Skip to main content
Erschienen in: Pediatric Cardiology 7/2019

25.07.2019 | Riley Symposium

Postnatal Cardiac Development and Regenerative Potential in Large Mammals

verfasst von: Nivedhitha Velayutham, Emma J. Agnew, Katherine E. Yutzey

Erschienen in: Pediatric Cardiology | Ausgabe 7/2019

Einloggen, um Zugang zu erhalten

Abstract

The neonatal capacity for cardiac regeneration in mice is well studied and has been used to develop many potential strategies for adult cardiac regenerative repair following injury. However, translating these findings from rodents to designing regenerative therapeutics for adult human heart disease remains elusive. Large mammals including pigs, dogs, and sheep are widely used as animal models of humans in preclinical trials of new cardiac drugs and devices. However, very little is known about the fundamental cardiac cell biology and the timing of postnatal cardiac events that influence cardiomyocyte proliferation in these animals. There is emerging evidence that external physiological and environmental cues could be the key to understanding cardiomyocyte proliferative behavior. In this review, we survey available literature on postnatal development in various large mammal models to offer a perspective on the physiological and cellular characteristics that could be regulating cardiomyocyte proliferation. Similarities and differences between developmental milestones, cardiomyocyte maturational events, as well as environmental cues regulating cardiac development, are discussed for various large mammals, with a focus on postnatal cardiac regenerative potential and translatability to the human heart.
Literatur
1.
Zurück zum Zitat Bui AL, Horwich TB, Fonarow GC (2011) Epidemiology and risk profile of heart failure. Nat Rev Cardiol 8:30–41PubMed Bui AL, Horwich TB, Fonarow GC (2011) Epidemiology and risk profile of heart failure. Nat Rev Cardiol 8:30–41PubMed
2.
Zurück zum Zitat Oster ME, Lee KA, Honein MA, Riehle-Colarusso T, Shin M, Correa A (2013) Temporal trends in survival among infants with critical congenital heart defects. Pediatrics 131:e1502–1508PubMedPubMedCentral Oster ME, Lee KA, Honein MA, Riehle-Colarusso T, Shin M, Correa A (2013) Temporal trends in survival among infants with critical congenital heart defects. Pediatrics 131:e1502–1508PubMedPubMedCentral
3.
Zurück zum Zitat Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011) Transient regenerative potential of the neonatal mouse heart. Science 331:1078–1080PubMedPubMedCentral Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011) Transient regenerative potential of the neonatal mouse heart. Science 331:1078–1080PubMedPubMedCentral
4.
Zurück zum Zitat Haubner BJ, Adamowicz-Brice M, Khadayate S, Tiefenthaler V, Metzler B, Aitman T, Penninger JM (2012) Complete cardiac regeneration in a mouse model of myocardial infarction. Aging 4:966–977PubMedPubMedCentral Haubner BJ, Adamowicz-Brice M, Khadayate S, Tiefenthaler V, Metzler B, Aitman T, Penninger JM (2012) Complete cardiac regeneration in a mouse model of myocardial infarction. Aging 4:966–977PubMedPubMedCentral
5.
6.
Zurück zum Zitat Wang J, Liu S, Heallen T, Martin JF (2018) The Hippo pathway in the heart: pivotal roles in development, disease, and regeneration. Nat Rev Cardiol 15:672–684PubMed Wang J, Liu S, Heallen T, Martin JF (2018) The Hippo pathway in the heart: pivotal roles in development, disease, and regeneration. Nat Rev Cardiol 15:672–684PubMed
7.
Zurück zum Zitat Rumyantsev P (1991) Growth and hyperplasia of cardiac muscle cells. Taylor & Francis, Milton Park Rumyantsev P (1991) Growth and hyperplasia of cardiac muscle cells. Taylor & Francis, Milton Park
8.
Zurück zum Zitat Vivien CJ, Hudson JE, Porrello ER (2016) Evolution, comparative biology and ontogeny of vertebrate heart regeneration. NPJ Regen Med 1:16012PubMedPubMedCentral Vivien CJ, Hudson JE, Porrello ER (2016) Evolution, comparative biology and ontogeny of vertebrate heart regeneration. NPJ Regen Med 1:16012PubMedPubMedCentral
9.
Zurück zum Zitat Foglia MJ, Poss KD (2016) Building and re-building the heart by cardiomyocyte proliferation. Development 143:729–740PubMedPubMedCentral Foglia MJ, Poss KD (2016) Building and re-building the heart by cardiomyocyte proliferation. Development 143:729–740PubMedPubMedCentral
10.
Zurück zum Zitat Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park SY, Silberstein LE, Dos Remedios CG, Graham D, Colan S, Kuhn B (2013) Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci USA 110:1446–1451PubMed Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park SY, Silberstein LE, Dos Remedios CG, Graham D, Colan S, Kuhn B (2013) Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci USA 110:1446–1451PubMed
11.
Zurück zum Zitat Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102PubMedPubMedCentral Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102PubMedPubMedCentral
12.
Zurück zum Zitat Bergmann O, Zdunek S, Felker A, Salehpour M, Alkass K, Bernard S, Sjostrom SL, Szewczykowska M, Jackowska T, Dos Remedios C, Malm T, Andra M, Jashari R, Nyengaard JR, Possnert G, Jovinge S, Druid H, Frisen J (2015) Dynamics of cell generation and turnover in the human heart. Cell 161:1566–1575PubMed Bergmann O, Zdunek S, Felker A, Salehpour M, Alkass K, Bernard S, Sjostrom SL, Szewczykowska M, Jackowska T, Dos Remedios C, Malm T, Andra M, Jashari R, Nyengaard JR, Possnert G, Jovinge S, Druid H, Frisen J (2015) Dynamics of cell generation and turnover in the human heart. Cell 161:1566–1575PubMed
13.
Zurück zum Zitat Haubner BJ, Schneider J, Schweigmann U, Schuetz T, Dichtl W, Velik-Salchner C, Stein JI, Penninger JM (2016) Functional recovery of a human neonatal heart after severe myocardial infarction. Circ Res 118:216–221PubMed Haubner BJ, Schneider J, Schweigmann U, Schuetz T, Dichtl W, Velik-Salchner C, Stein JI, Penninger JM (2016) Functional recovery of a human neonatal heart after severe myocardial infarction. Circ Res 118:216–221PubMed
14.
Zurück zum Zitat Oberpriller JO, Oberpriller JC (1974) Response of the adult newt ventricle to injury. J Exp Zool 187:249–253PubMed Oberpriller JO, Oberpriller JC (1974) Response of the adult newt ventricle to injury. J Exp Zool 187:249–253PubMed
15.
Zurück zum Zitat Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298:2188–2190PubMed Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298:2188–2190PubMed
16.
Zurück zum Zitat Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, Evans T, Macrae CA, Stainier DY, Poss KD (2010) Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464:601–605PubMedPubMedCentral Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, Evans T, Macrae CA, Stainier DY, Poss KD (2010) Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464:601–605PubMedPubMedCentral
17.
