Skip to main content
Erschienen in: Lasers in Medical Science 8/2016

16.07.2016 | Original Article

Photodynamic inactivation of pathogenic species Pseudomonas aeruginosa and Candida albicans with lutetium (III) acetate phthalocyanines and specific light irradiation

verfasst von: Vanya Mantareva, Vesselin Kussovski, Mahmut Durmuş, Ekaterina Borisova, Ivan Angelov

Erschienen in: Lasers in Medical Science | Ausgabe 8/2016

Einloggen, um Zugang zu erhalten

Abstract

Photodynamic inactivation (PDI) is a light-associated therapeutic approach suitable for treatment of local acute infections. The method is based on specific light-activated compound which by specific irradiation and in the presence of molecular oxygen produced molecular singlet oxygen and other reactive oxygen species, all toxic for pathogenic microbial cells. The study presents photodynamic impact of two recently synthesized water-soluble cationic lutetium (III) acetate phthalocyanines (LuPc-5 and LuPc-6) towards two pathogenic strains, namely, the Gram-negative bacterium Pseudomonas aeruginosa and a fungus Candida albicans. The photodynamic effect was evaluated for the cells in suspensions and organized in 48-h developed biofilms. The relatively high levels of uptakes of LuPc-5 and LuPc-6 were determined for fungal cells compared to bacterial cells. The penetration depths and distribution of both LuPcs into microbial biofilms were investigated by means of confocal fluorescence microscopy. The photoinactivation efficiency was studied for a wide concentration range (0.85–30 μM) of LuPc-5 and LuPc-6 at a light dose of 50 J cm−2 from red light-emitting diode (LED; 665 nm). The PDI study on microbial biofilms showed incomplete photoinactivation (<3 logs) for the used gentle drug-light protocol.
Literatur
1.
Zurück zum Zitat Maisch T (2007) Anti-microbial photodynamic therapy: useful in the future? Lasers Med Sci 22:83–91CrossRefPubMed Maisch T (2007) Anti-microbial photodynamic therapy: useful in the future? Lasers Med Sci 22:83–91CrossRefPubMed
2.
Zurück zum Zitat Kessel D (2004) Photodynamic therapy: from the beginning. Photodiagn Photodyn Ther 1:3–7CrossRef Kessel D (2004) Photodynamic therapy: from the beginning. Photodiagn Photodyn Ther 1:3–7CrossRef
3.
Zurück zum Zitat Yano S, Hirohara S, Obata M et al (2011) Current states and future views in photodynamic therapy. J Photochem Photobiol C 12:46–67CrossRef Yano S, Hirohara S, Obata M et al (2011) Current states and future views in photodynamic therapy. J Photochem Photobiol C 12:46–67CrossRef
4.
Zurück zum Zitat Luksiene Z, Zukauskas A (2009) Prospects of photosensitization in control of pathogenic and harmful microorganisms. J Appl Microbiol 107:1415–1424CrossRefPubMed Luksiene Z, Zukauskas A (2009) Prospects of photosensitization in control of pathogenic and harmful microorganisms. J Appl Microbiol 107:1415–1424CrossRefPubMed
5.
Zurück zum Zitat Plaetzer K, Krammer B, Berlanda J, Berr F, Kliesslich T (2009) Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Laser Med Sci 24:259–268CrossRef Plaetzer K, Krammer B, Berlanda J, Berr F, Kliesslich T (2009) Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Laser Med Sci 24:259–268CrossRef
6.
