Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 3/2017

19.01.2017 | Original Article

Phenotype-Specific Association of Single-Nucleotide Polymorphisms with Heart Failure and Preserved Ejection Fraction: a Genome-Wide Association Analysis of the Cardiovascular Health Study

verfasst von: David P. Kao, Laura M. Stevens, Michael A. Hinterberg, Carsten Görg

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Abstract

Little is known about genetics of heart failure with preserved ejection fraction (HFpEF) in part because of the many comorbidities in this population. To identify single-nucleotide polymorphisms (SNPs) associated with HFpEF, we analyzed phenotypic and genotypic data from the Cardiovascular Health Study, which profiled patients using a 50,000 SNP array. Results were explored using novel SNP- and gene-centric tools. We performed analyses to determine whether some SNPs were relevant only in certain phenotypes. Among 3804 patients, 7 clinical factors and 9 SNPs were significantly associated with HFpEF; the most notable of which was rs6996224, a SNP associated with transforming growth factor-beta receptor 3. Most SNPs were associated with HFpEF only in the absence of a clinical predictor. Significant SNPs represented genes involved in myocyte proliferation, transforming growth factor-beta/erbB signaling, and extracellular matrix formation. These findings suggest that genetic factors may be more important in some phenotypes than others.
Literatur
1.
Zurück zum Zitat Senni, M., Paulus, W. J., Gavazzi, A., Fraser, A. G., Díez, J., Solomon, S. D., Smiseth, O. A., Guazzi, M., Lam, C. S., et al. (2014). New strategies for heart failure with preserved ejection fraction: the importance of targeted therapies for heart failure phenotypes. European Heart Journal, 35(40), 2797–2815.CrossRefPubMedPubMedCentral Senni, M., Paulus, W. J., Gavazzi, A., Fraser, A. G., Díez, J., Solomon, S. D., Smiseth, O. A., Guazzi, M., Lam, C. S., et al. (2014). New strategies for heart failure with preserved ejection fraction: the importance of targeted therapies for heart failure phenotypes. European Heart Journal, 35(40), 2797–2815.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Shah, S. J., Katz, D. H., & Deo, R. C. (2014). Phenotypic spectrum of heart failure with preserved ejection fraction. Heart Failure Clinics, 10(3), 407–418.CrossRefPubMedPubMedCentral Shah, S. J., Katz, D. H., & Deo, R. C. (2014). Phenotypic spectrum of heart failure with preserved ejection fraction. Heart Failure Clinics, 10(3), 407–418.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Vazir, A., & Solomon, S. D. (2014). Management strategies for heart failure with preserved ejection fraction. Heart Failure Clinics, 10(4), 591–598.CrossRefPubMed Vazir, A., & Solomon, S. D. (2014). Management strategies for heart failure with preserved ejection fraction. Heart Failure Clinics, 10(4), 591–598.CrossRefPubMed
4.
Zurück zum Zitat Borlaug, B. A., & Paulus, W. J. (2011). Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. European Heart Journal, 32(6), 670–679.CrossRefPubMed Borlaug, B. A., & Paulus, W. J. (2011). Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. European Heart Journal, 32(6), 670–679.CrossRefPubMed
5.
Zurück zum Zitat Kao, D. P., Lewsey, J. D., Anand, I. S., Massie, B. M., Zile, M. R., Carson, P. E., McKelvie, R. S., Komajda, M., McMurray, J. J., & Lindenfeld, J. (2015). Characterization of subgroups of heart failure patients with preserved ejection fraction with possible implications for prognosis and treatment response. European Journal of Heart Failure, 17(9), 925–935.CrossRefPubMedPubMedCentral Kao, D. P., Lewsey, J. D., Anand, I. S., Massie, B. M., Zile, M. R., Carson, P. E., McKelvie, R. S., Komajda, M., McMurray, J. J., & Lindenfeld, J. (2015). Characterization of subgroups of heart failure patients with preserved ejection fraction with possible implications for prognosis and treatment response. European Journal of Heart Failure, 17(9), 925–935.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Shah, S. J., Katz, D. H., Selvaraj, S., Burke, M. A., Yancy, C. W., Gheorghiade, M., Bonow, R. O., Huang, C. C., & Deo, R. C. (2015). Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation, 131(3), 269–279.CrossRefPubMed Shah, S. J., Katz, D. H., Selvaraj, S., Burke, M. A., Yancy, C. W., Gheorghiade, M., Bonow, R. O., Huang, C. C., & Deo, R. C. (2015). Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation, 131(3), 269–279.CrossRefPubMed
7.