Zurück zum Zitat de Pater E, Clijsters L, Marques SR, Lin YF, Garavito-Aguilar ZV, Yelon D, Bakkers J (2009) Distinct phases of cardiomyocyte differentiation regulate growth of the zebrafish heart. Development 136:1633–1641PubMedPubMedCentral de Pater E, Clijsters L, Marques SR, Lin YF, Garavito-Aguilar ZV, Yelon D, Bakkers J (2009) Distinct phases of cardiomyocyte differentiation regulate growth of the zebrafish heart. Development 136:1633–1641PubMedPubMedCentral
19.
Zurück zum Zitat Gonzalez-Rosa JM, Sharpe M, Field D, Soonpaa MH, Field LJ, Burns CE, Burns CG (2018) Myocardial polyploidization creates a barrier to heart regeneration in zebrafish. Dev Cell 44(433–446):e437 Gonzalez-Rosa JM, Sharpe M, Field D, Soonpaa MH, Field LJ, Burns CE, Burns CG (2018) Myocardial polyploidization creates a barrier to heart regeneration in zebrafish. Dev Cell 44(433–446):e437
20.
Zurück zum Zitat Gunthel M, Barnett P, Christoffels VM (2018) Development, proliferation, and growth of the mammalian heart. Mol Ther 26:1599–1609PubMedPubMedCentral Gunthel M, Barnett P, Christoffels VM (2018) Development, proliferation, and growth of the mammalian heart. Mol Ther 26:1599–1609PubMedPubMedCentral
21.
Zurück zum Zitat Lavine KJ, Epelman S, Uchida K, Weber KJ, Nichols CG, Schilling JD, Ornitz DM, Randolph GJ, Mann DL (2014) Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc Natl Acad Sci USA 111:16029–16034PubMed Lavine KJ, Epelman S, Uchida K, Weber KJ, Nichols CG, Schilling JD, Ornitz DM, Randolph GJ, Mann DL (2014) Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc Natl Acad Sci USA 111:16029–16034PubMed
22.
Zurück zum Zitat Patterson M, Barske L, Van Handel B, Rau CD, Gan P, Sharma A, Parikh S, Denholtz M, Huang Y, Yamaguchi Y, Shen H, Allayee H, Crump JG, Force TI, Lien CL, Makita T, Lusis AJ, Kumar SR, Sucov HM (2017) Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat Genet 49:1346–1353PubMedPubMedCentral Patterson M, Barske L, Van Handel B, Rau CD, Gan P, Sharma A, Parikh S, Denholtz M, Huang Y, Yamaguchi Y, Shen H, Allayee H, Crump JG, Force TI, Lien CL, Makita T, Lusis AJ, Kumar SR, Sucov HM (2017) Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat Genet 49:1346–1353PubMedPubMedCentral
23.
Zurück zum Zitat Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu JD, Srivastava D (2012) In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485:593–598PubMedPubMedCentral Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu JD, Srivastava D (2012) In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485:593–598PubMedPubMedCentral
24.
Zurück zum Zitat Yahalom-Ronen Y, Rajchman D, Sarig R, Geiger B, Tzahor E (2015) Reduced matrix rigidity promotes neonatal cardiomyocyte dedifferentiation, proliferation and clonal expansion. Elife 4:e07455PubMedCentral Yahalom-Ronen Y, Rajchman D, Sarig R, Geiger B, Tzahor E (2015) Reduced matrix rigidity promotes neonatal cardiomyocyte dedifferentiation, proliferation and clonal expansion. Elife 4:e07455PubMedCentral
25.
Zurück zum Zitat Li Y, Asfour H, Bursac N (2017) Age-dependent functional crosstalk between cardiac fibroblasts and cardiomyocytes in a 3D engineered cardiac tissue. Acta Biomater 55:120–130PubMedPubMedCentral Li Y, Asfour H, Bursac N (2017) Age-dependent functional crosstalk between cardiac fibroblasts and cardiomyocytes in a 3D engineered cardiac tissue. Acta Biomater 55:120–130PubMedPubMedCentral
26.
Zurück zum Zitat Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, Sadek HA, Olson EN (2014) Macrophages are required for neonatal heart regeneration. J Clin Invest 124:1382–1392PubMedPubMedCentral Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, Sadek HA, Olson EN (2014) Macrophages are required for neonatal heart regeneration. J Clin Invest 124:1382–1392PubMedPubMedCentral
27.
Zurück zum Zitat Puente BN, Kimura W, Muralidhar SA, Moon J, Amatruda JF, Phelps KL, Grinsfelder D, Rothermel BA, Chen R, Garcia JA, Santos CX, Thet S, Mori E, Kinter MT, Rindler PM, Zacchigna S, Mukherjee S, Chen DJ, Mahmoud AI, Giacca M, Rabinovitch PS, Aroumougame A, Shah AM, Szweda LI, Sadek HA (2014) The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 157:565–579PubMedPubMedCentral Puente BN, Kimura W, Muralidhar SA, Moon J, Amatruda JF, Phelps KL, Grinsfelder D, Rothermel BA, Chen R, Garcia JA, Santos CX, Thet S, Mori E, Kinter MT, Rindler PM, Zacchigna S, Mukherjee S, Chen DJ, Mahmoud AI, Giacca M, Rabinovitch PS, Aroumougame A, Shah AM, Szweda LI, Sadek HA (2014) The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 157:565–579PubMedPubMedCentral
28.
Zurück zum Zitat Nakada Y, Canseco DC, Thet S, Abdisalaam S, Asaithamby A, Santos CX, Shah AM, Zhang H, Faber JE, Kinter MT, Szweda LI, Xing C, Hu Z, Deberardinis RJ, Schiattarella G, Hill JA, Oz O, Lu Z, Zhang CC, Kimura W, Sadek HA (2017) Hypoxia induces heart regeneration in adult mice. Nature 541:222–227PubMed Nakada Y, Canseco DC, Thet S, Abdisalaam S, Asaithamby A, Santos CX, Shah AM, Zhang H, Faber JE, Kinter MT, Szweda LI, Xing C, Hu Z, Deberardinis RJ, Schiattarella G, Hill JA, Oz O, Lu Z, Zhang CC, Kimura W, Sadek HA (2017) Hypoxia induces heart regeneration in adult mice. Nature 541:222–227PubMed
29.
Zurück zum Zitat Hirose K, Payumo AY, Cutie S, Hoang A, Zhang H, Guyot R, Lunn D, Bigley RB, Yu H, Wang J, Smith M, Gillett E, Muroy SE, Schmid T, Wilson E, Field KA, Reeder DM, Maden M, Yartsev MM, Wolfgang MJ, Grutzner F, Scanlan TS, Szweda LI, Buffenstein R, Hu G, Flamant F, Olgin JE, Huang GN (2019) Evidence for hormonal control of heart regenerative capacity during endothermy acquisition. Science 364:184–188PubMed Hirose K, Payumo AY, Cutie S, Hoang A, Zhang H, Guyot R, Lunn D, Bigley RB, Yu H, Wang J, Smith M, Gillett E, Muroy SE, Schmid T, Wilson E, Field KA, Reeder DM, Maden M, Yartsev MM, Wolfgang MJ, Grutzner F, Scanlan TS, Szweda LI, Buffenstein R, Hu G, Flamant F, Olgin JE, Huang GN (2019) Evidence for hormonal control of heart regenerative capacity during endothermy acquisition. Science 364:184–188PubMed
30.
