13.
Zurück zum Zitat Porchet HC, Benowitz NL, Sheiner LB. Pharmacodynamic model of tolerance: application to nicotine. J Pharmacol Exp Ther 1988 Jan; 244(1): 231–6PubMed Porchet HC, Benowitz NL, Sheiner LB. Pharmacodynamic model of tolerance: application to nicotine. J Pharmacol Exp Ther 1988 Jan; 244(1): 231–6PubMed
14.
Zurück zum Zitat Sheiner LB, Stanski DR, Vozeh S, et al. Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharmacol Ther 1979 Mar; 25(3): 358–71PubMed Sheiner LB, Stanski DR, Vozeh S, et al. Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharmacol Ther 1979 Mar; 25(3): 358–71PubMed
15.
Zurück zum Zitat Muth EA, Moyer JA, Haskins JT, et al. Biochemical, neurophysiological, and behavioral-effects of Wy-45,233 and other identified metabolites of the antidepressant venlafaxine. Drug Dev Res 1991; 23(2): 191–9CrossRef Muth EA, Moyer JA, Haskins JT, et al. Biochemical, neurophysiological, and behavioral-effects of Wy-45,233 and other identified metabolites of the antidepressant venlafaxine. Drug Dev Res 1991; 23(2): 191–9CrossRef
16.
Zurück zum Zitat Karlsson MO, Savic RM. Diagnosing model diagnostics. Clin Pharmacol Ther 2007 Jul; 82(1): 17–20PubMedCrossRef Karlsson MO, Savic RM. Diagnosing model diagnostics. Clin Pharmacol Ther 2007 Jul; 82(1): 17–20PubMedCrossRef
17.
Zurück zum Zitat Hooker A, Karlsson MO. Conditional weighted residuals: a diagnostic to improve population PK/PD model building and evaluation. AAPS PharmSci 2005; 7 Suppl. 2: W5321 Hooker A, Karlsson MO. Conditional weighted residuals: a diagnostic to improve population PK/PD model building and evaluation. AAPS PharmSci 2005; 7 Suppl. 2: W5321
18.
Zurück zum Zitat Holford NH. The visual predictive check: superiority to standard diagnostic (Rorschach) plots [abstract]. Seventeenth Meeting of the Population Approach Group in Europe; 2008 Jun 18–20; Marseilles [online]. Available from URL: http://www.page-meeting.org/?.abstract=738 [Accessed 2008 Aug 21] Holford NH. The visual predictive check: superiority to standard diagnostic (Rorschach) plots [abstract]. Seventeenth Meeting of the Population Approach Group in Europe; 2008 Jun 18–20; Marseilles [online]. Available from URL: http://​www.​page-meeting.​org/​?​.​abstract=​738 [Accessed 2008 Aug 21]
20.
Zurück zum Zitat Klamerus KJ, Maloney K, Rudolph RL, et al. Introduction of a composite parameter to the pharmacokinetics of venlafaxine and its active O-desmethyl metabolite. J Clin Pharmacol 1992 Aug; 32(8): 716–24PubMed Klamerus KJ, Maloney K, Rudolph RL, et al. Introduction of a composite parameter to the pharmacokinetics of venlafaxine and its active O-desmethyl metabolite. J Clin Pharmacol 1992 Aug; 32(8): 716–24PubMed
21.
Zurück zum Zitat Savic R, Jonker Dl, Kerbusch T, et al. Implementation of a transit compartment model for describing drug absorption in pharmacokinetic studies. J Pharmacokinet Pharmacodyn 2007 Oct; 34(5): 711–26PubMedCrossRef Savic R, Jonker Dl, Kerbusch T, et al. Implementation of a transit compartment model for describing drug absorption in pharmacokinetic studies. J Pharmacokinet Pharmacodyn 2007 Oct; 34(5): 711–26PubMedCrossRef
22.
Zurück zum Zitat Shams ME, Arneth B, Hiemke C, et al. CYP2D6 polymorphism and clinical effect of the antidepressant venlafaxine. J Clin Pharm Ther 2006 Oct; 31(5): 493–502PubMedCrossRef Shams ME, Arneth B, Hiemke C, et al. CYP2D6 polymorphism and clinical effect of the antidepressant venlafaxine. J Clin Pharm Ther 2006 Oct; 31(5): 493–502PubMedCrossRef
23.
Zurück zum Zitat Amchin J, Ereshefsky L, Zarycranski W, et al. Effect of venlafaxine versus fluoxetine on metabolism of dextromethorphan, a CYP2D6 probe. J Clin Pharmacol 2001 Apr; 41(4): 443–51PubMedCrossRef Amchin J, Ereshefsky L, Zarycranski W, et al. Effect of venlafaxine versus fluoxetine on metabolism of dextromethorphan, a CYP2D6 probe. J Clin Pharmacol 2001 Apr; 41(4): 443–51PubMedCrossRef
24.
