Skip to main content
Erschienen in: Insights into Imaging 6/2014

Open Access 01.12.2014 | Review

Pituitary apoplexy: an update on clinical and imaging features

verfasst von: Alessandro Boellis, Alberto di Napoli, Andrea Romano, Alessandro Bozzao

Erschienen in: Insights into Imaging | Ausgabe 6/2014

Abstract

Pituitary apoplexy (PA) is a rare and potentially fatal clinical condition presenting acute headache, vomiting, visual impairment, ophthalmoplegia, altered mental state and possible panhypopituitarism. It mostly occurs in patients with haemorrhagic infarction of the pituitary gland due to a pre-existing macroadenoma. Although there are pathological and physiological conditions that may share similar imaging characteristics, both clinical and imaging features can guide the radiologist towards the correct diagnosis, especially using magnetic resonance imaging (MRI). In this review, we will describe the main clinical and epidemiological features of PA, illustrating CT and MRI findings and discussing the role of imaging in the differential diagnosis, prognosis and follow-up.
Teaching points
Headache, ophtalmoplegia and visual impairment are frequent symptoms of pituitary apoplexy.
CT is often the first imaging tool in PA, showing areas of hyperdensity within the sellar region.
MRI could confirm haemorrhage within the pituitary gland and compression on the optic chiasm.
Frequent simulating conditions are aneurysms, Rathke cleft cysts, craniopharingioma and mucocele.
The role of imaging is still debated and needs more studies.

Introduction

Pituitary apoplexy (PA) was first described by Pearce Bailey in 1898 [1] and recognised as a defined clinical syndrome by Brougham et al. in 1950 [2]. It is a severe and potentially fatal medical condition characterised by the variable association of headache, vomiting, visual impairment, ophthalmoplegia, altered mental state and panhypopituitarism [25]. The syndrome is often related to haemorrhagic infarction of the pituitary gland, usually in a condition of a pre-existing macroadenoma [68] occurring in 1.6 to 2.8 % of patients with this neoplasm. In a consistent number of patients with PA, this clinical syndrome represents the first sign of a previously undetected adenoma. Few cases of apoplexy have been reported in patients without a previous pituitary pathology [9, 10] such as Sheehan syndrome, a condition characterised by pituitary infraction occurring in post- or peripartum females with hypovolaemia [1113].
The diagnosis of PA can be made only when haemorrhagic infarction of the pituitary gland leads to the previously described clinical syndrome; the use of the term PA should be avoided in asymptomatic patients. In fact, huge haemorrhages can be a common finding in patients with macroadenomas without PA symptoms [14, 15].
Many clinical series of patients with PA have been reported, while its imaging features are less frequently described. Because of the potential severe prognosis of PA, radiologists should be aware of its imaging characteristics on both computed tomography (CT) and magnetic resonance imaging (MRI), being able to recognise the main conditions that may mimic PA, from a clinical and radiological perspective.

Definition, clinical features and pathogenesis

Based on the above-mentioned clinical definition, PA is a rare event and occurs in 1.6 to 2.8 % of patients with macroadenomas; it is more frequent in males, with a gender ratio of 2:1 and a mean age of onset of 57 years [5, 1618]. About 60 % of patients with PA may not be aware of having a pituitary adenoma before the acute event.
Pituitary apoplexy has a wide spectrum of clinical manifestations; based on many reports, the most common symptom is headache, with an incidence of 90–97 % [25, 19]. This is often described as a sudden, severe head pain, frequently retro-orbital in location [20], that includes PA into the differential diagnosis of a condition known as “thunderclap headache”. This comprehends important and more frequent diseases such as subarachnoid haemorrhage, cerebral venous sinus thrombosis or cervical artery dissection [21].
The second most frequent symptom is the visual deficit, ranging from 50 to 82 % of cases [5, 13, 2025], followed by nausea, vomiting, ocular palsy and meningism (25–50 %).
Many authors described that PA is strictly associated with a sudden enlargement of a pre-existing pituitary adenoma, resulting in a disturbance of the residual pituitary function and local mass effect on surrounding structures or, less frequently, in a sudden increase of intracranial pressure [5, 16, 2628]. Meningeal irritation occurs if blood gains access to the suprasellar cisterns through a dilated diaphragm sellae [5].
Many known factors predispose patients to symptomatic infarction of the pituitary, amongst which the most important are hypertension [10, 20], diabetes mellitus [29], pituitary function dynamic tests [30, 31], administration of anticoagulants, bromocriptine, oestrogens [3234] and radiotherapy [35]. The pathogenesis underlying pituitary apoplexy is still unknown. A possible mechanism can be the subacute, excessive growth of the pre-existing adenoma, which outgrows its blood supply with eventual ischaemic necrosis followed by haemorrhage [2, 35]. Indeed, pathologic and dynamic imaging studies [36, 37] have shown that macroadenomas, as well as microadenomas, are less vascularised than the pituitary gland, so that a relatively fast and sizable growth can exceed this low blood supply. However, this theory does not explain the onset of PA in patients with small adenomas or with a healthy pituitary. Another hypothesis is that tumour compression of the infundibulum and superior pituitary arteries may cause infarction of the normal pituitary gland; however, ischaemia of the tumour mass itself is less probable in this case because the vessels supplying the adenoma are attributable to the inferior pituitary circulation [38]. Therefore, pituitary tumours probably suffer from an intrinsic vasculopathy that can lead to spontaneous infarction and haemorrhage [4, 22, 23, 39].