Zurück zum Zitat Delattin N, Cammue BPA, Thevissen K (2014) Reactive oxygen species inducing antifungal agents and their activity against fungal biofilms. Future Med Chem 6(1):77–90CrossRefPubMed Delattin N, Cammue BPA, Thevissen K (2014) Reactive oxygen species inducing antifungal agents and their activity against fungal biofilms. Future Med Chem 6(1):77–90CrossRefPubMed
7.
Zurück zum Zitat Maisch T, Bosl C, Szeimies R-M, Lehn N, Abels C (2005) Photodynamic effects of novel XF porphyrin derivatives on prokaryotic and eukariotic cells. Antimicrob Agents Chemother 49(4):1542–1552 Maisch T, Bosl C, Szeimies R-M, Lehn N, Abels C (2005) Photodynamic effects of novel XF porphyrin derivatives on prokaryotic and eukariotic cells. Antimicrob Agents Chemother 49(4):1542–1552
8.
Zurück zum Zitat Spesia MB, Caminos DA, Pons P, Durantini EN (2009) Mechanistic insight of the photodynamic inactivation of Escherichia coli by a tetracationic zinc(II) phthalocyanine derivative. Photodiagn Photodyn Ther 6:52–61CrossRef Spesia MB, Caminos DA, Pons P, Durantini EN (2009) Mechanistic insight of the photodynamic inactivation of Escherichia coli by a tetracationic zinc(II) phthalocyanine derivative. Photodiagn Photodyn Ther 6:52–61CrossRef
9.
Zurück zum Zitat Quishida CCC, Oliveira Mima EG, Dovigo LN, Jotge JH, Bagnato VS, Pavarina AC (2015) Photodynamic inactivation of a multispecies biofilms using photodithazine and LED light after one and three successive applications. Lasers Med Sci 30:2303–2312CrossRefPubMed Quishida CCC, Oliveira Mima EG, Dovigo LN, Jotge JH, Bagnato VS, Pavarina AC (2015) Photodynamic inactivation of a multispecies biofilms using photodithazine and LED light after one and three successive applications. Lasers Med Sci 30:2303–2312CrossRefPubMed
10.
Zurück zum Zitat Sekkat N, van der Bergh H, Nyokong T, Lange N (2012) Like a bolt from the blue: phthalocyanines in biomedical optics. Molecules 17:98–144CrossRef Sekkat N, van der Bergh H, Nyokong T, Lange N (2012) Like a bolt from the blue: phthalocyanines in biomedical optics. Molecules 17:98–144CrossRef
11.
Zurück zum Zitat Junqueira JC, Jorge AOC, Barbosa JO et al (2012) Photodynamic inactivation of biofilms formed by Candida spp., Trihosporon mucoides, and Kodamaea ohmeri by cationic nanoemulsion of zinc 2,9,16,23-tetrakis (phenylthio)-29H, 31H-phthalocyanine (ZnPc). Lasers Med Sci 27:1205–1212CrossRefPubMed Junqueira JC, Jorge AOC, Barbosa JO et al (2012) Photodynamic inactivation of biofilms formed by Candida spp., Trihosporon mucoides, and Kodamaea ohmeri by cationic nanoemulsion of zinc 2,9,16,23-tetrakis (phenylthio)-29H, 31H-phthalocyanine (ZnPc). Lasers Med Sci 27:1205–1212CrossRefPubMed
12.
Zurück zum Zitat Ribeiro APD, Andrade MC, Bagnato VS et al (2015) Antimicrobial photodynamic therapy against pathogenic bacterial suspensions and biofilms using chloro-aluminium phthalocyanine encapsulated in nanoemulsions. Lasers Med Sci 30:549–559CrossRefPubMed Ribeiro APD, Andrade MC, Bagnato VS et al (2015) Antimicrobial photodynamic therapy against pathogenic bacterial suspensions and biofilms using chloro-aluminium phthalocyanine encapsulated in nanoemulsions. Lasers Med Sci 30:549–559CrossRefPubMed
13.
Zurück zum Zitat Filonenko VE (2015) The history of development of fluorescence diagnosis and photodynamic therapy and their capabilities in oncology. Russian J General Chemistry 85(1):211–215CrossRef Filonenko VE (2015) The history of development of fluorescence diagnosis and photodynamic therapy and their capabilities in oncology. Russian J General Chemistry 85(1):211–215CrossRef
