Skip to main content
Erschienen in: Journal of Translational Medicine 1/2022

Open Access 01.12.2022 | Commentary

Point-of-care cell therapy manufacturing; it’s not for everyone

verfasst von: David F. Stroncek, Robert P. T. Somerville, Steven L. Highfill

Erschienen in: Journal of Translational Medicine | Ausgabe 1/2022

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

The use of cellular therapies to treat cancer, inherited immune deficiencies, hemoglobinopathies and viral infections is growing rapidly. The increased interest in cellular therapies has led to the development of reagents and closed-system automated instruments for the production of these therapies. For cellular therapy clinical trials involving multiple sites some people are advocating a decentralized model of manufacturing where patients are treated with cells produced using automated instruments at each participating center using a single, centrally held Investigational New Drug Application (IND). Many academic centers are purchasing these automated instruments for point-of-care manufacturing and participation in decentralized multiple center clinical trials. However, multiple site manufacturing requires harmonization of product testing and manufacturing in order to interpret the clinical trial results. Decentralized manufacturing is quite challenging since all centers should use the same manufacturing protocol, the same or comparable in-process and lot release assays and the quality programs from each center must work closely together. Consequently, manufacturing cellular therapies using a decentralized model is in many ways more difficult than manufacturing cells in a single centralized facility. Before an academic center decides to establish a point-of-care cell processing laboratory, they should consider all costs associated with such a program. For many academic cell processing centers, point-of-care manufacturing may not be a good investment.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
BLA
Biologics License Application
CBER
Center for Biologics Evaluation and Research
CDER
Center for Drug Evaluation and Research
CAR
Chimeric Antigen Receptor
GMP
Good Manufacturing Practices
IND
Investigational New Drug Application
TIL
Tumor Infiltrating Lymphocytes
HSC
Hematopoietic Stem Cells

Commentary

Cell and gene therapies have been produced and used for early phase clinical trials in academic health centers for more than 30 years [1]. The variety and quantity of cellular therapies produced was limited until the remarkable clinical success of the cancer immunotherapy Chimeric Antigen Receptor (CAR) T-cells. Since then the field has grown extraordinarily in terms of the type and quantity of cellular therapies used clinically [1]. In fact, a number of CAR T-cell therapies used for the treatment of B-cell malignancies have been licensed by regulatory agencies and are being produced commercially to target CD19 (Yescarta, Kymriah, Tecartus, Breyanzi) and, more recently, BCMA (Abecma).
This success has led to the development and increased availability of reagents for manufacturing clinical cellular therapies, and a number of suppliers now have entire sections strictly devoted to T-cell therapy. In addition, closed-system automated instruments have been developed for the production of cellular therapies [2]. These instruments are very attractive to academic institutions since their use may significantly reduce the need for cleanroom space, and hence lower the overall cost of manufacturing. The nature of these automated instruments and off-the-shelf Good Manufacturing Practices (GMP) reagents makes it feasible for academic laboratories originally designed and set up to process Hematopoietic Stem Cells (HSC) for transplantation to produce more advanced cellular therapies. In fact, many academic centers are purchasing these instruments and have begun to manufacture CAR T-cells and virus specific T-cells.
Along with chemotherapy and HSC transplantation, CAR T-cells have become an important tool for treating B-cell leukemia and lymphoma. The availability of GMP reagents and automated instruments have led some people to advocate for the point-of-care production of CAR T-cells by hospitals using these automated instruments. Although making CAR T-cells using these instruments is relatively easy, meeting the quality, safety, potency and regulatory expectations is not. While the processing and clinical use of HSCs for transplantation are subjected to few regulations, cell and gene therapies, including CAR T-cells, are recognized as ‘living-drugs’ regulated under the Food and Drug Administration’s Center for Biologics Evaluation and Research (CBER), and are expected to meet strict quality standards similar to those applied to standard drugs regulated under the Center for Drug Evaluation and Research (CDER). In line with the explosion in the number of CAR T-cell therapy Investigational New Drug Application (IND) submissions, so too has there been ever-increasing regulatory requirements that need to be satisfied prior to approval. Because of this, a robust quality management system is a requisite to ensure that all therapies produced are consistently of high quality and are safe.
For multicenter cellular therapy clinical trials some people are also advocating a “decentralized” model of manufacturing where patients are treated with cells produced using point-of-care manufacturing at each participating center on a single, centrally held IND. Multiple site manufacturing requires harmonization of product testing and manufacturing in order to interpret the results of the clinical trial. While this seems simple, it’s quite challenging since all centers should use the same manufacturing protocol, the same or comparable in-process and lot release assays, and the quality programs from each center must work closely together. In many respects this requires more effort than manufacturing cellular therapies at a single location for multiple centers.
Regulatory agencies are receptive to local or decentralized manufacturing [3] and this approach makes sense for some cellular therapies. For example, the cancer immunotherapy Tumor Infiltrating Lymphocytes (TIL) involves the infusion of up to 100 billion cells which are given to patients immediately after they are harvested. Since it is not feasible to transport large quantities of TIL which are not cryopreserved, manufacturing TIL in one centralized laboratory for administration at multiple clinical sites is not yet practical. While manufacturing TIL at multiple centers may be necessary, it will require significant coordination and strict oversight and likely considerable expense.
While the availability of highly automated instruments and GMP reagents for manufacturing cell therapies is an important advancement, the process of providing clinical cell and gene therapies remains complex. Providing these therapies is even more complex for centers participating in multiple center clinical trials which involve decentralized manufacturing. Furthermore, most academic centers are manufacturing cell therapies for early phase clinical trials which are of limited duration. If early trials find that a cell therapy is safe and suggests that it is clinically effective and if it is to be continued to be used clinically, the product must move to advanced clinical trials and, eventually, a Biologics License Application (BLA). Regulatory requirements are even more strict for producing cell therapies for late phase clinical trials and for producing licensed products. Before an academic center decides to establish a clinical cell processing laboratory, they should consider all costs associated with such a program along with current and future needs and applications. For many academic cell processing centers, point-of-care manufacturing may not be a good investment.