Imaging findings

Computed tomography

Most of the patients with symptoms related to PA will undergo computed tomography (CT) in an emergency setting. It is likely that, in most of them, the clinical suspicion might something other than PA. CT is effective in visualising pituitary expansive lesions leading to sellar enlargement (up to 94 % of cases) [5, 20, 25]. Because of the haemorrhagic component in most of PAs, CT will show patchy or confluent areas of hyperdensity within a pituitary lesion (Fig. 1) [5, 14, 20, 25]. Although a hyperdense lesion inside the sella turcica tends to represent PA in the proper clinical setting, diseases other than PA may lead to similar radiological pictures. The most common hyperdense lesions in the pituitary region are aneurysms, meningiomas, Rathke cleft cysts, germinomas and lymphoma. They can be easily differentiated from blood using MRI. After administration of contrast medium, a rim of enhancement may be the sign of pituitary apoplexy [40]. The real accuracy of CT in the diagnosis of PA is not fully described, being dependent on the time of imaging from onset of symptoms and on technical characteristics of CT itself. Some authors demonstrated a low sensitivity of CT in detecting pituitary tumour haemorrhage; this ranges from 21 % [20] to 46 % [16]. A possible explanation for these wide ranges is related to blood degradation, leading to a decreased density, in the days following the acute onset. For this reason, making the distinction between cystic or degenerative changes inside a pituitary neoplasm and a subacute haemorrhage may be impossible [14]. Based of the above-mentioned data, it is important to remember that the CT examination may be normal, underestimated or non-pathognomonic, especially in those rare patients with non-haemorrhagic PA or without a pre-existing pituitary adenoma. Therefore, although CT can exclude other diseases (i.e. subarachnoid haemorrhage), an MR examination can give more details about a suspected PA [14, 20].

Magnetic resonance imaging

Magnetic resonance imaging (MRI) is the most important tool in the diagnosis of PA, being able to identify the presence of an adenoma and its haemorrhagic degeneration. MRI is definitely superior to CT in the diagnosis of PA with a sensitivity ranging from 88 % to 90 % [18, 41]. Recently, Semple et al. demonstrated that MRI features of PA correlate with the pathologic reports and operative findings and that PA features can be accurately predicted from MR imaging [14].
It is well known that the signal of blood clots in MRI changes over time. In the acute phase (0–7 days), deoxyhaemoglobin leads to shortening of the T2 relaxation time due to the susceptibility effect and the MRI signal is hypointense on T2-weighted imaging (T2W1) with isointensity or slight hypointensity on T1-weighted imaging (T1WI) (Fig. 2). In the subacute phase (7–21 days), methaemoglobin shortens the T1 relaxation time and the haemorrhage will appear hyperintense on T1WI as well as on T2WI (Figs. 3 and 4). In the chronic phase (>21 days), macrophages digest the clot and the presence of haemosiderin and ferritine causes a strong hypointensity on both T1WI and T2WI [4244].
First, Poitin et al. and, more recently, Dubuisson et al. described the MRI features in a group of patients with PA [5, 45]. MRI predominantly showed an intra- and suprasellar expanding mass with different signal intensities on T1WI and T2WI, depending on the presence of haemorrhage and on its stage, as described above. In most cases, MRI performed during the acute phase of the clinical syndrome shows areas of hyperintensity on T1W1, generally more pronounced in the peripheral area of the lesions [45]. After IV gadolinium administration, a slight and inhomogeneous contrast enhancement is evident (Figs. 3c, f, 4) but often is difficult to differentiate from normal residual pituitary gland [5, 14, 45, 46]. T2WI showed areas of mixed high and low signal intensity, with the presence of a possible thin peripheral ring of marked hypointensity, representing haemosiderin and ferritin deposition. The latter must be considered an unusual and unexpected finding, since pituitary tumours lack a blood-brain barrier, and the accumulation of macrophages containing haemosiderin normally does not occur [45]. T2WIs are even useful in the evaluation of potential compressions of the optic chiasm and hypothalamus by the tumour [40].
Many authors [5, 14, 45] described the possibility of a fluid debris level within the mass. Poitin et al. made a pathological-radiological correlation in their patients with this finding, showing that the upper fluid (hyperintense on T1W1) contains free extracellular meta-Hb and the lower layer (iso-hypointense on T1WI) corresponds to a sediment of red blood remnants [45]. This finding is suggestive of late subacute haemorrhage and is considered a specific sign of pituitary apoplexy [4547].
Another important MRI finding that is highly indicative of PA is the thickening of sphenoid sinus mucosa (Fig. 3a) [14, 46, 48]. This condition may be related to venous engorgement in this region, a reversible condition on follow-up studies [14]. Thus, this is considered a specific finding of the acute phase of haemorrhage.
Less is known about the MRI appearance of pituitary apoplexy without haemorrhagic infarction. Ostrov et al. found that this condition may appear as low signal intensity on both T1WI and T2WI, without contrast enhancement inside the lesion but with a peripheral rim of enhancement [49]. It has been reported that diffusion-weighted images may help to visualise areas of infarction within a non-haemorrhagic pituitary lesion [15] but obtaining good DWI images in the pituitary region is challenging because of susceptibility artefacts.
The use of T2*-weighted gradient-echo (GE) MR imaging is currently the most sensitive neuroimaging technique for the identification of brain haemorrhage. T2*-weighted images are highly sensitive to the paramagnetic effects of deoxy-HB and meta-HB and show bleeding products and haemosiderin deposits as areas of strongly hypointense signal. Tosaka et al. recently demonstrated that this statement could be applied even to PA [50]. GE MR can depict acute and chronic haemorrhages not seen with conventional SE techniques. These can appear as a hypointense rim, mass, spot or diffused area of lower signal intensity. The latter, diffused, is related to pituitary adenomas without a history of headache or clinical PA.