14.
Zurück zum Zitat Maduray K, Odhav B, Nyokong T (2012) In vitro photodynamic effect of aluminium tetrasulfophthalocyanines on melanoma skin cancer and healthy normal skin cells. Photodiagn Photodyn Ther 9:32–39CrossRef Maduray K, Odhav B, Nyokong T (2012) In vitro photodynamic effect of aluminium tetrasulfophthalocyanines on melanoma skin cancer and healthy normal skin cells. Photodiagn Photodyn Ther 9:32–39CrossRef
15.
Zurück zum Zitat Ben-Hur E, Zuk MM, Kenney ME et al (1996) Action spectra (660–700 nm) for virus inactivation and red cell damage photosensitized by the silicon phthalocyanine Pc4. Lasers Med Sci 11:221–225CrossRef Ben-Hur E, Zuk MM, Kenney ME et al (1996) Action spectra (660–700 nm) for virus inactivation and red cell damage photosensitized by the silicon phthalocyanine Pc4. Lasers Med Sci 11:221–225CrossRef
16.
Zurück zum Zitat Demidova TN, Hamblin MR (2005) Effect of cell-photosensitizer binding and cell density on microbial photoinactivation. Antimicrob Agents Chem 49:2329–2335CrossRef Demidova TN, Hamblin MR (2005) Effect of cell-photosensitizer binding and cell density on microbial photoinactivation. Antimicrob Agents Chem 49:2329–2335CrossRef
17.
Zurück zum Zitat Kussovski V, Mantareva V, Angelov I et al (2009) Photodynamic inactivation of Aeromonas hydrophila by cationic phthalocyanines with different hydrophobicity. FEMS Microbiol Lett 294:133–140CrossRefPubMed Kussovski V, Mantareva V, Angelov I et al (2009) Photodynamic inactivation of Aeromonas hydrophila by cationic phthalocyanines with different hydrophobicity. FEMS Microbiol Lett 294:133–140CrossRefPubMed
18.
Zurück zum Zitat Mantareva V, Kussovski V, Angelov I et al (2011) Non-aggregated Ga(III)-phthalocyanines: synthesis and photodynamic effect on pathogenic microorganisms planktonic and biofilms cultures. Photochem Photobiol Sci 10:92–102CrossRef Mantareva V, Kussovski V, Angelov I et al (2011) Non-aggregated Ga(III)-phthalocyanines: synthesis and photodynamic effect on pathogenic microorganisms planktonic and biofilms cultures. Photochem Photobiol Sci 10:92–102CrossRef
19.
Zurück zum Zitat Mantareva V, Kussovski V, Angelov I et al (2007) Photodynamic activity of water-soluble phthalocyanine zinc(II) complexes against pathogenic microorganisms. Bioorg Med Chem 15:4829–4835CrossRefPubMed Mantareva V, Kussovski V, Angelov I et al (2007) Photodynamic activity of water-soluble phthalocyanine zinc(II) complexes against pathogenic microorganisms. Bioorg Med Chem 15:4829–4835CrossRefPubMed
20.
Zurück zum Zitat Segalla A, Borsarelli CD, Braslavsky SE et al (2002) Photophysical, photochemical and antibacterial photosensitizing properties of a novel octacationic Zn(II)-phthalocyanine. Photochem Photobiol Sci 1:641–648CrossRefPubMed Segalla A, Borsarelli CD, Braslavsky SE et al (2002) Photophysical, photochemical and antibacterial photosensitizing properties of a novel octacationic Zn(II)-phthalocyanine. Photochem Photobiol Sci 1:641–648CrossRefPubMed
21.