Zurück zum Zitat Camacho P, Fan H, Liu Z, He JQ (2016) Large mammalian animal models of heart disease. J Cardiovasc Dev Dis 3(4):30PubMedCentral Camacho P, Fan H, Liu Z, He JQ (2016) Large mammalian animal models of heart disease. J Cardiovasc Dev Dis 3(4):30PubMedCentral
31.
Zurück zum Zitat Ye L, D'Agostino G, Loo SJ, Wang CX, Su LP, Tan SH, Tee GZ, Pua CJ, Pena EM, Cheng RB, Chen WC, Abdurrachim D, Lalic J, Tan RS, Lee TH, Zhang J, Cook SA (2018) Early regenerative capacity in the porcine heart. Circulation 138:2798–2808PubMed Ye L, D'Agostino G, Loo SJ, Wang CX, Su LP, Tan SH, Tee GZ, Pua CJ, Pena EM, Cheng RB, Chen WC, Abdurrachim D, Lalic J, Tan RS, Lee TH, Zhang J, Cook SA (2018) Early regenerative capacity in the porcine heart. Circulation 138:2798–2808PubMed
32.
Zurück zum Zitat Zhu W, Zhang E, Zhao M, Chong Z, Fan C, Tang Y, Hunter JD, Borovjagin AV, Walcott GP, Chen JY, Qin G, Zhang J (2018) Regenerative potential of neonatal porcine hearts. Circulation 138:2809–2816PubMed Zhu W, Zhang E, Zhao M, Chong Z, Fan C, Tang Y, Hunter JD, Borovjagin AV, Walcott GP, Chen JY, Qin G, Zhang J (2018) Regenerative potential of neonatal porcine hearts. Circulation 138:2809–2816PubMed
33.
Zurück zum Zitat Nagy A, Gertsenstein M, Vintersten K, Behringer R (2003) Manipulating the mouse embryo: a laboratory manual. Firefly Books, Richmond Hill Nagy A, Gertsenstein M, Vintersten K, Behringer R (2003) Manipulating the mouse embryo: a laboratory manual. Firefly Books, Richmond Hill
34.
Zurück zum Zitat de Magalhaes JP, Costa J (2009) A database of vertebrate longevity records and their relation to other life-history traits. J Evol Biol 22:1770–1774PubMed de Magalhaes JP, Costa J (2009) A database of vertebrate longevity records and their relation to other life-history traits. J Evol Biol 22:1770–1774PubMed
35.
Zurück zum Zitat Cutler RG (1979) Evolution of human longevity: a critical overview. Mech Ageing Dev 9:337–354PubMed Cutler RG (1979) Evolution of human longevity: a critical overview. Mech Ageing Dev 9:337–354PubMed
36.
Zurück zum Zitat Finn CA (1963) Reproductive capacity and litter size in mice: effect of age and environment. J Reprod Fertil 6:205–214PubMed Finn CA (1963) Reproductive capacity and litter size in mice: effect of age and environment. J Reprod Fertil 6:205–214PubMed
37.
Zurück zum Zitat Chen P, Baas TJ, Mabry JW, Koehler KJ, Dekkers JC (2003) Genetic parameters and trends for litter traits in U.S. Yorkshire, Duroc, Hampshire, and Landrace pigs. J Anim Sci 81:46–53PubMed Chen P, Baas TJ, Mabry JW, Koehler KJ, Dekkers JC (2003) Genetic parameters and trends for litter traits in U.S. Yorkshire, Duroc, Hampshire, and Landrace pigs. J Anim Sci 81:46–53PubMed
38.
Zurück zum Zitat Okkens AC, Hekerman TW, de Vogel JW, van Haaften B (1993) Influence of litter size and breed on variation in length of gestation in the dog. Vet Q 15:160–161PubMed Okkens AC, Hekerman TW, de Vogel JW, van Haaften B (1993) Influence of litter size and breed on variation in length of gestation in the dog. Vet Q 15:160–161PubMed
39.
Zurück zum Zitat Janssens S, Vandepitte W, Bodin L (2004) Genetic parameters for litter size in sheep: natural versus hormone-induced oestrus. Genet Sel Evol 36:543–562PubMedPubMedCentral Janssens S, Vandepitte W, Bodin L (2004) Genetic parameters for litter size in sheep: natural versus hormone-induced oestrus. Genet Sel Evol 36:543–562PubMedPubMedCentral
40.
Zurück zum Zitat Silva del Rio N, Stewart S, Rapnicki P, Chang YM, Fricke PM (2007) An observational analysis of twin births, calf sex ratio, and calf mortality in Holstein dairy cattle. J Dairy Sci 90:1255–1264PubMed Silva del Rio N, Stewart S, Rapnicki P, Chang YM, Fricke PM (2007) An observational analysis of twin births, calf sex ratio, and calf mortality in Holstein dairy cattle. J Dairy Sci 90:1255–1264PubMed
41.
Zurück zum Zitat Poore KR, Fowden AL (2004) The effects of birth weight and postnatal growth patterns on fat depth and plasma leptin concentrations in juvenile and adult pigs. J Physiol 558:295–304PubMedPubMedCentral Poore KR, Fowden AL (2004) The effects of birth weight and postnatal growth patterns on fat depth and plasma leptin concentrations in juvenile and adult pigs. J Physiol 558:295–304PubMedPubMedCentral
42.
Zurück zum Zitat Sibly RM, Brown JH (2009) Mammal reproductive strategies driven by offspring mortality-size relationships. Am Nat 173:E185–199PubMedPubMedCentral Sibly RM, Brown JH (2009) Mammal reproductive strategies driven by offspring mortality-size relationships. Am Nat 173:E185–199PubMedPubMedCentral
43.
Zurück zum Zitat Li F, Wang X, Capasso JM, Gerdes AM (1996) Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 28:1737–1746PubMed Li F, Wang X, Capasso JM, Gerdes AM (1996) Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 28:1737–1746PubMed
44.
Zurück zum Zitat Beinlich CJ, Rissinger CJ, Morgan HE (1995) Mechanisms of rapid growth in the neonatal pig heart. J Mol Cell Cardiol 27:273–281PubMed Beinlich CJ, Rissinger CJ, Morgan HE (1995) Mechanisms of rapid growth in the neonatal pig heart. J Mol Cell Cardiol 27:273–281PubMed
45.
Zurück zum Zitat Peterson CJ, Whitman V, Watson PA, Schuler HG, Morgan HE (1989) Mechanisms of differential growth of heart ventricles in newborn pigs. Circ Res 64:360–369PubMed Peterson CJ, Whitman V, Watson PA, Schuler HG, Morgan HE (1989) Mechanisms of differential growth of heart ventricles in newborn pigs. Circ Res 64:360–369PubMed
46.
Zurück zum Zitat Grabner W, Pfitzer P (1974) Number of nuclei in isolated myocardial cells of pigs. Virchows Arch B Cell Pathol 15:279–294PubMed Grabner W, Pfitzer P (1974) Number of nuclei in isolated myocardial cells of pigs. Virchows Arch B Cell Pathol 15:279–294PubMed
47.