Differential diagnosis

MRI is a useful tool in the differential diagnosis of pituitary apoplexy. Many conditions can present with hyperintensity  on T1WI in the sellar region, the most frequent MRI feature of PA [46]. Thus, it is important to use advanced MRI techniques such as T2*GE together with a careful search for specific radiological findings, such as fluid levels or thickening of the sphenoid mucosa.
The posterior lobe of the pituitary gland usually appears as a hyperintense spot on T1WI because of storage of vasopressin [5153]; this is a normal finding and should not be confused with a haemorrhage within the gland.
In the case of anterior pituitary lobe hyperactivity, the gland may be hyperintense [54, 55]. In these cases, haemorrhage can be easily excluded with the evaluation of T2WI and T2*WI.
Another condition to consider for the differential diagnosis is the presence of an aneurysm (Fig. 5). Aneurysms arising from the carotid siphon or from the anterior communicating artery usually appear as round lesions, hypointense on T2WI because of flow void. Partially thrombosed aneurysm in the sellar region can show high signal intensity on T1WI [46]. Thus, an imaging study should be completed with MR angiography, which is best with a contrast-enhanced technique, to exclude this pathology [25].
Rathke cleft cysts (RCCs) occur with T1 hyperintensity because of the variable protein content [56] (Fig. 6). RCC, which can be either intra- or suprasellar, is usually located along the midline and does not present a fluid debris level [40]. A hypointense intracystic nodule on T2WI, related to concretion of proteinaceous material within the RCC, is typical (Fig. 6c). The variable MRI appearance of RCC may cause difficulties in the differential diagnosis with PA. Moreover, a large suprasellar RCC may mimic PA even clinically, with acute onset of headache and visual deficit, as described by the recent work of Binning et al. [57].
Craniopharingioma is another pathology that can be difficult to distinguish from PA. It is usually an intra-/suprasellar lesion with variable solid, cystic and calcified components [40, 58]. The cystic component may contain a proteinaceous fluid, appearing hyperintense on T1WI, and mimicing haemorrhagic degeneration. Careful evaluation of T2WI together with the acquisition of a CT scan to rule out calcific components can help to obtain the correct diagnosis [40].
Other conditions that can simulate PA on imaging are lipoma, dermoid cysts and postoperative changes. Lipoma and dermoid cysts contain fat and can be confirmed with fat-suppressed images. Anyway, these pathologies do not usually appear with the clinical syndrome of PA.

Role of imaging in prognosis, therapy and follow-up

In clinical practice, many endocrinologists and pituitary surgeons believe that patients presenting with ophthalmoplegia (typically III palsy) without visual field loss may safely be monitored conservatively—typically with spontaneous full recovery of the ophthalmoplegia after several weeks and very often with substantial shrinkage of the pituitary mass on the follow-up scan some months later.
The role of imaging, in particular of MRI, in the decision-making process for a proper therapy is still debated and probably needs more study. Some authors reported that MRI findings in patients with PA do not correlate with the severity of its clinical presentation, in terms of both visual loss and cranial nerve palsies [25, 45, 50], suggesting that the role of imaging might be limited. Despite this, in the series of Ayuk and colleagues, patients undergoing MRI were managed more safely with conservative treatment because of identification of areas of haemorrhage and infarction, which on repeated MRI scanning allows prediction of the evolution of PA [25]. Semple et al. recently described that patients with PA and MRI findings of pituitary infarction without signs of haemorrhage showed a less severe clinical presentation and a better outcome [14].
Although no study demonstrated that chiasm compression may represent the most relevant MRI feature, it is likely that this observation has a clinical impact in the decision-making process (Fig. 3).
For the above-mentioned reasons, even though the most important features for treatment decisions (surgical or conservative) are related to the severity of the clinical condition [59], MRI can offer relevant prognostic information (Figs. 3 and 7).
The recent UK guidelines for the management of PA indicate an urgent MRI in patients with suspected PA as IIIB evidence class, since more randomised clinical trials are required. If MRI is contraindicated, a dedicated pituitary multidetector CT is advisable [59].
Radiological follow up with MRI in patients affected by PA is important. The pre-existing adenoma might grow after bleeding and eventually re-bleed (Fig. 8) [20]. In those patients treated conservatively, tumour growth after bleeding occurs within a wide range, as shown by different studies (from 6 to 90 %), but this indicates the need for clinical radiological follow-up 3–6 months after PA and every year for at least 5 years. Recurrent pituitary apoplexy has been documented in studies with both conservative and surgically therapeutic approaches, without a significant difference in the incidence between these groups [25, 60].