Zurück zum Zitat Fried, L. P., Borhani, N. O., Enright, P., Furberg, C. D., Gardin, J. M., Kronmal, R. A., Kuller, L. H., Manolio, T. A., Mittelmark, M. B., & Newman, A. (1991). The cardiovascular health study: design and rationale. Annals of Epidemiology, 1(3), 263–276.CrossRefPubMed Fried, L. P., Borhani, N. O., Enright, P., Furberg, C. D., Gardin, J. M., Kronmal, R. A., Kuller, L. H., Manolio, T. A., Mittelmark, M. B., & Newman, A. (1991). The cardiovascular health study: design and rationale. Annals of Epidemiology, 1(3), 263–276.CrossRefPubMed
8.
Zurück zum Zitat Mailman, M. D., Feolo, M., Jin, Y., Kimura, M., Tryka, K., Bagoutdinov, R., Hao, L., Kiang, A., Paschall, J., et al. (2007). The NCBI dbGaP database of genotypes and phenotypes. Nature Genetics, 39(10), 1181–1186.CrossRefPubMedPubMedCentral Mailman, M. D., Feolo, M., Jin, Y., Kimura, M., Tryka, K., Bagoutdinov, R., Hao, L., Kiang, A., Paschall, J., et al. (2007). The NCBI dbGaP database of genotypes and phenotypes. Nature Genetics, 39(10), 1181–1186.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Gardin, J. M., Wong, N. D., Bommer, W., Klopfenstein, H. S., Smith, V. E., Tabatznik, B., Siscovick, D., Lobodzinski, S., Anton-Culver, H., & Manolio, T. A. (1992). Echocardiographic design of a multicenter investigation of free-living elderly subjects: the cardiovascular health study. Journal of the American Society of Echocardiography, 5(1), 63–72.CrossRefPubMed Gardin, J. M., Wong, N. D., Bommer, W., Klopfenstein, H. S., Smith, V. E., Tabatznik, B., Siscovick, D., Lobodzinski, S., Anton-Culver, H., & Manolio, T. A. (1992). Echocardiographic design of a multicenter investigation of free-living elderly subjects: the cardiovascular health study. Journal of the American Society of Echocardiography, 5(1), 63–72.CrossRefPubMed
10.
Zurück zum Zitat Ives, D. G., Fitzpatrick, A. L., Bild, D. E., Psaty, B. M., Kuller, L. H., Crowley, P. M., Cruise, R. G., & Theroux, S. (1995). Surveillance and ascertainment of cardiovascular events. The cardiovascular health study. Annals of Epidemiology, 5(4), 278–285.CrossRefPubMed Ives, D. G., Fitzpatrick, A. L., Bild, D. E., Psaty, B. M., Kuller, L. H., Crowley, P. M., Cruise, R. G., & Theroux, S. (1995). Surveillance and ascertainment of cardiovascular events. The cardiovascular health study. Annals of Epidemiology, 5(4), 278–285.CrossRefPubMed
11.
Zurück zum Zitat Gottdiener, J. S., McClelland, R. L., Marshall, R., Shemanski, L., Furberg, C. D., Kitzman, D. W., Cushman, M., Polak, J., Gardin, J. M., et al. (2002). Outcome of congestive heart failure in elderly persons: influence of left ventricular systolic function. The cardiovascular health study. Annals of Internal Medicine, 137(8), 631–639.CrossRefPubMed Gottdiener, J. S., McClelland, R. L., Marshall, R., Shemanski, L., Furberg, C. D., Kitzman, D. W., Cushman, M., Polak, J., Gardin, J. M., et al. (2002). Outcome of congestive heart failure in elderly persons: influence of left ventricular systolic function. The cardiovascular health study. Annals of Internal Medicine, 137(8), 631–639.CrossRefPubMed
12.
