Skip to main content
Erschienen in: Lasers in Medical Science 2/2020

16.09.2019 | Review Article

Photobiomodulation via multiple-wavelength radiations

verfasst von: Andrezza Maria Côrtes Thomé Lima, Luiz Philippe da Silva Sergio, Adenilson de Souza da Fonseca

Erschienen in: Lasers in Medical Science | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Abstract

Photobiomodulation via a combination of different radiations can produce different effects on biological tissues, such as cell proliferation and differentiation, when compared to those produced via a single radiation. The present study aims to conduct a review of the literature addressing the results and applications of photobiomodulation induced by a combination of two or more radiations as well as their possible effects. PubMed was used to search for studies with restrictions on the year (< 50 years old) and language (English), including studies using human and animal models, either under healthy or pathologic conditions. Several studies have been conducted to evaluate the combination of different radiation effects on cells and biological tissues. Positive effects resulting from multiple-wavelength radiations could be attributed to different absorption levels because superficial and deep tissues could absorb different levels of radiations. Multiple-wavelength radiations from devices combining radiations emitted by low power lasers and light-emitting diodes could be a new approach for promoting photobiomodulation-induced beneficial effects.
Literatur
1.
Zurück zum Zitat Heiskanen V, Hamblin MR (2018) Photobiomodulation: lasers vs. light emitting diodes? Photochem Photobiol Sci 17(8):1003–1017PubMedPubMedCentral Heiskanen V, Hamblin MR (2018) Photobiomodulation: lasers vs. light emitting diodes? Photochem Photobiol Sci 17(8):1003–1017PubMedPubMedCentral
2.
Zurück zum Zitat Solmaz H, Ulgen Y, Gulsoy M (2017) Photobiomodulation of wound healing via visible and infrared laser irradiation. Lasers Med Sci 32(4):903–910PubMed Solmaz H, Ulgen Y, Gulsoy M (2017) Photobiomodulation of wound healing via visible and infrared laser irradiation. Lasers Med Sci 32(4):903–910PubMed
3.
Zurück zum Zitat Gavish L, Houreld NN (2019) Therapeutic efficacy of home-use photobiomodulation devices: a systematic literature review. Photomed Laser Surg 37(1):4–16 Gavish L, Houreld NN (2019) Therapeutic efficacy of home-use photobiomodulation devices: a systematic literature review. Photomed Laser Surg 37(1):4–16
4.
Zurück zum Zitat de Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22(3):7000417PubMedPubMedCentral de Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22(3):7000417PubMedPubMedCentral
5.
Zurück zum Zitat Fekrazad R, Asefi S, Eslaminejad MB, Taghiar L, Bordbar S, Hamblin MR (2019) Photobiomodulation with single and combination laser wavelengths on bone marrow mesenchymal stem cells: proliferation and differentiation to bone or cartilage. Lasers Med Sci 34(1):115–126PubMed Fekrazad R, Asefi S, Eslaminejad MB, Taghiar L, Bordbar S, Hamblin MR (2019) Photobiomodulation with single and combination laser wavelengths on bone marrow mesenchymal stem cells: proliferation and differentiation to bone or cartilage. Lasers Med Sci 34(1):115–126PubMed
6.
Zurück zum Zitat da Fonseca AS (2019) Is there a measure for low power laser dose? Lasers Med Sci 34(1):223–234PubMed da Fonseca AS (2019) Is there a measure for low power laser dose? Lasers Med Sci 34(1):223–234PubMed
7.
Zurück zum Zitat Zein R, Selting W, Hamblin MR (2018) Review of light parameters and photobiomodulation efficacy: dive into complexity. J Biomed Opt 23(12):1–17PubMed Zein R, Selting W, Hamblin MR (2018) Review of light parameters and photobiomodulation efficacy: dive into complexity. J Biomed Opt 23(12):1–17PubMed
8.
Zurück zum Zitat Menezes S, Coulomb B, Leberton C, Duberteret L (1998) Non-coherent near infrared radiation protects normal human dermal fibroblasts from solar ultraviolet toxicity. J Invest Dermatol 111(4):629–633PubMed Menezes S, Coulomb B, Leberton C, Duberteret L (1998) Non-coherent near infrared radiation protects normal human dermal fibroblasts from solar ultraviolet toxicity. J Invest Dermatol 111(4):629–633PubMed
9.