Conclusions

PA is a severe clinical syndrome and imaging is important to rule out other pathologies showing similar symptoms.
Currently, CT is the most commonly used imaging modality during the acute onset of symptoms consistent with PA. Despite this, CT lacks sensitivity and MRI should always be performed if PA is suspected. MRI can evaluate pituitary infarct and haemorrhage, mass effect and differentiate PA from other pathologies such as a Rathke cleft cyst or craniopharingioma. Other MR techniques such as MRA, DWI and T2*-weighted GE images can increase its diagnostic capabilities.
Although more studies will be necessary to define the role of MRI in treatment choices and prognostic information, this modality is a fundamental step in the diagnosis of PA in the acute phase and is mandatory in the follow-up of these patients.
Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
Literatur
1.
Zurück zum Zitat Bailey P (1898) Pathological report of a case of acromegaly with special reference to the lesions in hypophysis cerebri and in the thyroid gland, and a case of hemorrhage into the pituitary. Phila Med J 1:789–792 Bailey P (1898) Pathological report of a case of acromegaly with special reference to the lesions in hypophysis cerebri and in the thyroid gland, and a case of hemorrhage into the pituitary. Phila Med J 1:789–792
2.
Zurück zum Zitat Brougham M, Heusner AP, Adams RD (1950) Acute degenerative changes in adenomas of the pituitary body—with special reference to pituitary apoplexy. J Neurosurg 7:421–439CrossRefPubMed Brougham M, Heusner AP, Adams RD (1950) Acute degenerative changes in adenomas of the pituitary body—with special reference to pituitary apoplexy. J Neurosurg 7:421–439CrossRefPubMed
3.
Zurück zum Zitat Wakai S, Fukushima T, Teramoto A, Sano K (1981) Pituitary apoplexy: its incidence and clinical significance. J Neurosurg 55:187–193CrossRefPubMed Wakai S, Fukushima T, Teramoto A, Sano K (1981) Pituitary apoplexy: its incidence and clinical significance. J Neurosurg 55:187–193CrossRefPubMed
4.
5.
Zurück zum Zitat Dubuisson AS, Beckers A, Stevenaert A (2007) Classical pituitary tumour apoplexy: clinical features, management and outcomes in a series of 24 patients. Clin Neurol Neurosurg 109:63–70CrossRefPubMed Dubuisson AS, Beckers A, Stevenaert A (2007) Classical pituitary tumour apoplexy: clinical features, management and outcomes in a series of 24 patients. Clin Neurol Neurosurg 109:63–70CrossRefPubMed
6.
Zurück zum Zitat Ebersold MJ, Laws ER, Scheithauer BW, Randall RV (1983) Pituitary apoplexy treated by transsphenoidal surgery. A clinicopathological and immunocytochemical study. J Neurosurg 58:315–320CrossRefPubMed Ebersold MJ, Laws ER, Scheithauer BW, Randall RV (1983) Pituitary apoplexy treated by transsphenoidal surgery. A clinicopathological and immunocytochemical study. J Neurosurg 58:315–320CrossRefPubMed
7.
Zurück zum Zitat Mohr G, Hardy J (1983) Haemorrhage, necrosis and apoplexy in pituitary adenomas. Surg Neurol 18:181–189CrossRef Mohr G, Hardy J (1983) Haemorrhage, necrosis and apoplexy in pituitary adenomas. Surg Neurol 18:181–189CrossRef
8.
Zurück zum Zitat Rovit RL, Fein JM (1972) Pituitary apoplexy: a review and reappraisal. J Neurosurg 37:280–288CrossRefPubMed Rovit RL, Fein JM (1972) Pituitary apoplexy: a review and reappraisal. J Neurosurg 37:280–288CrossRefPubMed
9.
Zurück zum Zitat Conomy JP, Ferguson JH, Brodkey JS, Mitsumoto H (1975) Spontaneous infarction in pituitary tumours. Neurologic and therapeutic aspects. Neurology 25:580–587CrossRefPubMed Conomy JP, Ferguson JH, Brodkey JS, Mitsumoto H (1975) Spontaneous infarction in pituitary tumours. Neurologic and therapeutic aspects. Neurology 25:580–587CrossRefPubMed
10.
11.
Zurück zum Zitat Lavallée G, Morcos R, Palardy J, Aubé M, Gilbert D (1995) MR of nonhemorrhagic postpartum pituitary apoplexy. AJNR 16:1939–1941PubMed Lavallée G, Morcos R, Palardy J, Aubé M, Gilbert D (1995) MR of nonhemorrhagic postpartum pituitary apoplexy. AJNR 16:1939–1941PubMed
12.