Zurück zum Zitat Kassab K, Fadeel DAE, Fadel MV (2013) Topical photodynamic therapy using transfersomal Al phthalocyanine tetrasulfonate: in vitro and in vivo study. Lasers Med Sci 28:1352–1361CrossRef Kassab K, Fadeel DAE, Fadel MV (2013) Topical photodynamic therapy using transfersomal Al phthalocyanine tetrasulfonate: in vitro and in vivo study. Lasers Med Sci 28:1352–1361CrossRef
22.
Zurück zum Zitat Sessler JL, Miller RA (2000) Texaphyrins: drugs with diverse clinical applications in radiation and photodynamic therapy. Biochem Pharmacology 59:733–739CrossRef Sessler JL, Miller RA (2000) Texaphyrins: drugs with diverse clinical applications in radiation and photodynamic therapy. Biochem Pharmacology 59:733–739CrossRef
23.
Zurück zum Zitat Young SW, Woodburn KW, Wright M et al (1996) Lutetium texaphyrin (PCI-0123): a near-infrared, water-soluble photosensitizer. Photochem Photobiol 63(6):892–897CrossRefPubMed Young SW, Woodburn KW, Wright M et al (1996) Lutetium texaphyrin (PCI-0123): a near-infrared, water-soluble photosensitizer. Photochem Photobiol 63(6):892–897CrossRefPubMed
24.
Zurück zum Zitat Mantareva V, Durmuş M, Aliosman M, Stoineva I, Angelov I (2016) Lutetium (III) acetate phthalocyanines for photodynamic therapy applications: synthesis and photo physicochemical properties. Photodiagn Photodyn Ther 14:98–103CrossRef Mantareva V, Durmuş M, Aliosman M, Stoineva I, Angelov I (2016) Lutetium (III) acetate phthalocyanines for photodynamic therapy applications: synthesis and photo physicochemical properties. Photodiagn Photodyn Ther 14:98–103CrossRef
25.
Zurück zum Zitat Rosa LP, da Silva FC, Viana MS, Meira GA (2016) In vitro effectiveness of 455-nm blue LED to reduce the load of Staphylococcus aureus and Candida albicans biofilms in compact bone tissue. Lasers Med Sci 31:27–32CrossRefPubMed Rosa LP, da Silva FC, Viana MS, Meira GA (2016) In vitro effectiveness of 455-nm blue LED to reduce the load of Staphylococcus aureus and Candida albicans biofilms in compact bone tissue. Lasers Med Sci 31:27–32CrossRefPubMed
26.
Zurück zum Zitat Hunter KD, Gibson J, Lockhart AP, Bagg J (1998) Fluconazole-resistant Candida species in the oral flora of fluconazole-exposed HIV-positive patients. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 85:558–564CrossRefPubMed Hunter KD, Gibson J, Lockhart AP, Bagg J (1998) Fluconazole-resistant Candida species in the oral flora of fluconazole-exposed HIV-positive patients. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 85:558–564CrossRefPubMed
27.
Zurück zum Zitat Sullivan D, Haynes K, Bille J et al (1997) Widespread geographic distribution of oral Candida dubliniensis strains in human immunodeficiency virus-infected individuals. J Clin Microbiol 35:960–964PubMedPubMedCentral Sullivan D, Haynes K, Bille J et al (1997) Widespread geographic distribution of oral Candida dubliniensis strains in human immunodeficiency virus-infected individuals. J Clin Microbiol 35:960–964PubMedPubMedCentral
28.
Zurück zum Zitat Prochnow EP, Martins MR, Campagnolo CB, Vianna RC, Villetti MA, Kantorski KZ (2015) Antimicrobial photodynamic effect of phenothiazinic photosensitizers in formulations with ethanol on Pseudomonas aeruginosa biofilms. Photodiagn Photodyn Ther 13:291–296CrossRef Prochnow EP, Martins MR, Campagnolo CB, Vianna RC, Villetti MA, Kantorski KZ (2015) Antimicrobial photodynamic effect of phenothiazinic photosensitizers in formulations with ethanol on Pseudomonas aeruginosa biofilms. Photodiagn Photodyn Ther 13:291–296CrossRef