Zurück zum Zitat Santos NR, de M Sobrinho JB, Almeida PF, Ribeiro AA, Cangussú MC, dos Santos JN, Pinheiro AL (2011) Influence of the combination of infrared and red laser light on the healing of cutaneous wounds infected by Staphylococcus aureus. Photomed Laser Surg 29(3):177–182PubMed Santos NR, de M Sobrinho JB, Almeida PF, Ribeiro AA, Cangussú MC, dos Santos JN, Pinheiro AL (2011) Influence of the combination of infrared and red laser light on the healing of cutaneous wounds infected by Staphylococcus aureus. Photomed Laser Surg 29(3):177–182PubMed
10.
Zurück zum Zitat Walker J (2011) Fundamentals of physics. Wiley, Hoboken Walker J (2011) Fundamentals of physics. Wiley, Hoboken
11.
Zurück zum Zitat Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49(1):1–17PubMed Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49(1):1–17PubMed
12.
Zurück zum Zitat Niemz MH (2007) Laser-tissue interactions: fundamentals and applications. Springer-Verlag, New York Niemz MH (2007) Laser-tissue interactions: fundamentals and applications. Springer-Verlag, New York
13.
Zurück zum Zitat Passarella S, Karu T (2014) Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. J Photochem Photobiol B 140:344–358PubMed Passarella S, Karu T (2014) Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. J Photochem Photobiol B 140:344–358PubMed
14.
Zurück zum Zitat Karu T (1987) Biostimulation of HeLa cells by low-intensity visible light: V. Stimulation of cell proliferation in vitro by He-Ne laser radiation II Nuovo cimento D. 9:1485–1494 Karu T (1987) Biostimulation of HeLa cells by low-intensity visible light: V. Stimulation of cell proliferation in vitro by He-Ne laser radiation II Nuovo cimento D. 9:1485–1494
15.
Zurück zum Zitat Karu TI (2010) Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life 62(8):607–610PubMed Karu TI (2010) Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life 62(8):607–610PubMed
16.
Zurück zum Zitat Hamblin MR (2018) Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem Photobiol 94(2):199–212PubMedPubMedCentral Hamblin MR (2018) Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem Photobiol 94(2):199–212PubMedPubMedCentral
17.
Zurück zum Zitat Poyton RO, Ball KA (2011) Therapeutic photobiomodulation: nitric oxide and a novel function of mitochondrial cytochrome c oxidase. Discov Med 11(57):154–159PubMed Poyton RO, Ball KA (2011) Therapeutic photobiomodulation: nitric oxide and a novel function of mitochondrial cytochrome c oxidase. Discov Med 11(57):154–159PubMed
18.
Zurück zum Zitat Karu TI (2008) Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol 84(5):1091–1099PubMed Karu TI (2008) Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol 84(5):1091–1099PubMed
19.
Zurück zum Zitat Hamblin MR, Ferraresi C, Huang Y, de Freitas L, Carroll JD (2018) Low-level light therapy: photobiomodulation. SPIE Press, Washington Hamblin MR, Ferraresi C, Huang Y, de Freitas L, Carroll JD (2018) Low-level light therapy: photobiomodulation. SPIE Press, Washington
20.
Zurück zum Zitat Laakso L, Richardson C, Cramond T (1993) Factors affecting low level laser therapy. Aust J Physiother 39(2):95–99PubMed Laakso L, Richardson C, Cramond T (1993) Factors affecting low level laser therapy. Aust J Physiother 39(2):95–99PubMed
21.
Zurück zum Zitat Hamblin MR (2017) Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys 4(3):337–361PubMedPubMedCentral Hamblin MR (2017) Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys 4(3):337–361PubMedPubMedCentral
22.
Zurück zum Zitat Martins WA, Polignano GAC, Guimarães OR, Geller M, Paoli F, Fonseca AS (2015) Dichromatic laser radiation effects on DNA of Escherichia coli and plasmids. Laser Phys 25(4):045603 Martins WA, Polignano GAC, Guimarães OR, Geller M, Paoli F, Fonseca AS (2015) Dichromatic laser radiation effects on DNA of Escherichia coli and plasmids. Laser Phys 25(4):045603
23.
Zurück zum Zitat Thomé AMC, Souza BP, Mendes JPM, Soares LC, Trajano ETL, Fonseca AS (2017) Dichromatic and monochromatic laser radiation effects on survival and morphology of Pantoea agglomerans. Laser Phys 27(5):055602 Thomé AMC, Souza BP, Mendes JPM, Soares LC, Trajano ETL, Fonseca AS (2017) Dichromatic and monochromatic laser radiation effects on survival and morphology of Pantoea agglomerans. Laser Phys 27(5):055602
24.