Zurück zum Zitat Sheehan HL, Stanfor JP (1961) The pathogenesis of postpartum pituitary necrosis of the anterior lobe of the pituitary gland. Acta Endocrinol 37:479–510 Sheehan HL, Stanfor JP (1961) The pathogenesis of postpartum pituitary necrosis of the anterior lobe of the pituitary gland. Acta Endocrinol 37:479–510
13.
Zurück zum Zitat Couture N, Aris-Jilwan N, Serri O (2012) Apoplexy of microprolactinoma during pregnancy: case report and review of literature. Endocr Pract 18(6):e147–e150CrossRefPubMed Couture N, Aris-Jilwan N, Serri O (2012) Apoplexy of microprolactinoma during pregnancy: case report and review of literature. Endocr Pract 18(6):e147–e150CrossRefPubMed
14.
Zurück zum Zitat Semple PL, Jane JA, Lopes MBS, Laws ER (2008) Pituitary apoplexy: correlation between magnetic resonance imaging and histopathological results. J Neurosurg 108:909–915CrossRefPubMed Semple PL, Jane JA, Lopes MBS, Laws ER (2008) Pituitary apoplexy: correlation between magnetic resonance imaging and histopathological results. J Neurosurg 108:909–915CrossRefPubMed
15.
Zurück zum Zitat Rogg JM, Tung GA, Anderson G, Cortez S (2002) Pituitary apoplexy: early detection with diffusion-weighted MR imaging. AJNR Am J Neuroradiol 23:1240–1245PubMed Rogg JM, Tung GA, Anderson G, Cortez S (2002) Pituitary apoplexy: early detection with diffusion-weighted MR imaging. AJNR Am J Neuroradiol 23:1240–1245PubMed
16.
Zurück zum Zitat Bills DC, Meyer FB, Laws ER et al (1993) A retrospective analysis of pituitary apoplexy. Neurosurgery 33(4):602–609CrossRefPubMed Bills DC, Meyer FB, Laws ER et al (1993) A retrospective analysis of pituitary apoplexy. Neurosurgery 33(4):602–609CrossRefPubMed
17.
Zurück zum Zitat Fraioli B, Esposito V, Palma L, Cantore G (1990) Hemorrhagic pituitary adenomas: clinicopathological features and surgical treatment. Neurosurgery 27(5):741–748CrossRefPubMed Fraioli B, Esposito V, Palma L, Cantore G (1990) Hemorrhagic pituitary adenomas: clinicopathological features and surgical treatment. Neurosurgery 27(5):741–748CrossRefPubMed
18.
Zurück zum Zitat Onesti ST, Wisniewski T, Post KD (1990) Clinical versus subclinical pituitary apoplexy: presentation, surgical management and outcome in 21 patients. Neurosurgery 26(6):980–986CrossRefPubMed Onesti ST, Wisniewski T, Post KD (1990) Clinical versus subclinical pituitary apoplexy: presentation, surgical management and outcome in 21 patients. Neurosurgery 26(6):980–986CrossRefPubMed
19.
Zurück zum Zitat Pant B, Arita K, Kurisu K, Tominaga A, Eguchi K, Uozumi T (1997) Incidence of intracranial aneurysm associated with pituitary adenoma. Neurosurg Rev 20:13–17CrossRefPubMed Pant B, Arita K, Kurisu K, Tominaga A, Eguchi K, Uozumi T (1997) Incidence of intracranial aneurysm associated with pituitary adenoma. Neurosurg Rev 20:13–17CrossRefPubMed
20.
Zurück zum Zitat Randeva H, Schoebel J, Byrne J, Esiri M, Adams C, Wass J (1999) Classical pituitary apoplexy: clinical features, management and outcome. Clin Endocrinol 51:181–188CrossRef Randeva H, Schoebel J, Byrne J, Esiri M, Adams C, Wass J (1999) Classical pituitary apoplexy: clinical features, management and outcome. Clin Endocrinol 51:181–188CrossRef
21.
22.
Zurück zum Zitat Shahlaie K, Olaya J, Hartman J, Watson JC (2006) Pituitary apoplexy associated with anterior communicating artery aneurysm and aberrant blood supply. J Clin Neurosci 13:1057–1062CrossRefPubMed Shahlaie K, Olaya J, Hartman J, Watson JC (2006) Pituitary apoplexy associated with anterior communicating artery aneurysm and aberrant blood supply. J Clin Neurosci 13:1057–1062CrossRefPubMed
23.
Zurück zum Zitat Mortimer AM, Bradley MD, Stoodley NG, Renowden SA (2013) Thunderclap headache: diagnostic considerations and neuroimaging features. Clin Radiol 68:e101–e113CrossRefPubMed Mortimer AM, Bradley MD, Stoodley NG, Renowden SA (2013) Thunderclap headache: diagnostic considerations and neuroimaging features. Clin Radiol 68:e101–e113CrossRefPubMed
24.
Zurück zum Zitat Bonicki W, Kasperlik-Zaluska A, Koszewski W, Zgliczynski W, Wislawski J (1993) Pituitary apoplexy: endocrine, surgical and oncological emergency. Incidence, clinical course and treatment with reference to 799 cases of pituitary adenomas. Acta Neurochir 120:118–122CrossRefPubMed Bonicki W, Kasperlik-Zaluska A, Koszewski W, Zgliczynski W, Wislawski J (1993) Pituitary apoplexy: endocrine, surgical and oncological emergency. Incidence, clinical course and treatment with reference to 799 cases of pituitary adenomas. Acta Neurochir 120:118–122CrossRefPubMed