48.
Zurück zum Zitat Bishop SP, Hine P (1975) Cardiac muscle cytoplasmic and nuclear development during canine neonatal growth. Recent Adv Stud Cardiac Struct Metab 8:77–98PubMed Bishop SP, Hine P (1975) Cardiac muscle cytoplasmic and nuclear development during canine neonatal growth. Recent Adv Stud Cardiac Struct Metab 8:77–98PubMed
49.
Zurück zum Zitat Munnell JF, Getty R (1968) Rate of accumulation of cardiac lipofuscin in the aging canine. J Gerontol 23:154–158PubMed Munnell JF, Getty R (1968) Rate of accumulation of cardiac lipofuscin in the aging canine. J Gerontol 23:154–158PubMed
50.
Zurück zum Zitat Thornburg K, Jonker S, O'Tierney P, Chattergoon N, Louey S, Faber J, Giraud G (2011) Regulation of the cardiomyocyte population in the developing heart. Prog Biophys Mol Biol 106:289–299PubMed Thornburg K, Jonker S, O'Tierney P, Chattergoon N, Louey S, Faber J, Giraud G (2011) Regulation of the cardiomyocyte population in the developing heart. Prog Biophys Mol Biol 106:289–299PubMed
51.
Zurück zum Zitat Jonker SS, Louey S, Giraud GD, Thornburg KL, Faber JJ (2015) Timing of cardiomyocyte growth, maturation, and attrition in perinatal sheep. FASEB J 29:4346–4357PubMedPubMedCentral Jonker SS, Louey S, Giraud GD, Thornburg KL, Faber JJ (2015) Timing of cardiomyocyte growth, maturation, and attrition in perinatal sheep. FASEB J 29:4346–4357PubMedPubMedCentral
52.
Zurück zum Zitat Burrell JH, Boyn AM, Kumarasamy V, Hsieh A, Head SI, Lumbers ER (2003) Growth and maturation of cardiac myocytes in fetal sheep in the second half of gestation. Anat Rec A Discov Mol Cell Evol Biol 274:952–961PubMed Burrell JH, Boyn AM, Kumarasamy V, Hsieh A, Head SI, Lumbers ER (2003) Growth and maturation of cardiac myocytes in fetal sheep in the second half of gestation. Anat Rec A Discov Mol Cell Evol Biol 274:952–961PubMed
53.
Zurück zum Zitat Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ (1996) Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol 271:H2183–2189PubMed Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ (1996) Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol 271:H2183–2189PubMed
54.
Zurück zum Zitat Soonpaa MH, Zebrowski DC, Platt C, Rosenzweig A, Engel FB, Field LJ (2015) Cardiomyocyte cell-cycle activity during preadolescence. Cell 163:781–782PubMed Soonpaa MH, Zebrowski DC, Platt C, Rosenzweig A, Engel FB, Field LJ (2015) Cardiomyocyte cell-cycle activity during preadolescence. Cell 163:781–782PubMed
55.
Zurück zum Zitat Adler CP, Friedburg H, Herget GW, Neuburger M, Schwalb H (1996) Variability of cardiomyocyte DNA content, ploidy level and nuclear number in mammalian hearts. Virchows Arch 429:159–164PubMed Adler CP, Friedburg H, Herget GW, Neuburger M, Schwalb H (1996) Variability of cardiomyocyte DNA content, ploidy level and nuclear number in mammalian hearts. Virchows Arch 429:159–164PubMed
56.
Zurück zum Zitat Chen X, Wilson RM, Kubo H, Berretta RM, Harris DM, Zhang X, Jaleel N, MacDonnell SM, Bearzi C, Tillmanns J, Trofimova I, Hosoda T, Mosna F, Cribbs L, Leri A, Kajstura J, Anversa P, Houser SR (2007) Adolescent feline heart contains a population of small, proliferative ventricular myocytes with immature physiological properties. Circ Res 100:536–544PubMed Chen X, Wilson RM, Kubo H, Berretta RM, Harris DM, Zhang X, Jaleel N, MacDonnell SM, Bearzi C, Tillmanns J, Trofimova I, Hosoda T, Mosna F, Cribbs L, Leri A, Kajstura J, Anversa P, Houser SR (2007) Adolescent feline heart contains a population of small, proliferative ventricular myocytes with immature physiological properties. Circ Res 100:536–544PubMed
57.
Zurück zum Zitat Kim MY, Eiby YA, Lumbers ER, Wright LL, Gibson KJ, Barnett AC, Lingwood BE (2014) Effects of glucocorticoid exposure on growth and structural maturation of the heart of the preterm piglet. PLoS ONE 9:e93407PubMedPubMedCentral Kim MY, Eiby YA, Lumbers ER, Wright LL, Gibson KJ, Barnett AC, Lingwood BE (2014) Effects of glucocorticoid exposure on growth and structural maturation of the heart of the preterm piglet. PLoS ONE 9:e93407PubMedPubMedCentral
58.
Zurück zum Zitat Pfitzer P (1971) Polyploid nuclei in myocardial cells of the pig. Virchows Arch B Cell Pathol 9:180–186PubMed Pfitzer P (1971) Polyploid nuclei in myocardial cells of the pig. Virchows Arch B Cell Pathol 9:180–186PubMed
59.
Zurück zum Zitat Bensley JG, De Matteo R, Harding R, Black MJ (2016) Three-dimensional direct measurement of cardiomyocyte volume, nuclearity, and ploidy in thick histological sections. Sci Rep 6:23756PubMedPubMedCentral Bensley JG, De Matteo R, Harding R, Black MJ (2016) Three-dimensional direct measurement of cardiomyocyte volume, nuclearity, and ploidy in thick histological sections. Sci Rep 6:23756PubMedPubMedCentral
60.
Zurück zum Zitat Pfitzer P (1972) Polyploid nuclei in myocardial cells of monkeys. Virchows Arch B Cell Pathol 10:268–274PubMed Pfitzer P (1972) Polyploid nuclei in myocardial cells of monkeys. Virchows Arch B Cell Pathol 10:268–274PubMed
61.
Zurück zum Zitat Olivetti G, Cigola E, Maestri R, Corradi D, Lagrasta C, Gambert SR, Anversa P (1996) Aging, cardiac hypertrophy and ischemic cardiomyopathy do not affect the proportion of mononucleated and multinucleated myocytes in the human heart. J Mol Cell Cardiol 28:1463–1477PubMed Olivetti G, Cigola E, Maestri R, Corradi D, Lagrasta C, Gambert SR, Anversa P (1996) Aging, cardiac hypertrophy and ischemic cardiomyopathy do not affect the proportion of mononucleated and multinucleated myocytes in the human heart. J Mol Cell Cardiol 28:1463–1477PubMed
62.
Zurück zum Zitat Ascuitto RJ, Ross-Ascuitto NT (1996) Substrate metabolism in the developing heart. Semin Perinatol 20:542–563PubMed Ascuitto RJ, Ross-Ascuitto NT (1996) Substrate metabolism in the developing heart. Semin Perinatol 20:542–563PubMed
63.