30.
Zurück zum Zitat Prasanth CS, Karunakaran S, Paul A, Kussovski V et al (2014) Antimicrobial photodynamic efficiency of novel cationic porphyrins towards periodontal Gram-positive and Gram-negative pathogenic bacteria. Photochem Photobiol 90(3):628–640CrossRefPubMed Prasanth CS, Karunakaran S, Paul A, Kussovski V et al (2014) Antimicrobial photodynamic efficiency of novel cationic porphyrins towards periodontal Gram-positive and Gram-negative pathogenic bacteria. Photochem Photobiol 90(3):628–640CrossRefPubMed
31.
Zurück zum Zitat Mantareva V, Angelov I, Kussovski V et al (2011) Photodynamic efficiency of water-soluble Si(IV) and Ge(IV) phthalocyanines towards Candida albicans planktonic and biofilm cultures. Eur J Med Chem 46:4430–4440CrossRefPubMed Mantareva V, Angelov I, Kussovski V et al (2011) Photodynamic efficiency of water-soluble Si(IV) and Ge(IV) phthalocyanines towards Candida albicans planktonic and biofilm cultures. Eur J Med Chem 46:4430–4440CrossRefPubMed
32.
Zurück zum Zitat Scalise I, Durantini E (2005) Synthesis, properties, and photodynamic inactivation of Escherichia coli using a cationic and a noncharged Zn(II) pyridyloxy phthalocyanine derivatives. Bioorg Med Chem 13(8):3037–3045CrossRefPubMed Scalise I, Durantini E (2005) Synthesis, properties, and photodynamic inactivation of Escherichia coli using a cationic and a noncharged Zn(II) pyridyloxy phthalocyanine derivatives. Bioorg Med Chem 13(8):3037–3045CrossRefPubMed
33.
Zurück zum Zitat Ke MR, Eastel JM, Ngai KLK et al (2014) Photodynamic inactivation of bacteria and viruses using two monosubstituted zinc(II) phthalocyanines. Eur J Med Chem 84:278–283CrossRefPubMed Ke MR, Eastel JM, Ngai KLK et al (2014) Photodynamic inactivation of bacteria and viruses using two monosubstituted zinc(II) phthalocyanines. Eur J Med Chem 84:278–283CrossRefPubMed
34.
Zurück zum Zitat Osifeco OL, Durmuş M, Nyokong T (2015) Physicochemical and photodynamic antimicrobial chemotherapy studies of mono- and tetra- pyridyloxy substituted indium (III) phthalocyanines. J Photochem Photobiol A Chem 301:47–54CrossRef Osifeco OL, Durmuş M, Nyokong T (2015) Physicochemical and photodynamic antimicrobial chemotherapy studies of mono- and tetra- pyridyloxy substituted indium (III) phthalocyanines. J Photochem Photobiol A Chem 301:47–54CrossRef
35.
Zurück zum Zitat Mantareva VN, Angelov I, Wohrle D, Borisova E, Kussovski V (2013) Metallophthalocyanines for antimicrobial photodynamic therapy: an overview of our experience. J Porphyrins Phthalocyanines 17:399–416CrossRef Mantareva VN, Angelov I, Wohrle D, Borisova E, Kussovski V (2013) Metallophthalocyanines for antimicrobial photodynamic therapy: an overview of our experience. J Porphyrins Phthalocyanines 17:399–416CrossRef
Metadaten
Titel
Photodynamic inactivation of pathogenic species Pseudomonas aeruginosa and Candida albicans with lutetium (III) acetate phthalocyanines and specific light irradiation
verfasst von
Vanya Mantareva
Vesselin Kussovski
Mahmut Durmuş
Ekaterina Borisova
Ivan Angelov
Publikationsdatum
16.07.2016
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 8/2016
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-016-2022-8

Weitere Artikel der Ausgabe 8/2016

Lasers in Medical Science 8/2016 Zur Ausgabe