25.
Zurück zum Zitat Ayuk J, McGregor EJ, Mitchell RD, Gittoes NJL (2004) Acute management of pituitary apoplexy—surgery or conservative management? Clin Endocrinol 61:747–752CrossRef Ayuk J, McGregor EJ, Mitchell RD, Gittoes NJL (2004) Acute management of pituitary apoplexy—surgery or conservative management? Clin Endocrinol 61:747–752CrossRef
26.
Zurück zum Zitat Chacko AG, Chacko G, Seshadri MS, Chandy MJ (2002) Hemorrhagic necrosis of pituitary adenomas. Neurol India 50:490–493PubMed Chacko AG, Chacko G, Seshadri MS, Chandy MJ (2002) Hemorrhagic necrosis of pituitary adenomas. Neurol India 50:490–493PubMed
27.
Zurück zum Zitat Chanson P, Lepeintre JF, Ducreux D (2004) Management of pituitary apoplexy. Expert Opin Pharmacother 5:1287–1298CrossRefPubMed Chanson P, Lepeintre JF, Ducreux D (2004) Management of pituitary apoplexy. Expert Opin Pharmacother 5:1287–1298CrossRefPubMed
28.
Zurück zum Zitat De Villiers JC, Marcus G (1988) Non-haemorrhagic infarction of pituitary tumours presenting as pituitary apoplexy. Adv Biosci 69:461–464 De Villiers JC, Marcus G (1988) Non-haemorrhagic infarction of pituitary tumours presenting as pituitary apoplexy. Adv Biosci 69:461–464
29.
Zurück zum Zitat Brennan CF, Malone RGS, Weaver JA (1956) Pituitary necrosis in diabetes mellitus. Lancet 271:12–16CrossRefPubMed Brennan CF, Malone RGS, Weaver JA (1956) Pituitary necrosis in diabetes mellitus. Lancet 271:12–16CrossRefPubMed
30.
Zurück zum Zitat Chapman AJ, Williams G, Hockley AD, London DR (1956) Pituitary apoplexy after combined tests of anterior pituitary function. Br Med J 291:26CrossRef Chapman AJ, Williams G, Hockley AD, London DR (1956) Pituitary apoplexy after combined tests of anterior pituitary function. Br Med J 291:26CrossRef
31.
Zurück zum Zitat Arafah BM, Harrington JF, Madhoun ZT, Selman WR (1990) Improvement of pituitary function after surgical decompression for pituitary tumour apoplexy. J Clin Endocrinol Metab 71:323–328CrossRefPubMed Arafah BM, Harrington JF, Madhoun ZT, Selman WR (1990) Improvement of pituitary function after surgical decompression for pituitary tumour apoplexy. J Clin Endocrinol Metab 71:323–328CrossRefPubMed
32.
Zurück zum Zitat David M, Philippon J, Navarro-Artiles G, Racadot J, Weil BB (1969) Les forms hémorragiques des adénomes hypophysaires: aspects cliniques et étiologiques. Neurochirurgie 15:228–229 David M, Philippon J, Navarro-Artiles G, Racadot J, Weil BB (1969) Les forms hémorragiques des adénomes hypophysaires: aspects cliniques et étiologiques. Neurochirurgie 15:228–229
33.
Zurück zum Zitat Yamaji T, Ishibashi M, Kosaka K et al (1981) Pituitary apoplexy in acromegaly during bromocriptine therapy. Acta Endocrinol 98:171–177PubMed Yamaji T, Ishibashi M, Kosaka K et al (1981) Pituitary apoplexy in acromegaly during bromocriptine therapy. Acta Endocrinol 98:171–177PubMed
34.
Zurück zum Zitat Nourizadeh AR, Pitts FW (1965) Haemorrhage into pituitary adenoma during anticoagulant therapy. J Am Med Assoc 193:623–624CrossRef Nourizadeh AR, Pitts FW (1965) Haemorrhage into pituitary adenoma during anticoagulant therapy. J Am Med Assoc 193:623–624CrossRef
35.
Zurück zum Zitat Uhilein A, Balfour WM, Donovan PF (1957) Acute haemorrhage into pituitary adenomas. J Neurosurg 14:140–151CrossRef Uhilein A, Balfour WM, Donovan PF (1957) Acute haemorrhage into pituitary adenomas. J Neurosurg 14:140–151CrossRef
36.
Zurück zum Zitat Pergolizzi RS, Nabavi A, Schwartz RB et al (2001) Intra-operative MR guidance during transsphenoidal pituitary resection: preliminary results. J Magn Reson Imaging 13:136–141CrossRefPubMed Pergolizzi RS, Nabavi A, Schwartz RB et al (2001) Intra-operative MR guidance during transsphenoidal pituitary resection: preliminary results. J Magn Reson Imaging 13:136–141CrossRefPubMed
37.