Zurück zum Zitat Mentz, R. J., Kelly, J. P., von Lueder, T. G., Voors, A. A., Lam, C. S., Cowie, M. R., Kjeldsen, K., Jankowska, E. A., Atar, D., et al. (2014). Noncardiac comorbidities in heart failure with reduced versus preserved ejection fraction. Journal of the American College of Cardiology, 64(21), 2281–2293.CrossRefPubMedPubMedCentral Mentz, R. J., Kelly, J. P., von Lueder, T. G., Voors, A. A., Lam, C. S., Cowie, M. R., Kjeldsen, K., Jankowska, E. A., Atar, D., et al. (2014). Noncardiac comorbidities in heart failure with reduced versus preserved ejection fraction. Journal of the American College of Cardiology, 64(21), 2281–2293.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Levey, A. S., Stevens, L. A., Schmid, C. H., Zhang, Y. L., Castro, A. F., Feldman, H. I., Kusek, J. W., Eggers, P., Van Lente, F., & Greene, T. (2009). A new equation to estimate glomerular filtration rate. Annals of Internal Medicine, 150(9), 604–612.CrossRefPubMedPubMedCentral Levey, A. S., Stevens, L. A., Schmid, C. H., Zhang, Y. L., Castro, A. F., Feldman, H. I., Kusek, J. W., Eggers, P., Van Lente, F., & Greene, T. (2009). A new equation to estimate glomerular filtration rate. Annals of Internal Medicine, 150(9), 604–612.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Keating, B. J., Tischfield, S., Murray, S. S., Bhangale, T., Price, T. S., Glessner, J. T., Galver, L., Barrett, J. C., Grant, S. F., et al. (2008). Concept, design and implementation of a cardiovascular gene-centric 50 k SNP array for large-scale genomic association studies. PloS One, 3(10), e3583.CrossRefPubMedPubMedCentral Keating, B. J., Tischfield, S., Murray, S. S., Bhangale, T., Price, T. S., Glessner, J. T., Galver, L., Barrett, J. C., Grant, S. F., et al. (2008). Concept, design and implementation of a cardiovascular gene-centric 50 k SNP array for large-scale genomic association studies. PloS One, 3(10), e3583.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience, 4, 7.CrossRefPubMedPubMedCentral Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience, 4, 7.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, P., de Bakker, P. I., et al. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81(3), 559–575.CrossRefPubMedPubMedCentral Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, P., de Bakker, P. I., et al. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81(3), 559–575.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., & Sirotkin, K. (2001). dbSNP: the NCBI database of genetic variation. Nucleic Acids Research, 29(1), 308–311.CrossRefPubMedPubMedCentral Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., & Sirotkin, K. (2001). dbSNP: the NCBI database of genetic variation. Nucleic Acids Research, 29(1), 308–311.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat International HapMap Consortium. (2003). The international HapMap project. Nature, 426(6968), 789–796.CrossRef International HapMap Consortium. (2003). The international HapMap project. Nature, 426(6968), 789–796.CrossRef
19.
Zurück zum Zitat Whirl-Carrillo, M., McDonagh, E. M., Hebert, J. M., Gong, L., Sangkuhl, K., Thorn, C. F., Altman, R. B., & Klein, T. E. (2012). Pharmacogenomics knowledge for personalized medicine. Clinical Pharmacology and Therapeutics, 92(4), 414–417.CrossRefPubMedPubMedCentral Whirl-Carrillo, M., McDonagh, E. M., Hebert, J. M., Gong, L., Sangkuhl, K., Thorn, C. F., Altman, R. B., & Klein, T. E. (2012). Pharmacogenomics knowledge for personalized medicine. Clinical Pharmacology and Therapeutics, 92(4), 414–417.