Zurück zum Zitat Fukuda T, Nishida Y, Zhou Q, et al. The impact of the CYP2D6 and CYP2C19 genotypes on venlafaxine pharmacokinetics in a Japanese population. Eur J Clin Pharmacol 2000 May; 56(2): 175–80PubMedCrossRef Fukuda T, Nishida Y, Zhou Q, et al. The impact of the CYP2D6 and CYP2C19 genotypes on venlafaxine pharmacokinetics in a Japanese population. Eur J Clin Pharmacol 2000 May; 56(2): 175–80PubMedCrossRef
25.
Zurück zum Zitat Fukuda T, Yamamoto I, Nishida Y, et al. Effect of the CYP2D6*10 genotype on venlafaxine pharmacokinetics in healthy adult volunteers. Br J Clin Pharmacol 1999 Apr; 47(4): 450–3PubMedCrossRef Fukuda T, Yamamoto I, Nishida Y, et al. Effect of the CYP2D6*10 genotype on venlafaxine pharmacokinetics in healthy adult volunteers. Br J Clin Pharmacol 1999 Apr; 47(4): 450–3PubMedCrossRef
26.
Zurück zum Zitat Grozinger M, Dragicevic A, Hiemke C, et al. Melperone is an inhibitor of the CYP2D6 catalyzed O-demethylation of venlafaxine. Pharmacopsychiatry 2003 Jan; 36(1): 3–6PubMedCrossRef Grozinger M, Dragicevic A, Hiemke C, et al. Melperone is an inhibitor of the CYP2D6 catalyzed O-demethylation of venlafaxine. Pharmacopsychiatry 2003 Jan; 36(1): 3–6PubMedCrossRef
27.
Zurück zum Zitat Otton SV, Ball SE, Cheung SW, et al. Venlafaxine oxidation in vitro is catalysed by CYP2D6. Br J Clin Pharmacol 1996 Feb; 41(2): 149–56PubMedCrossRef Otton SV, Ball SE, Cheung SW, et al. Venlafaxine oxidation in vitro is catalysed by CYP2D6. Br J Clin Pharmacol 1996 Feb; 41(2): 149–56PubMedCrossRef
28.
Zurück zum Zitat Veefkind AH, Haffmans PM, Hoencamp E. Venlafaxine serum levels and CYP2D6 genotype. Ther Drug Monit 2000 Apr; 22(2): 202–8PubMedCrossRef Veefkind AH, Haffmans PM, Hoencamp E. Venlafaxine serum levels and CYP2D6 genotype. Ther Drug Monit 2000 Apr; 22(2): 202–8PubMedCrossRef
29.
Zurück zum Zitat Moyer JA, Muth EA, Haskins J, et al. In vivo antidepressant profiles of the novel bicyclic compounds Wy-45.030 and Wy-45.881 [abstract no. 10]. 14th Annual Meeting of the Society for Neuroscience; 1984 Oct 10–15; Anaheim (CA) Moyer JA, Muth EA, Haskins J, et al. In vivo antidepressant profiles of the novel bicyclic compounds Wy-45.030 and Wy-45.881 [abstract no. 10]. 14th Annual Meeting of the Society for Neuroscience; 1984 Oct 10–15; Anaheim (CA)
30.
Zurück zum Zitat Franklin M, Clement EM, Campling G, et al. Effect of venlafaxine on pineal melatonin and noradrenaline in the male rat. J Psychopharmacol 1998; 12(4): 371–4PubMedCrossRef Franklin M, Clement EM, Campling G, et al. Effect of venlafaxine on pineal melatonin and noradrenaline in the male rat. J Psychopharmacol 1998; 12(4): 371–4PubMedCrossRef
31.
Zurück zum Zitat Ekblom M, Hammarlund-Udenaes M, Paalzow L. Modeling of tolerance development and rebound effect during different intravenous administrations of morphine to rats. J Pharmacol Exp Ther 1993 Jul; 266(1): 244–52PubMed Ekblom M, Hammarlund-Udenaes M, Paalzow L. Modeling of tolerance development and rebound effect during different intravenous administrations of morphine to rats. J Pharmacol Exp Ther 1993 Jul; 266(1): 244–52PubMed
32.
Zurück zum Zitat Shi J, Benowitz NL, Denaro CP, et al. Pharmacokinetic-pharmacodynamic modeling of caffeine: tolerance to pressor effects. Clin Pharmacol Ther 1993 Jan; 53(1): 6–14PubMedCrossRef Shi J, Benowitz NL, Denaro CP, et al. Pharmacokinetic-pharmacodynamic modeling of caffeine: tolerance to pressor effects. Clin Pharmacol Ther 1993 Jan; 53(1): 6–14PubMedCrossRef
Metadaten
Titel
Pharmacokinetic/Pharmacodynamic Modelling of Venlafaxine
Pupillary Light Reflex as a Test System for Noradrenergic Effects
verfasst von
Andreas Lindauer
Timo Siepmann
Reinhard Oertel
Angelika Jung
Tjalf Ziemssen
Ulrich Jaehde
Wilhelm Kirch
Martin Siepmann
Publikationsdatum
01.11.2008
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 11/2008
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200847110-00003

Weitere Artikel der Ausgabe 11/2008

Clinical Pharmacokinetics 11/2008 Zur Ausgabe