Zurück zum Zitat Thomé AMC, Souza BP, Mendes JPM, Cardoso AFR, Soares LC, Trajano ETL et al (2018) Dichromatic and monochromatic laser radiation effects on antibiotic resistance, biofilm formation, and division rate of Pantoea agglomerans. Laser Phys 28(6):065606 Thomé AMC, Souza BP, Mendes JPM, Cardoso AFR, Soares LC, Trajano ETL et al (2018) Dichromatic and monochromatic laser radiation effects on antibiotic resistance, biofilm formation, and division rate of Pantoea agglomerans. Laser Phys 28(6):065606
25.
Zurück zum Zitat Ashrafi M, Novak-Frazer L, Bates M, Baguneid M, Alonso-Rasgado T, Xia G et al (2018) Validation of biofilm formation on human skin wound models and demonstration of clinically translatable bacteria-specific volatile signatures. Sci Rep 8(1):9431PubMedPubMedCentral Ashrafi M, Novak-Frazer L, Bates M, Baguneid M, Alonso-Rasgado T, Xia G et al (2018) Validation of biofilm formation on human skin wound models and demonstration of clinically translatable bacteria-specific volatile signatures. Sci Rep 8(1):9431PubMedPubMedCentral
26.
Zurück zum Zitat Jahangiri Noudeh Y, Shabani M, Vatankhah N, Hashemian SJ, Akbari K (2010) A combination of 670 nm and 810 nm diode lasers for wound healing acceleration in diabetic rats. Photomed Laser Surg 28(5):621–627PubMed Jahangiri Noudeh Y, Shabani M, Vatankhah N, Hashemian SJ, Akbari K (2010) A combination of 670 nm and 810 nm diode lasers for wound healing acceleration in diabetic rats. Photomed Laser Surg 28(5):621–627PubMed
27.
Zurück zum Zitat Mendez TM, Pinheiro AL, Pacheco MT, Nascimento PM, Ramalho LM (2004) Dose and wavelength of laser light have influence on the repair of cutaneous wounds. J Clin Laser Med Surg 22(1):19–25PubMed Mendez TM, Pinheiro AL, Pacheco MT, Nascimento PM, Ramalho LM (2004) Dose and wavelength of laser light have influence on the repair of cutaneous wounds. J Clin Laser Med Surg 22(1):19–25PubMed
28.
Zurück zum Zitat Barikbin B, Khodamrdi Z, Kholoosi L, Akhgri MR, Haj Abbasi M, Hajabbasi M, Razzaghi Z, Akbarpour S (2017) Comparison of the effects of 665 nm low level diode laser hat versus and a combination of 665 nm and 808nm low level diode laser scanner of hair growth in androgenic alopecia. J Cosmet Laser Ther in press Barikbin B, Khodamrdi Z, Kholoosi L, Akhgri MR, Haj Abbasi M, Hajabbasi M, Razzaghi Z, Akbarpour S (2017) Comparison of the effects of 665 nm low level diode laser hat versus and a combination of 665 nm and 808nm low level diode laser scanner of hair growth in androgenic alopecia. J Cosmet Laser Ther in press
29.
Zurück zum Zitat Gigo-Benato D, Geuna S, de Castro Rodrigues A, Tos P, Fornaro M, Boux E, Battiston B, Giacobini-Robecchi MG (2004) Low-power laser biostimulation enhances nerve repair after end-to-side neurorrhaphy: a double-blind randomized study in the rat median nerve model. Lasers Med Sci 19(1):57–65PubMed Gigo-Benato D, Geuna S, de Castro Rodrigues A, Tos P, Fornaro M, Boux E, Battiston B, Giacobini-Robecchi MG (2004) Low-power laser biostimulation enhances nerve repair after end-to-side neurorrhaphy: a double-blind randomized study in the rat median nerve model. Lasers Med Sci 19(1):57–65PubMed
30.