Acknowledgements

We thank the staff of the Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center Quality Assurance Section staff for their thoughtful discussions concerning this topic.

Declarations

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Lapteva L, Purohit-Sheth T, Serabian M, Puri RK. Clinical development of gene therapies: the first three decades and counting. Mol Ther Methods Clin Dev. 2020;19:387–97.CrossRef Lapteva L, Purohit-Sheth T, Serabian M, Puri RK. Clinical development of gene therapies: the first three decades and counting. Mol Ther Methods Clin Dev. 2020;19:387–97.CrossRef
2.
Zurück zum Zitat Mock U, Nickolay L, Philip B, et al. Automated manufacturing of chimeric antigen receptor T cells for adoptive immunotherapy using CliniMACS prodigy. Cytotherapy. 2016;18:1002–11.CrossRef Mock U, Nickolay L, Philip B, et al. Automated manufacturing of chimeric antigen receptor T cells for adoptive immunotherapy using CliniMACS prodigy. Cytotherapy. 2016;18:1002–11.CrossRef
3.
Zurück zum Zitat Marks P, Gottlieb S. Balancing safety and innovation for cell-based regenerative medicine. N Engl J Med. 2018;378:954–9.CrossRef Marks P, Gottlieb S. Balancing safety and innovation for cell-based regenerative medicine. N Engl J Med. 2018;378:954–9.CrossRef
Metadaten
Titel
Point-of-care cell therapy manufacturing; it’s not for everyone
verfasst von
David F. Stroncek
Robert P. T. Somerville
Steven L. Highfill
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
Journal of Translational Medicine / Ausgabe 1/2022
Elektronische ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-022-03238-5

Weitere Artikel der Ausgabe 1/2022

Journal of Translational Medicine 1/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Strenge Blutdruckeinstellung lohnt auch im Alter noch

30.04.2024 Arterielle Hypertonie Nachrichten

Ältere Frauen, die von chronischen Erkrankungen weitgehend verschont sind, haben offenbar die besten Chancen, ihren 90. Geburtstag zu erleben, wenn ihr systolischer Blutdruck < 130 mmHg liegt. Das scheint selbst für 80-Jährige noch zu gelten.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.