Zurück zum Zitat Doenst T, Nguyen TD, Abel ED (2013) Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res 113:709–724PubMedPubMedCentral Doenst T, Nguyen TD, Abel ED (2013) Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res 113:709–724PubMedPubMedCentral
64.
Zurück zum Zitat Makinde AO, Kantor PF, Lopaschuk GD (1998) Maturation of fatty acid and carbohydrate metabolism in the newborn heart. Mol Cell Biochem 188:49–56PubMed Makinde AO, Kantor PF, Lopaschuk GD (1998) Maturation of fatty acid and carbohydrate metabolism in the newborn heart. Mol Cell Biochem 188:49–56PubMed
65.
Zurück zum Zitat Werner JC, Whitman V, Fripp RR, Schuler HG, Morgan HE (1981) Carbohydrate metabolism in isolated, working newborn pig heart. Am J Physiol 241:E364–371PubMed Werner JC, Whitman V, Fripp RR, Schuler HG, Morgan HE (1981) Carbohydrate metabolism in isolated, working newborn pig heart. Am J Physiol 241:E364–371PubMed
66.
Zurück zum Zitat Werner JC, Whitman V, Vary TC, Fripp RR, Musselman J, Schuler HG (1983) Fatty acid and glucose utilization in isolated, working newborn pig hearts. Am J Physiol 244:E19–23PubMed Werner JC, Whitman V, Vary TC, Fripp RR, Musselman J, Schuler HG (1983) Fatty acid and glucose utilization in isolated, working newborn pig hearts. Am J Physiol 244:E19–23PubMed
67.
Zurück zum Zitat Werner JC, Sicard RE, Schuler HG (1989) Palmitate oxidation by isolated working fetal and newborn pig hearts. Am J Physiol 256:E315–321PubMed Werner JC, Sicard RE, Schuler HG (1989) Palmitate oxidation by isolated working fetal and newborn pig hearts. Am J Physiol 256:E315–321PubMed
68.
Zurück zum Zitat Ascuitto RJ, Ross-Ascuitto NT, Chen V, Downing SE (1989) Ventricular function and fatty acid metabolism in neonatal piglet heart. Am J Physiol 256:H9–15PubMed Ascuitto RJ, Ross-Ascuitto NT, Chen V, Downing SE (1989) Ventricular function and fatty acid metabolism in neonatal piglet heart. Am J Physiol 256:H9–15PubMed
69.
Zurück zum Zitat Breuer E, Barta E, Pappova E, Zlatos L (1967) Developmental changes of myocardial metabolism. I. Peculiarities of cardiac carbohydrate metabolism in early postnatal period in dogs. Biologia Neonatorum 11:367–370 Breuer E, Barta E, Pappova E, Zlatos L (1967) Developmental changes of myocardial metabolism. I. Peculiarities of cardiac carbohydrate metabolism in early postnatal period in dogs. Biologia Neonatorum 11:367–370
70.
Zurück zum Zitat Fisher DJ, Heymann MA, Rudolph AM (1980) Myocardial oxygen and carbohydrate consumption in fetal lambs in utero and in adult sheep. Am J Physiol 238:H399–405PubMed Fisher DJ, Heymann MA, Rudolph AM (1980) Myocardial oxygen and carbohydrate consumption in fetal lambs in utero and in adult sheep. Am J Physiol 238:H399–405PubMed
71.
Zurück zum Zitat Yin Z, Ren J, Guo W (2015) Sarcomeric protein isoform transitions in cardiac muscle: a journey to heart failure. Biochim Biophys Acta 1852:47–52PubMed Yin Z, Ren J, Guo W (2015) Sarcomeric protein isoform transitions in cardiac muscle: a journey to heart failure. Biochim Biophys Acta 1852:47–52PubMed
72.
Zurück zum Zitat Saggin L, Gorza L, Ausoni S, Schiaffino S (1989) Troponin I switching in the developing heart. J Biol Chem 264:16299–16302PubMed Saggin L, Gorza L, Ausoni S, Schiaffino S (1989) Troponin I switching in the developing heart. J Biol Chem 264:16299–16302PubMed
73.
Zurück zum Zitat Posterino GS, Dunn SL, Botting KJ, Wang W, Gentili S (1985) Morrison JL (2011) Changes in cardiac troponins with gestational age explain changes in cardiac muscle contractility in the sheep fetus. J Appl Physiol 111:236–243 Posterino GS, Dunn SL, Botting KJ, Wang W, Gentili S (1985) Morrison JL (2011) Changes in cardiac troponins with gestational age explain changes in cardiac muscle contractility in the sheep fetus. J Appl Physiol 111:236–243
74.
Zurück zum Zitat Locher MR, Razumova MV, Stelzer JE, Norman HS, Moss RL (2011) Effects of low-level α-myosin heavy chain expression on contractile kinetics in porcine myocardium. Am J Physiol Heart Circ Physiol 300:H869–878PubMedPubMedCentral Locher MR, Razumova MV, Stelzer JE, Norman HS, Moss RL (2011) Effects of low-level α-myosin heavy chain expression on contractile kinetics in porcine myocardium. Am J Physiol Heart Circ Physiol 300:H869–878PubMedPubMedCentral
75.
Zurück zum Zitat Castro-Ferreira R, Fontes-Carvalho R, Falcao-Pires I, Leite-Moreira AF (2011) The role of titin in the modulation of cardiac function and its pathophysiological implications. Arq Bras Cardiol 96:332–339PubMed Castro-Ferreira R, Fontes-Carvalho R, Falcao-Pires I, Leite-Moreira AF (2011) The role of titin in the modulation of cardiac function and its pathophysiological implications. Arq Bras Cardiol 96:332–339PubMed
76.
Zurück zum Zitat Warren CM, Krzesinski PR, Campbell KS, Moss RL, Greaser ML (2004) Titin isoform changes in rat myocardium during development. Mech Dev 121:1301–1312PubMed Warren CM, Krzesinski PR, Campbell KS, Moss RL, Greaser ML (2004) Titin isoform changes in rat myocardium during development. Mech Dev 121:1301–1312PubMed
77.
Zurück zum Zitat Opitz CA, Leake MC, Makarenko I, Benes V, Linke WA (2004) Developmentally regulated switching of titin size alters myofibrillar stiffness in the perinatal heart. Circ Res 94:967–975PubMed Opitz CA, Leake MC, Makarenko I, Benes V, Linke WA (2004) Developmentally regulated switching of titin size alters myofibrillar stiffness in the perinatal heart. Circ Res 94:967–975PubMed
78.
Zurück zum Zitat Bassat E, Mutlak YE, Genzelinakh A, Shadrin IY, Baruch Umansky K, Yifa O, Kain D, Rajchman D, Leach J, Riabov Bassat D, Udi Y, Sarig R, Sagi I, Martin JF, Bursac N, Cohen S, Tzahor E (2017) The extracellular matrix protein agrin promotes heart regeneration in mice. Nature 547:179–184PubMedPubMedCentral Bassat E, Mutlak YE, Genzelinakh A, Shadrin IY, Baruch Umansky K, Yifa O, Kain D, Rajchman D, Leach J, Riabov Bassat D, Udi Y, Sarig R, Sagi I, Martin JF, Bursac N, Cohen S, Tzahor E (2017) The extracellular matrix protein agrin promotes heart regeneration in mice. Nature 547:179–184PubMedPubMedCentral
79.