Zurück zum Zitat Miranda EF, Vanin AA, Tomazoni SS, Grandinetti Vdos S, de Paiva PR, Machado Cdos S, Monteiro KK, Casalechi HL, de Tarso P, de Carvalho C, Leal-Junior EC (2016) Using pre-exercise photobiomodulation therapy combining super-pulsed lasers and light-emitting diodes to improve performance in progressive cardiopulmonary exercise tests. J Athl Train 51(2):129–135PubMedPubMedCentral Miranda EF, Vanin AA, Tomazoni SS, Grandinetti Vdos S, de Paiva PR, Machado Cdos S, Monteiro KK, Casalechi HL, de Tarso P, de Carvalho C, Leal-Junior EC (2016) Using pre-exercise photobiomodulation therapy combining super-pulsed lasers and light-emitting diodes to improve performance in progressive cardiopulmonary exercise tests. J Athl Train 51(2):129–135PubMedPubMedCentral
31.
Zurück zum Zitat Miranda EF, de Oliveira LV, Antonialli FC, Vanin AA, de Carvalho PT, Leal-Junior EC (2015) Phototherapy with combination of superpulsed laser and light-emitting diodes is beneficial in improvement of muscular performance (strength and muscular endurance), dyspnea, and fatigue sensation in patients with chronic obstructive pulmonary disease. Lasers Med Sci 30(1):437–443PubMed Miranda EF, de Oliveira LV, Antonialli FC, Vanin AA, de Carvalho PT, Leal-Junior EC (2015) Phototherapy with combination of superpulsed laser and light-emitting diodes is beneficial in improvement of muscular performance (strength and muscular endurance), dyspnea, and fatigue sensation in patients with chronic obstructive pulmonary disease. Lasers Med Sci 30(1):437–443PubMed
32.
Zurück zum Zitat Antonialli FC, De Marchi T, Tomazoni SS, Vanin AA, dos Santos GV, de Paiva PR, Pinto HD, Miranda EF, de Tarso Camillo de Carvalho P, Leal-Junior EC (2014) Phototherapy in skeletal muscle performance and recovery after exercise: effect of combination of super-pulsed laser and light-emitting diodes. Lasers Med Sci 29(6):1967–1976PubMed Antonialli FC, De Marchi T, Tomazoni SS, Vanin AA, dos Santos GV, de Paiva PR, Pinto HD, Miranda EF, de Tarso Camillo de Carvalho P, Leal-Junior EC (2014) Phototherapy in skeletal muscle performance and recovery after exercise: effect of combination of super-pulsed laser and light-emitting diodes. Lasers Med Sci 29(6):1967–1976PubMed
33.
Zurück zum Zitat Farhat PBA, Santos FA, Gomes JC, Gomes OM (2014) Evaluation of the efficacy of LED-laser treatment and control of tooth sensitivity during in-office bleaching procedures. Photomed Laser Surg 32(7):422–426 Farhat PBA, Santos FA, Gomes JC, Gomes OM (2014) Evaluation of the efficacy of LED-laser treatment and control of tooth sensitivity during in-office bleaching procedures. Photomed Laser Surg 32(7):422–426
34.
Zurück zum Zitat Leal-Junior EC, Johnson DS, Saltmarche A, Demchak T (2014) Adjunctive use of combination of super-pulsed laser and light-emitting diodes phototherapy on nonspecific knee pain: double-blinded randomized placebo-controlled trial. Lasers Med Sci 29(6):1839–1847PubMed Leal-Junior EC, Johnson DS, Saltmarche A, Demchak T (2014) Adjunctive use of combination of super-pulsed laser and light-emitting diodes phototherapy on nonspecific knee pain: double-blinded randomized placebo-controlled trial. Lasers Med Sci 29(6):1839–1847PubMed
35.
Zurück zum Zitat Figurová M, Ledecký V, Karasová M, Hluchý M, Trbolová A, Capík I, Horňák S, Reichel P, Bjordal JM, Gál P (2016) Histological assessment of a combined low-level laser/light-emitting diode therapy (685 nm/470 nm) for sutured skin incisions in a porcine model: a short report. Photomed Laser Surg 34(2):53–55PubMed Figurová M, Ledecký V, Karasová M, Hluchý M, Trbolová A, Capík I, Horňák S, Reichel P, Bjordal JM, Gál P (2016) Histological assessment of a combined low-level laser/light-emitting diode therapy (685 nm/470 nm) for sutured skin incisions in a porcine model: a short report. Photomed Laser Surg 34(2):53–55PubMed
36.