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Leach, S. M., Tipney, H., Feng, W., Baumgartner, W. A., Kasliwal, P., Schuyler, R. P., Williams, T., Spritz, R. A., & Hunter, L. (2009). Biomedical discovery acceleration, with applications to craniofacial development. PLoS Computational Biology, 5(3), e1000215.CrossRefPubMedPubMedCentral Leach, S. M., Tipney, H., Feng, W., Baumgartner, W. A., Kasliwal, P., Schuyler, R. P., Williams, T., Spritz, R. A., & Hunter, L. (2009). Biomedical discovery acceleration, with applications to craniofacial development. PLoS Computational Biology, 5(3), e1000215.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Vehlow, C., Kao, D. P., Bristow, M. R., Hunter, L. E., Weiskopf, D., & Görg, C. (2015). Visual analysis of biological data-knowledge networks. BMC Bioinformatics, 16(1), 135.CrossRefPubMedPubMedCentral Vehlow, C., Kao, D. P., Bristow, M. R., Hunter, L. E., Weiskopf, D., & Görg, C. (2015). Visual analysis of biological data-knowledge networks. BMC Bioinformatics, 16(1), 135.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504.CrossRefPubMedPubMedCentral Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Ho, J. E., Lyass, A., Lee, D. S., Vasan, R. S., Kannel, W. B., Larson, M. G., & Levy, D. (2012). Predictors of new-onset heart failure: differences in preserved versus reduced ejection fraction. Circulation Heart Failure, 6(2), 279–286.CrossRefPubMedPubMedCentral Ho, J. E., Lyass, A., Lee, D. S., Vasan, R. S., Kannel, W. B., Larson, M. G., & Levy, D. (2012). Predictors of new-onset heart failure: differences in preserved versus reduced ejection fraction. Circulation Heart Failure, 6(2), 279–286.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Huang, D. A. W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1), 44–57.CrossRef Huang, D. A. W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1), 44–57.CrossRef
25.
Zurück zum Zitat Gene Ontology Consortium. (2015). Gene ontology consortium: going forward. Nucleic Acids Research, 43(Database issue), D1049–D1056.CrossRef Gene Ontology Consortium. (2015). Gene ontology consortium: going forward. Nucleic Acids Research, 43(Database issue), D1049–D1056.CrossRef
27.
Zurück zum Zitat Huntgeburth, M., Tiemann, K., Shahverdyan, R., Schlüter, K. D., Schreckenberg, R., Gross, M. L., Mödersheim, S., Caglayan, E., Müller-Ehmsen, J., et al. (2011). Transforming growth factor β1 oppositely regulates the hypertrophic and contractile response to β-adrenergic stimulation in the heart. PloS One, 6(11), e26628.CrossRefPubMedPubMedCentral Huntgeburth, M., Tiemann, K., Shahverdyan, R., Schlüter, K. D., Schreckenberg, R., Gross, M. L., Mödersheim, S., Caglayan, E., Müller-Ehmsen, J., et al. (2011). Transforming growth factor β1 oppositely regulates the hypertrophic and contractile response to β-adrenergic stimulation in the heart. PloS One, 6(11), e26628.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Lou, J., Zhao, D., Zhang, L. L., Song, S. Y., Li, Y. C., Sun, F., Ding, X. Q., Yu, C. J., Li, Y. Y., et al. (2016). Type III transforming growth factor-β receptor drives cardiac hypertrophy through β-arrestin2-dependent activation of calmodulin-dependent protein kinase II. Hypertension, 68(3), 654–666.CrossRefPubMed Lou, J., Zhao, D., Zhang, L. L., Song, S. Y., Li, Y. C., Sun, F., Ding, X. Q., Yu, C. J., Li, Y. Y., et al. (2016). Type III transforming growth factor-β receptor drives cardiac hypertrophy through β-arrestin2-dependent activation of calmodulin-dependent protein kinase II. Hypertension, 68(3), 654–666.CrossRefPubMed
29.
Zurück zum Zitat Deten, A., Hölzl, A., Leicht, M., Barth, W., & Zimmer, H. G. (2001). Changes in extracellular matrix and in transforming growth factor beta isoforms after coronary artery ligation in rats. Journal of Molecular and Cellular Cardiology, 33(6), 1191–1207.CrossRefPubMed Deten, A., Hölzl, A., Leicht, M., Barth, W., & Zimmer, H. G. (2001). Changes in extracellular matrix and in transforming growth factor beta isoforms after coronary artery ligation in rats. Journal of Molecular and Cellular Cardiology, 33(6), 1191–1207.CrossRefPubMed
30.