Zurück zum Zitat Chen WC, Wang Z, Missinato MA, Park DW, Long DW, Liu HJ, Zeng X, Yates NA, Kim K, Wang Y (2016) Decellularized zebrafish cardiac extracellular matrix induces mammalian heart regeneration. Sci Adv 2:e1600844PubMedPubMedCentral Chen WC, Wang Z, Missinato MA, Park DW, Long DW, Liu HJ, Zeng X, Yates NA, Kim K, Wang Y (2016) Decellularized zebrafish cardiac extracellular matrix induces mammalian heart regeneration. Sci Adv 2:e1600844PubMedPubMedCentral
80.
Zurück zum Zitat Lewis AM, Mathieu-Costello O, McMillan PJ, Gilbert RD (1999) Effects of long-term, high-altitude hypoxia on the capillarity of the ovine fetal heart. Am J Physiol 277:H756–762PubMed Lewis AM, Mathieu-Costello O, McMillan PJ, Gilbert RD (1999) Effects of long-term, high-altitude hypoxia on the capillarity of the ovine fetal heart. Am J Physiol 277:H756–762PubMed
81.
Zurück zum Zitat Li M, Iismaa SE, Naqvi N, Nicks A, Husain A, Graham RM (2014) Thyroid hormone action in postnatal heart development. Stem Cell Res 13:582–591PubMed Li M, Iismaa SE, Naqvi N, Nicks A, Husain A, Graham RM (2014) Thyroid hormone action in postnatal heart development. Stem Cell Res 13:582–591PubMed
82.
Zurück zum Zitat Fisher DA, Klein AH (1981) Thyroid development and disorders of thyroid function in the newborn. N Engl J Med 304:702–712PubMed Fisher DA, Klein AH (1981) Thyroid development and disorders of thyroid function in the newborn. N Engl J Med 304:702–712PubMed
83.
Zurück zum Zitat Chattergoon NN, Louey S, Stork P, Giraud GD, Thornburg KL (2012) Mid-gestation ovine cardiomyocytes are vulnerable to mitotic suppression by thyroid hormone. Reprod Sci 19:642–649PubMedPubMedCentral Chattergoon NN, Louey S, Stork P, Giraud GD, Thornburg KL (2012) Mid-gestation ovine cardiomyocytes are vulnerable to mitotic suppression by thyroid hormone. Reprod Sci 19:642–649PubMedPubMedCentral
84.
Zurück zum Zitat Karra R, Poss KD (2017) Redirecting cardiac growth mechanisms for therapeutic regeneration. J Clin Invest 127:427–436PubMedPubMedCentral Karra R, Poss KD (2017) Redirecting cardiac growth mechanisms for therapeutic regeneration. J Clin Invest 127:427–436PubMedPubMedCentral
85.
Zurück zum Zitat Garbern JC, Mummery CL, Lee RT (2013) Model systems for cardiovascular regenerative biology. Cold Spring Harb Perspect Med 3:a014019PubMedPubMedCentral Garbern JC, Mummery CL, Lee RT (2013) Model systems for cardiovascular regenerative biology. Cold Spring Harb Perspect Med 3:a014019PubMedPubMedCentral
86.
Zurück zum Zitat Best KE, Rankin J (2016) Long-term survival of individuals born with congenital heart disease: a systematic review and meta-analysis. J Am Heart Assoc 5:e002846PubMedPubMedCentral Best KE, Rankin J (2016) Long-term survival of individuals born with congenital heart disease: a systematic review and meta-analysis. J Am Heart Assoc 5:e002846PubMedPubMedCentral
87.
Zurück zum Zitat Triedman JK, Newburger JW (2016) Trends in congenital heart disease: the next decade. Circulation 133:2716–2733PubMed Triedman JK, Newburger JW (2016) Trends in congenital heart disease: the next decade. Circulation 133:2716–2733PubMed
88.
Zurück zum Zitat Egbe AC, Mittnacht AJ, Nguyen K, Joashi U (2014) Risk factors for morbidity in infants undergoing tetralogy of fallot repair. Ann Pediatr Cardiol 7:13–18PubMedPubMedCentral Egbe AC, Mittnacht AJ, Nguyen K, Joashi U (2014) Risk factors for morbidity in infants undergoing tetralogy of fallot repair. Ann Pediatr Cardiol 7:13–18PubMedPubMedCentral
89.
90.
Zurück zum Zitat Huttenbach Y, Ostrowski ML, Thaller D, Kim HS (2001) Cell proliferation in the growing human heart: MIB-1 immunostaining in preterm and term infants at autopsy. Cardiovasc Pathol 10:119–123PubMed Huttenbach Y, Ostrowski ML, Thaller D, Kim HS (2001) Cell proliferation in the growing human heart: MIB-1 immunostaining in preterm and term infants at autopsy. Cardiovasc Pathol 10:119–123PubMed
91.
Zurück zum Zitat Amir G, Ma X, Reddy VM, Hanley FL, Reinhartz O, Ramamoorthy C, Riemer RK (2008) Dynamics of human myocardial progenitor cell populations in the neonatal period. Ann Thorac Surg 86:1311–1319PubMed Amir G, Ma X, Reddy VM, Hanley FL, Reinhartz O, Ramamoorthy C, Riemer RK (2008) Dynamics of human myocardial progenitor cell populations in the neonatal period. Ann Thorac Surg 86:1311–1319PubMed
92.
Zurück zum Zitat Silva TF, Souza GK, Simoes MA, Pabis FC, Noronha L (2012) Immunohistochemical expression of cell differentiation and growth in neonate cardiomyocytes. Arq Bras Cardiol 99:797–801PubMed Silva TF, Souza GK, Simoes MA, Pabis FC, Noronha L (2012) Immunohistochemical expression of cell differentiation and growth in neonate cardiomyocytes. Arq Bras Cardiol 99:797–801PubMed
93.
Zurück zum Zitat Ye L, Qiu L, Zhang H, Chen H, Jiang C, Hong H, Liu J (2016) Cardiomyocytes in young infants with congenital heart disease: a three-month window of proliferation. Sci Rep 6:23188PubMedPubMedCentral Ye L, Qiu L, Zhang H, Chen H, Jiang C, Hong H, Liu J (2016) Cardiomyocytes in young infants with congenital heart disease: a three-month window of proliferation. Sci Rep 6:23188PubMedPubMedCentral
94.
Zurück zum Zitat Schmid G, Pfitzer P (1985) Mitoses and binucleated cells in perinatal human hearts. Virchows Arch B Cell Pathol Incl Mol Pathol 48:59–67PubMed Schmid G, Pfitzer P (1985) Mitoses and binucleated cells in perinatal human hearts. Virchows Arch B Cell Pathol Incl Mol Pathol 48:59–67PubMed
95.