Zurück zum Zitat Pagin MT, de Oliveira FA, Oliveira RC, Sant’Ana AC, de Rezende ML, Greghi SL, Damante CA (2014) Laser and light-emitting diode effects on pre-osteoblast growth and differentiation. Lasers Med Sci 29(1):55–59PubMed Pagin MT, de Oliveira FA, Oliveira RC, Sant’Ana AC, de Rezende ML, Greghi SL, Damante CA (2014) Laser and light-emitting diode effects on pre-osteoblast growth and differentiation. Lasers Med Sci 29(1):55–59PubMed
37.
Zurück zum Zitat Vinck EM, Cagnie BJ, Cornelissen MJ, Declercq HA, Cambier DC (2003) Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation. Lasers Med Sci 18(2):95–99PubMed Vinck EM, Cagnie BJ, Cornelissen MJ, Declercq HA, Cambier DC (2003) Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation. Lasers Med Sci 18(2):95–99PubMed
38.
Zurück zum Zitat de Carvalho ME, de Carvalho RM Jr, Marques AP, de Carvalho Lucio LM, de Oliveira AC, Neto OP, Villaverde AB, de Lima CJ (2016) Low intensity laser and LED therapies associated with lateral decubitus position and flexion exercises of the lower limbs in patients with lumbar disk herniation: clinical randomized trial. Lasers Med Sci 31(7):1455–1463PubMed de Carvalho ME, de Carvalho RM Jr, Marques AP, de Carvalho Lucio LM, de Oliveira AC, Neto OP, Villaverde AB, de Lima CJ (2016) Low intensity laser and LED therapies associated with lateral decubitus position and flexion exercises of the lower limbs in patients with lumbar disk herniation: clinical randomized trial. Lasers Med Sci 31(7):1455–1463PubMed
39.
Zurück zum Zitat Chow R, Armati P, Laakso EL, Bjordal JM, Baxter GD (2011) Inhibitory effects of laser irradiation on peripheral mammalian nerves and relevance to analgesic effects: a systematic review. Photomed Laser Surg 29(6):365–381PubMed Chow R, Armati P, Laakso EL, Bjordal JM, Baxter GD (2011) Inhibitory effects of laser irradiation on peripheral mammalian nerves and relevance to analgesic effects: a systematic review. Photomed Laser Surg 29(6):365–381PubMed
40.
Zurück zum Zitat Naderi MS, Razzaghi M, Esmaeeli Djavid G, Hajebrahimi Z (2017) A comparative study of 660 nm low-level laser and light emitted diode in proliferative effects of fibroblast cells. J Lasers Med Sci 8(Suppl 1):S46–S50PubMedPubMedCentral Naderi MS, Razzaghi M, Esmaeeli Djavid G, Hajebrahimi Z (2017) A comparative study of 660 nm low-level laser and light emitted diode in proliferative effects of fibroblast cells. J Lasers Med Sci 8(Suppl 1):S46–S50PubMedPubMedCentral
41.
Zurück zum Zitat Chaves ME, Araújo AR, Piancastelli AC, Pinotti M (2014) Effects of low-power light therapy on wound healing: LASER x LED. An Bras Dermatol 89(4):616–623PubMedPubMedCentral Chaves ME, Araújo AR, Piancastelli AC, Pinotti M (2014) Effects of low-power light therapy on wound healing: LASER x LED. An Bras Dermatol 89(4):616–623PubMedPubMedCentral
42.
Zurück zum Zitat Karu T (1985) Biostimulation of HeLa cells by low-intensity visible light: IY. – dichromatic irradiation. II Nuovo cimento D. 5(6):483 Karu T (1985) Biostimulation of HeLa cells by low-intensity visible light: IY. – dichromatic irradiation. II Nuovo cimento D. 5(6):483
43.
Zurück zum Zitat Tiphlova O, Karu T (1991) Action of low-intensity laser radiation on Escherichia coli division rate. Crit Rev Biomed Eng 18(6):387–412PubMed Tiphlova O, Karu T (1991) Action of low-intensity laser radiation on Escherichia coli division rate. Crit Rev Biomed Eng 18(6):387–412PubMed
Metadaten
Titel
Photobiomodulation via multiple-wavelength radiations
verfasst von
Andrezza Maria Côrtes Thomé Lima
Luiz Philippe da Silva Sergio
Adenilson de Souza da Fonseca
Publikationsdatum
16.09.2019
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 2/2020
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-019-02879-1

Weitere Artikel der Ausgabe 2/2020

Lasers in Medical Science 2/2020 Zur Ausgabe