Zurück zum Zitat Chu, W., Li, X., Li, C., Wan, L., Shi, H., Song, X., Liu, X., Chen, X., Zhang, C., et al. (2011). TGFBR3, a potential negative regulator of TGF-β signaling, protects cardiac fibroblasts from hypoxia-induced apoptosis. Journal of Cellular Physiology, 226(10), 2586–2594.CrossRefPubMed Chu, W., Li, X., Li, C., Wan, L., Shi, H., Song, X., Liu, X., Chen, X., Zhang, C., et al. (2011). TGFBR3, a potential negative regulator of TGF-β signaling, protects cardiac fibroblasts from hypoxia-induced apoptosis. Journal of Cellular Physiology, 226(10), 2586–2594.CrossRefPubMed
31.
Zurück zum Zitat Sun, F., Duan, W., Zhang, Y., Zhang, L., Qile, M., Liu, Z., Qiu, F., Zhao, D., Lu, Y., & Chu, W. (2015). Simvastatin alleviates cardiac fibrosis induced by infarction via up-regulation of TGF-β receptor III expression. British Journal of Pharmacology, 172(15), 3779–3792.CrossRefPubMedPubMedCentral Sun, F., Duan, W., Zhang, Y., Zhang, L., Qile, M., Liu, Z., Qiu, F., Zhao, D., Lu, Y., & Chu, W. (2015). Simvastatin alleviates cardiac fibrosis induced by infarction via up-regulation of TGF-β receptor III expression. British Journal of Pharmacology, 172(15), 3779–3792.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Hermida, N., López, B., González, A., Dotor, J., Lasarte, J. J., Sarobe, P., Borrás-Cuesta, F., & Díez, J. (2009). A synthetic peptide from transforming growth factor-beta1 type III receptor prevents myocardial fibrosis in spontaneously hypertensive rats. Cardiovascular Research, 81(3), 601–609.CrossRefPubMed Hermida, N., López, B., González, A., Dotor, J., Lasarte, J. J., Sarobe, P., Borrás-Cuesta, F., & Díez, J. (2009). A synthetic peptide from transforming growth factor-beta1 type III receptor prevents myocardial fibrosis in spontaneously hypertensive rats. Cardiovascular Research, 81(3), 601–609.CrossRefPubMed
33.
Zurück zum Zitat Hu, B. C., Li, L., Sun, R. H., Gao, P. J., Zhu, D. L., Wang, J. G., & Chu, S. L. (2010). The association between transforming growth factor beta3 polymorphisms and left ventricular structure in hypertensive subjects. Clinica Chimica Acta, 411(7–8), 558–562.CrossRef Hu, B. C., Li, L., Sun, R. H., Gao, P. J., Zhu, D. L., Wang, J. G., & Chu, S. L. (2010). The association between transforming growth factor beta3 polymorphisms and left ventricular structure in hypertensive subjects. Clinica Chimica Acta, 411(7–8), 558–562.CrossRef
34.
Zurück zum Zitat Mujumdar, V. S., & Tyagi, S. C. (1999). Temporal regulation of extracellular matrix components in transition from compensatory hypertrophy to decompensatory heart failure. Journal of Hypertension, 17(2), 261–270.CrossRefPubMed Mujumdar, V. S., & Tyagi, S. C. (1999). Temporal regulation of extracellular matrix components in transition from compensatory hypertrophy to decompensatory heart failure. Journal of Hypertension, 17(2), 261–270.CrossRefPubMed
35.
Zurück zum Zitat Mizuno, T., Yau, T. M., Weisel, R. D., Kiani, C. G., & Li, R. K. (2005). Elastin stabilizes an infarct and preserves ventricular function. Circulation, 112(9 Suppl), I81–I88.PubMed Mizuno, T., Yau, T. M., Weisel, R. D., Kiani, C. G., & Li, R. K. (2005). Elastin stabilizes an infarct and preserves ventricular function. Circulation, 112(9 Suppl), I81–I88.PubMed
36.
Zurück zum Zitat Liu, X., Gu, X., Li, Z., Li, X., Li, H., Chang, J., Chen, P., Jin, J., Xi, B., et al. (2006). Neuregulin-1/erbB-activation improves cardiac function and survival in models of ischemic, dilated, and viral cardiomyopathy. Journal of the American College of Cardiology, 48(7), 1438–1447.CrossRefPubMed Liu, X., Gu, X., Li, Z., Li, X., Li, H., Chang, J., Chen, P., Jin, J., Xi, B., et al. (2006). Neuregulin-1/erbB-activation improves cardiac function and survival in models of ischemic, dilated, and viral cardiomyopathy. Journal of the American College of Cardiology, 48(7), 1438–1447.CrossRefPubMed
37.