Zurück zum Zitat Botting KJ, Wang KC, Padhee M, McMillen IC, Summers-Pearce B, Rattanatray L, Cutri N, Posterino GS, Brooks DA, Morrison JL (2012) Early origins of heart disease: low birth weight and determinants of cardiomyocyte endowment. Clin Exp Pharmacol Physiol 39:814–823PubMed Botting KJ, Wang KC, Padhee M, McMillen IC, Summers-Pearce B, Rattanatray L, Cutri N, Posterino GS, Brooks DA, Morrison JL (2012) Early origins of heart disease: low birth weight and determinants of cardiomyocyte endowment. Clin Exp Pharmacol Physiol 39:814–823PubMed
96.
Zurück zum Zitat Eisenstein R, Wied GL (1970) Myocardial DNA and protein in maturing and hypertrophied human hearts. Proc Soc Exp Biol Med 133:176–179PubMed Eisenstein R, Wied GL (1970) Myocardial DNA and protein in maturing and hypertrophied human hearts. Proc Soc Exp Biol Med 133:176–179PubMed
97.
Zurück zum Zitat Brodsky V, Sarkisov DS, Arefyeva AM, Panova NW, Gvasava IG (1994) Polyploidy in cardiac myocytes of normal and hypertrophic human hearts; range of values. Virchows Arch 424:429–435PubMed Brodsky V, Sarkisov DS, Arefyeva AM, Panova NW, Gvasava IG (1994) Polyploidy in cardiac myocytes of normal and hypertrophic human hearts; range of values. Virchows Arch 424:429–435PubMed
98.
Zurück zum Zitat Herget GW, Neuburger M, Plagwitz R, Adler CP (1997) DNA content, ploidy level and number of nuclei in the human heart after myocardial infarction. Cardiovasc Res 36:45–51PubMed Herget GW, Neuburger M, Plagwitz R, Adler CP (1997) DNA content, ploidy level and number of nuclei in the human heart after myocardial infarction. Cardiovasc Res 36:45–51PubMed
99.
Zurück zum Zitat Iruretagoyena JI, Davis W, Bird C, Olsen J, Radue R, Teo Broman A, Kendziorski C, Splinter BonDurant S, Golos T, Bird I, Shah D (2014) Metabolic gene profile in early human fetal heart development. Mol Hum Reprod 20:690–700PubMed Iruretagoyena JI, Davis W, Bird C, Olsen J, Radue R, Teo Broman A, Kendziorski C, Splinter BonDurant S, Golos T, Bird I, Shah D (2014) Metabolic gene profile in early human fetal heart development. Mol Hum Reprod 20:690–700PubMed
100.
Zurück zum Zitat Nakano H, Minami I, Braas D, Pappoe H, Wu X, Sagadevan A, Vergnes L, Fu K, Morselli M, Dunham C, Ding X, Stieg AZ, Gimzewski JK, Pellegrini M, Clark PM, Reue K, Lusis AJ, Ribalet B, Kurdistani SK, Christofk H, Nakatsuji N, Nakano A (2017) Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis. Elife 6:e29330PubMedPubMedCentral Nakano H, Minami I, Braas D, Pappoe H, Wu X, Sagadevan A, Vergnes L, Fu K, Morselli M, Dunham C, Ding X, Stieg AZ, Gimzewski JK, Pellegrini M, Clark PM, Reue K, Lusis AJ, Ribalet B, Kurdistani SK, Christofk H, Nakatsuji N, Nakano A (2017) Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis. Elife 6:e29330PubMedPubMedCentral
101.
Zurück zum Zitat Anderson PA, Malouf NN, Oakeley AE, Pagani ED, Allen PD (1991) Troponin T isoform expression in humans. A comparison among normal and failing adult heart, fetal heart, and adult and fetal skeletal muscle. Circ Res 69:1226–1233PubMed Anderson PA, Malouf NN, Oakeley AE, Pagani ED, Allen PD (1991) Troponin T isoform expression in humans. A comparison among normal and failing adult heart, fetal heart, and adult and fetal skeletal muscle. Circ Res 69:1226–1233PubMed
102.
Zurück zum Zitat Swynghedauw B (1986) Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol Rev 66:710–771PubMed Swynghedauw B (1986) Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol Rev 66:710–771PubMed
103.
Zurück zum Zitat Wilkinson JM, Grand RJ (1978) Comparison of amino acid sequence of troponin I from different striated muscles. Nature 271:31–35PubMed Wilkinson JM, Grand RJ (1978) Comparison of amino acid sequence of troponin I from different striated muscles. Nature 271:31–35PubMed
104.
Zurück zum Zitat Sasse S, Brand NJ, Kyprianou P, Dhoot GK, Wade R, Arai M, Periasamy M, Yacoub MH, Barton PJ (1993) Troponin I gene expression during human cardiac development and in end-stage heart failure. Circ Res 72:932–938PubMed Sasse S, Brand NJ, Kyprianou P, Dhoot GK, Wade R, Arai M, Periasamy M, Yacoub MH, Barton PJ (1993) Troponin I gene expression during human cardiac development and in end-stage heart failure. Circ Res 72:932–938PubMed
105.
Zurück zum Zitat Reiser PJ, Portman MA, Ning XH, Schomisch Moravec C (2001) Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am J Physiol Heart Circ Physiol 280:H1814–1820PubMed Reiser PJ, Portman MA, Ning XH, Schomisch Moravec C (2001) Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am J Physiol Heart Circ Physiol 280:H1814–1820PubMed
106.
Zurück zum Zitat Ritter O, Luther HP, Haase H, Baltas LG, Baumann G, Schulte HD, Morano I (1999) Expression of atrial myosin light chains but not alpha-myosin heavy chains is correlated in vivo with increased ventricular function in patients with hypertrophic obstructive cardiomyopathy. J Mol Med (Berl) 77:677–685 Ritter O, Luther HP, Haase H, Baltas LG, Baumann G, Schulte HD, Morano I (1999) Expression of atrial myosin light chains but not alpha-myosin heavy chains is correlated in vivo with increased ventricular function in patients with hypertrophic obstructive cardiomyopathy. J Mol Med (Berl) 77:677–685
107.
Zurück zum Zitat Miyata S, Minobe W, Bristow MR, Leinwand LA (2000) Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circ Res 86:386–390PubMed Miyata S, Minobe W, Bristow MR, Leinwand LA (2000) Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circ Res 86:386–390PubMed
108.
Zurück zum Zitat Ledda-Columbano GM, Molotzu F, Pibiri M, Cossu C, Perra A, Columbano A (2006) Thyroid hormone induces cyclin D1 nuclear translocation and DNA synthesis in adult rat cardiomyocytes. FASEB J 20:87–94PubMed Ledda-Columbano GM, Molotzu F, Pibiri M, Cossu C, Perra A, Columbano A (2006) Thyroid hormone induces cyclin D1 nuclear translocation and DNA synthesis in adult rat cardiomyocytes. FASEB J 20:87–94PubMed
109.