Zurück zum Zitat Bonneville JF, Bonneville F, Cattin F (2005) Magnetic resonance imaging of pituitary adenomas. Eur Radiol 15:543–548CrossRefPubMed Bonneville JF, Bonneville F, Cattin F (2005) Magnetic resonance imaging of pituitary adenomas. Eur Radiol 15:543–548CrossRefPubMed
38.
Zurück zum Zitat Powell DF, Baker HL Jr, Laws ER Jr (1974) The primary angiographic findings in pituitary adenomas. Radiology 110:589–595CrossRefPubMed Powell DF, Baker HL Jr, Laws ER Jr (1974) The primary angiographic findings in pituitary adenomas. Radiology 110:589–595CrossRefPubMed
39.
Zurück zum Zitat Pia HV, Obrador S, Martin JG (1972) Association of brain tumours and arterial intracranial aneurysms. Acta Neurochir 27:189–204CrossRefPubMed Pia HV, Obrador S, Martin JG (1972) Association of brain tumours and arterial intracranial aneurysms. Acta Neurochir 27:189–204CrossRefPubMed
40.
Zurück zum Zitat Osborn AG (1972) Pituitary apoplexy. In: Osborn A, Salzman KL, Barkovich AJ (eds) Diagnostic imaging. Brain, 2nd edn. Amirsys Inc, Salt Lake City, II-2-28-31 Osborn AG (1972) Pituitary apoplexy. In: Osborn A, Salzman KL, Barkovich AJ (eds) Diagnostic imaging. Brain, 2nd edn. Amirsys Inc, Salt Lake City, II-2-28-31
41.
Zurück zum Zitat Kaplan B, Day AL, Quisling R, Ballinger W (1983) Haemorrhage into pituitary adenomas. Surg Neurol 20:280–287CrossRefPubMed Kaplan B, Day AL, Quisling R, Ballinger W (1983) Haemorrhage into pituitary adenomas. Surg Neurol 20:280–287CrossRefPubMed
43.
Zurück zum Zitat Hardy PA, Kucharczyk W, Henkelman RM (1990) Cause f signal loss in MR images of old hemorrhagic lesions. Radiology 174:549–555CrossRefPubMed Hardy PA, Kucharczyk W, Henkelman RM (1990) Cause f signal loss in MR images of old hemorrhagic lesions. Radiology 174:549–555CrossRefPubMed
44.
Zurück zum Zitat Jones KM, Mulkern RV, Mantello MT et al (1992) Brain hemorrhage: evaluation with fast spin-echo and conventional dual spin-echo images. Radiology 182:53–58CrossRefPubMed Jones KM, Mulkern RV, Mantello MT et al (1992) Brain hemorrhage: evaluation with fast spin-echo and conventional dual spin-echo images. Radiology 182:53–58CrossRefPubMed
45.
Zurück zum Zitat Piotin M, Tampieri D, Rüfenacht DA et al (1999) The various MRI patterns of pituitary apoplexy. Eur Radiol 9:918–923CrossRefPubMed Piotin M, Tampieri D, Rüfenacht DA et al (1999) The various MRI patterns of pituitary apoplexy. Eur Radiol 9:918–923CrossRefPubMed
46.
Zurück zum Zitat Bonneville F, Cattin F, Marsot-Dupuch K, Dormont D, Bonneville JF, Chiras J (2006) T1 signal hyperintensity in the sellar region: spectrum of findings. Radiographics 26:93–113CrossRefPubMed Bonneville F, Cattin F, Marsot-Dupuch K, Dormont D, Bonneville JF, Chiras J (2006) T1 signal hyperintensity in the sellar region: spectrum of findings. Radiographics 26:93–113CrossRefPubMed
47.
Zurück zum Zitat Kurihara N, Takahashi S, Higano S et al (1998) Haemorrhage in pituitary adenoma: correlation of MR imaging with operative findings. Eur Radiol 8:971–976CrossRefPubMed Kurihara N, Takahashi S, Higano S et al (1998) Haemorrhage in pituitary adenoma: correlation of MR imaging with operative findings. Eur Radiol 8:971–976CrossRefPubMed
48.
Zurück zum Zitat Arita K, Kurisu K, Tominaga A et al (2001) Thickening of sphenoid sinus mucosa during the acute stage of pituitary apoplexy. J Neurosurg 95:897–901CrossRefPubMed Arita K, Kurisu K, Tominaga A et al (2001) Thickening of sphenoid sinus mucosa during the acute stage of pituitary apoplexy. J Neurosurg 95:897–901CrossRefPubMed
49.
Zurück zum Zitat Ostrov SG, Quencer RM, Hoffman JC, Davis PC, Hasso AN, David NJ (1989) Hemorrhage within pituitary adenomas: how often associated with pituitary apoplexy syndrome? Am J Roentgenol 153:153–160CrossRef Ostrov SG, Quencer RM, Hoffman JC, Davis PC, Hasso AN, David NJ (1989) Hemorrhage within pituitary adenomas: how often associated with pituitary apoplexy syndrome? Am J Roentgenol 153:153–160CrossRef
50.
Zurück zum Zitat Tosaka MN, Sato J, Hirato H et al (2007) Assessment of hemorrhage in pituitary macroadenoma by T2*-weighted gradient-echo MR imaging. Am J Neuroradiol 28:2023–2029CrossRefPubMed Tosaka MN, Sato J, Hirato H et al (2007) Assessment of hemorrhage in pituitary macroadenoma by T2*-weighted gradient-echo MR imaging. Am J Neuroradiol 28:2023–2029CrossRefPubMed