Zurück zum Zitat Lemmens, K., Doggen, K., & De Keulenaer, G. W. (2007). Role of neuregulin-1/ErbB signaling in cardiovascular physiology and disease: implications for therapy of heart failure. Circulation, 116(8), 954–960.CrossRefPubMed Lemmens, K., Doggen, K., & De Keulenaer, G. W. (2007). Role of neuregulin-1/ErbB signaling in cardiovascular physiology and disease: implications for therapy of heart failure. Circulation, 116(8), 954–960.CrossRefPubMed
38.
Zurück zum Zitat Gui, C., Zhu, L., Hu, M., Lei, L., & Long, Q. (2012). Neuregulin-1/ErbB signaling is impaired in the rat model of diabetic cardiomyopathy. Cardiovascular Pathology, 21(5), 414–420. Gui, C., Zhu, L., Hu, M., Lei, L., & Long, Q. (2012). Neuregulin-1/ErbB signaling is impaired in the rat model of diabetic cardiomyopathy. Cardiovascular Pathology, 21(5), 414–420.
39.
Zurück zum Zitat Biernacka, A., Cavalera, M., Wang, J., Russo, I., Shinde, A., Kong, P., Gonzalez-Quesada, C., Rai, V., Dobaczewski, M., Lee, D., Wang, X., & Frangogiannis, N. (2015). Smad3 signaling promostes fibrosis while preserving cardiac and aortic geometry in obese diabetic mice. Circulation Heart Failure, 8(4), 788–798. Biernacka, A., Cavalera, M., Wang, J., Russo, I., Shinde, A., Kong, P., Gonzalez-Quesada, C., Rai, V., Dobaczewski, M., Lee, D., Wang, X., & Frangogiannis, N. (2015). Smad3 signaling promostes fibrosis while preserving cardiac and aortic geometry in obese diabetic mice. Circulation Heart Failure, 8(4), 788–798.
40.
Zurück zum Zitat Falcão-Pires, I., & Leite-Moreira, A. (2012). Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Failure Reviews 17(3), 325–344. Falcão-Pires, I., & Leite-Moreira, A. (2012). Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Failure Reviews 17(3), 325–344.
41.
Zurück zum Zitat Paulus, W. J., & Tschöpe, C. (2013). A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. Journal of the American College of Cardiology, 62(4), 263–271.CrossRefPubMed Paulus, W. J., & Tschöpe, C. (2013). A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. Journal of the American College of Cardiology, 62(4), 263–271.CrossRefPubMed
42.
Zurück zum Zitat Glezeva, N., & Baugh, J. A. (2014). Role of inflammation in the pathogenesis of heart failure with preserved ejection fraction and its potential as a therapeutic target. Heart Failure Reviews, 19(5), 681–694.CrossRefPubMed Glezeva, N., & Baugh, J. A. (2014). Role of inflammation in the pathogenesis of heart failure with preserved ejection fraction and its potential as a therapeutic target. Heart Failure Reviews, 19(5), 681–694.CrossRefPubMed
43.
Zurück zum Zitat Buglioni, A., & Burnett, J. C. (2015). Pathophysiology and the cardiorenal connection in heart failure. Circulating hormones: biomarkers or mediators. Clinica Chimica Acta, 443, 3–8.CrossRef Buglioni, A., & Burnett, J. C. (2015). Pathophysiology and the cardiorenal connection in heart failure. Circulating hormones: biomarkers or mediators. Clinica Chimica Acta, 443, 3–8.CrossRef
Metadaten
Titel
Phenotype-Specific Association of Single-Nucleotide Polymorphisms with Heart Failure and Preserved Ejection Fraction: a Genome-Wide Association Analysis of the Cardiovascular Health Study
verfasst von
David P. Kao
Laura M. Stevens
Michael A. Hinterberg
Carsten Görg
Publikationsdatum
19.01.2017
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 3/2017
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-017-9729-1

Weitere Artikel der Ausgabe 3/2017

Journal of Cardiovascular Translational Research 3/2017 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.