Zurück zum Zitat Olivieri A, Stazi MA, Mastroiacovo P, Fazzini C, Medda E, Spagnolo A, De Angelis S, Grandolfo ME, Taruscio D, Cordeddu V, Sorcini M, Study Group for Congenital H (2002) A population-based study on the frequency of additional congenital malformations in infants with congenital hypothyroidism: data from the Italian Registry for Congenital Hypothyroidism (1991–1998). J Clin Endocrinol Metab 87:557–562 Olivieri A, Stazi MA, Mastroiacovo P, Fazzini C, Medda E, Spagnolo A, De Angelis S, Grandolfo ME, Taruscio D, Cordeddu V, Sorcini M, Study Group for Congenital H (2002) A population-based study on the frequency of additional congenital malformations in infants with congenital hypothyroidism: data from the Italian Registry for Congenital Hypothyroidism (1991–1998). J Clin Endocrinol Metab 87:557–562
110.
Zurück zum Zitat Chowdhury D, Ojamaa K, Parnell VA, McMahon C, Sison CP, Klein I (2001) A prospective randomized clinical study of thyroid hormone treatment after operations for complex congenital heart disease. J Thorac Cardiovasc Surg 122:1023–1025PubMed Chowdhury D, Ojamaa K, Parnell VA, McMahon C, Sison CP, Klein I (2001) A prospective randomized clinical study of thyroid hormone treatment after operations for complex congenital heart disease. J Thorac Cardiovasc Surg 122:1023–1025PubMed
111.
Zurück zum Zitat Lockhart M, Wirrig E, Phelps A, Wessels A (2011) Extracellular matrix and heart development. Birth Defects Res A Clin Mol Teratol 91:535–550PubMedPubMedCentral Lockhart M, Wirrig E, Phelps A, Wessels A (2011) Extracellular matrix and heart development. Birth Defects Res A Clin Mol Teratol 91:535–550PubMedPubMedCentral
112.
Zurück zum Zitat McMahon CJ, Nihill MR, Denfield S (2003) Neoaortic root dilation associated with left coronary artery stenosis following arterial switch procedure. Pediatr Cardiol 24:43–46PubMed McMahon CJ, Nihill MR, Denfield S (2003) Neoaortic root dilation associated with left coronary artery stenosis following arterial switch procedure. Pediatr Cardiol 24:43–46PubMed
113.
Zurück zum Zitat Farooqi KM, Sutton N, Weinstein S, Menegus M, Spindola-Franco H, Pass RH (2012) Neonatal myocardial infarction: case report and review of the literature. Congenit Heart Dis 7:E97–102PubMed Farooqi KM, Sutton N, Weinstein S, Menegus M, Spindola-Franco H, Pass RH (2012) Neonatal myocardial infarction: case report and review of the literature. Congenit Heart Dis 7:E97–102PubMed
114.
Zurück zum Zitat Nakagama Y, Inuzuka R, Ichimura K, Hinata M, Takehara H, Takeda N, Kakiuchi S, Shiraga K, Asakai H, Shindo T, Hirata Y, Saitoh M, Oka A (2018) Accelerated cardiomyocyte proliferation in the heart of a neonate with LEOPARD syndrome-associated fatal cardiomyopathy. Circ Heart Fail 11:e004660PubMed Nakagama Y, Inuzuka R, Ichimura K, Hinata M, Takehara H, Takeda N, Kakiuchi S, Shiraga K, Asakai H, Shindo T, Hirata Y, Saitoh M, Oka A (2018) Accelerated cardiomyocyte proliferation in the heart of a neonate with LEOPARD syndrome-associated fatal cardiomyopathy. Circ Heart Fail 11:e004660PubMed
115.
Zurück zum Zitat Tsang V, Yacoub M, Sridharan S, Burch M, Radley-Smith R, Khaghani A, Savoldo B, Amrolia PJ (2009) Late donor cardiectomy after paediatric heterotopic cardiac transplantation. Lancet 374:387–392PubMed Tsang V, Yacoub M, Sridharan S, Burch M, Radley-Smith R, Khaghani A, Savoldo B, Amrolia PJ (2009) Late donor cardiectomy after paediatric heterotopic cardiac transplantation. Lancet 374:387–392PubMed
116.
Zurück zum Zitat Fratz S, Hager A, Schreiber C, Schwaiger M, Hess J, Stern HC (2011) Long-term myocardial scarring after operation for anomalous left coronary artery from the pulmonary artery. Ann Thorac Surg 92:1761–1765PubMed Fratz S, Hager A, Schreiber C, Schwaiger M, Hess J, Stern HC (2011) Long-term myocardial scarring after operation for anomalous left coronary artery from the pulmonary artery. Ann Thorac Surg 92:1761–1765PubMed
117.
Zurück zum Zitat Wesselhoeft H, Fawcett JS, Johnson AL (1968) Anomalous origin of the left coronary artery from the pulmonary trunk. Its clinical spectrum, pathology, and pathophysiology, based on a review of 140 cases with seven further cases. Circulation 38:403–425PubMed Wesselhoeft H, Fawcett JS, Johnson AL (1968) Anomalous origin of the left coronary artery from the pulmonary trunk. Its clinical spectrum, pathology, and pathophysiology, based on a review of 140 cases with seven further cases. Circulation 38:403–425PubMed
118.
119.
Zurück zum Zitat Godwin JW, Debuque R, Salimova E, Rosenthal NA (2017) Heart regeneration in the salamander relies on macrophage-mediated control of fibroblast activation and the extracellular landscape. NPJ Regen Med 2(1):22PubMedPubMedCentral Godwin JW, Debuque R, Salimova E, Rosenthal NA (2017) Heart regeneration in the salamander relies on macrophage-mediated control of fibroblast activation and the extracellular landscape. NPJ Regen Med 2(1):22PubMedPubMedCentral
120.
Zurück zum Zitat Gray GA, Toor IS, Castellan R, Crisan M, Meloni M (2018) Resident cells of the myocardium: more than spectators in cardiac injury, repair and regeneration. Curr Opin Physiol 1:46–51PubMedPubMedCentral Gray GA, Toor IS, Castellan R, Crisan M, Meloni M (2018) Resident cells of the myocardium: more than spectators in cardiac injury, repair and regeneration. Curr Opin Physiol 1:46–51PubMedPubMedCentral
Metadaten
Titel
Postnatal Cardiac Development and Regenerative Potential in Large Mammals
verfasst von
Nivedhitha Velayutham
Emma J. Agnew
Katherine E. Yutzey
Publikationsdatum
25.07.2019
Verlag
Springer US
Erschienen in
Pediatric Cardiology / Ausgabe 7/2019
Print ISSN: 0172-0643
Elektronische ISSN: 1432-1971
DOI
https://doi.org/10.1007/s00246-019-02163-7

Weitere Artikel der Ausgabe 7/2019

Pediatric Cardiology 7/2019 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Adipositas-Medikament auch gegen Schlafapnoe wirksam

24.04.2024 Adipositas Nachrichten

Der als Antidiabetikum sowie zum Gewichtsmanagement zugelassene Wirkstoff Tirzepatid hat in Studien bei adipösen Patienten auch schlafbezogene Atmungsstörungen deutlich reduziert, informiert der Hersteller in einer Vorab-Meldung zum Studienausgang.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.