51.
Zurück zum Zitat Fujisawa I, Nishimura K, Asato R et al (1987) Posterior lobe of the pituitary in diabetes insipidus: MR findings. J Comput Assist Tomogr 11:221–225CrossRefPubMed Fujisawa I, Nishimura K, Asato R et al (1987) Posterior lobe of the pituitary in diabetes insipidus: MR findings. J Comput Assist Tomogr 11:221–225CrossRefPubMed
52.
Zurück zum Zitat Kurokawa H, Fujisawa I, Nakano Y et al (1998) Posterior lobe of the pituitary gland: correlation between signal intensity on T1-weighted MR images and vasopressin concentration. Radiology 207:79–83CrossRefPubMed Kurokawa H, Fujisawa I, Nakano Y et al (1998) Posterior lobe of the pituitary gland: correlation between signal intensity on T1-weighted MR images and vasopressin concentration. Radiology 207:79–83CrossRefPubMed
53.
Zurück zum Zitat Fujisawa I, Kikuchi K, Nishimura K et al (1987) Transection of the pituitary stalk: development of an ectopic posterior lobe assessed with MR imaging. Radiology 165:487–489CrossRefPubMed Fujisawa I, Kikuchi K, Nishimura K et al (1987) Transection of the pituitary stalk: development of an ectopic posterior lobe assessed with MR imaging. Radiology 165:487–489CrossRefPubMed
54.
Zurück zum Zitat Cox TD, Elster AD (1991) Normal pituitary gland: change in shape, size, and signal intensity during 1st year of life at MR imaging. Radiology 179:721–724CrossRefPubMed Cox TD, Elster AD (1991) Normal pituitary gland: change in shape, size, and signal intensity during 1st year of life at MR imaging. Radiology 179:721–724CrossRefPubMed
55.
Zurück zum Zitat Miki Y, Asato R, Okumura R et al (1993) Anterior pituitary gland in pregnancy: hyperintensity at MR. Radiology 187:229–231CrossRefPubMed Miki Y, Asato R, Okumura R et al (1993) Anterior pituitary gland in pregnancy: hyperintensity at MR. Radiology 187:229–231CrossRefPubMed
56.
Zurück zum Zitat Hayashi Y, Tachibana O, Muramatsu N et al (1999) Rathke cleft cyst: MR and biomedical analysis of cyst content. J Comput Assist Tomogr 23:34–38CrossRefPubMed Hayashi Y, Tachibana O, Muramatsu N et al (1999) Rathke cleft cyst: MR and biomedical analysis of cyst content. J Comput Assist Tomogr 23:34–38CrossRefPubMed
57.
Zurück zum Zitat Binning MJ, Liu JK, Gannon J, Osborn AG, Couldwell WT (2008) Hemorrhagic and nonhemorrhagic Rethke cleft cysts mimicking pituitary apoplexy. J Neurosurg 108:3–8CrossRefPubMed Binning MJ, Liu JK, Gannon J, Osborn AG, Couldwell WT (2008) Hemorrhagic and nonhemorrhagic Rethke cleft cysts mimicking pituitary apoplexy. J Neurosurg 108:3–8CrossRefPubMed
58.
Zurück zum Zitat Pusey E, Kortman KE, Flannigan BD, Tsuruda J, Bradley WG (1987) MR of craniopharyngiomas: tumor delineation and characterization. Am J Roentgenol 149:383–388CrossRef Pusey E, Kortman KE, Flannigan BD, Tsuruda J, Bradley WG (1987) MR of craniopharyngiomas: tumor delineation and characterization. Am J Roentgenol 149:383–388CrossRef
59.
Zurück zum Zitat Rajasekaran S, Vanderpump M, Baldeweg S (2011) UK guidelines for the management of pituitary apoplexy. Clin Endocrinol 74:9–20CrossRef Rajasekaran S, Vanderpump M, Baldeweg S (2011) UK guidelines for the management of pituitary apoplexy. Clin Endocrinol 74:9–20CrossRef
60.
Zurück zum Zitat Gruber A, Clayton J, Kumar S, Robertson I, Howlett TA, Mansell P (2006) Pituitary apoplexy: retrospective review of 30 patients–is surgical intervention always necessary? Br J Neurosurg 20:379–385CrossRefPubMed Gruber A, Clayton J, Kumar S, Robertson I, Howlett TA, Mansell P (2006) Pituitary apoplexy: retrospective review of 30 patients–is surgical intervention always necessary? Br J Neurosurg 20:379–385CrossRefPubMed
Metadaten
Titel
Pituitary apoplexy: an update on clinical and imaging features
verfasst von
Alessandro Boellis
Alberto di Napoli
Andrea Romano
Alessandro Bozzao
Publikationsdatum
01.12.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Insights into Imaging / Ausgabe 6/2014
Elektronische ISSN: 1869-4101
DOI
https://doi.org/10.1007/s13244-014-0362-0

Weitere Artikel der Ausgabe 6/2014

Insights into Imaging 6/2014 Zur Ausgabe

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.