Skip to main content
Erschienen in: BMC Cancer 1/2013

Open Access 01.12.2013 | Research article

Potential cancer-related role of circadian gene TIMELESS suggested by expression profiling and in vitro analyses

verfasst von: Yingying Mao, Alan Fu, Derek Leaderer, Tongzhang Zheng, Kun Chen, Yong Zhu

Erschienen in: BMC Cancer | Ausgabe 1/2013

Abstract

Background

The circadian clock and cell cycle are two global regulatory systems that have pervasive behavioral and physiological effects on eukaryotic cells, and both play a role in cancer development. Recent studies have indicated that the circadian and cell cycle regulator, TIMELESS, may serve as a molecular bridge between these two regulatory systems.

Methods

To assess the role of TIMELESS in tumorigenesis, we analyzed TIMELESS expression data from publically accessible online databases. A loss-of-function analysis was then performed using TIMELESS-targeting siRNA oligos followed by a whole-genome expression microarray and network analysis. We further tested the effect of TIMELESS down-regulation on cell proliferation rates of a breast and cervical cancer cell line, as suggested by the results of our network analysis.

Results

TIMELESS was found to be frequently overexpressed in different tumor types compared to normal controls. Elevated expression of TIMELESS was significantly associated with more advanced tumor stage and poorer breast cancer prognosis. We identified a cancer-relevant network of transcripts with altered expression following TIMELESS knockdown which contained many genes with known functions in cancer development and progression. Furthermore, we observed that TIMELESS knockdown significantly decreased cell proliferation rate.

Conclusions

Our results suggest a potential role for TIMELESS in tumorigenesis, which warrants further investigation of TIMELESS expression as a potential biomarker of cancer susceptibility and prognostic outcome.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1471-2407-13-498) contains supplementary material, which is available to authorized users.

Competing interest

The authors declare that they have no competing interest.

Authors’ contributions

YYM was responsible for performing database searches, analyzing microarray data, carrying out cell proliferation assays, and preparing the first manuscript draft. AF carried out the initial cell culture experiments and aided in manuscript preparation. DL helped to optimize conditions required for TIMELESS knockdown. YZ aided in experimental design and manuscript preparation. TZ and KC helped with manuscript preparation. All authors have read and approved the final manuscript.

Background

The circadian clock and cell cycle are two global regulatory systems that have pervasive effects on the behavior and physiology of eukaryotic cells. The 24-hour periodicity of the circadian rhythm, consisting of light and dark phases which coincide with the phases of the solar day, is maintained by a set of core circadian genes through a complex mechanism involving transcription-translational feedback loops [1, 2]. The cell cycle is monitored by a sequence of molecular and biochemical events including a series of checkpoint mechanisms to ensure completion of biochemical reactions unique to each phase of the cell cycle prior to initiation of subsequent phases [3, 4].
While these two regulatory systems involve distinct mechanisms, there is evidence that they are linked and interact at the gene, protein, and biochemical levels [5, 6]. A recent study has indicated that one circadian regulator, TIMELESS, is also a core component of the cell cycle checkpoint system [7]. It regulates directly or indirectly the activity of autoregulatory components of the mammalian circadian core, including Clock, Per, and Cry proteins, associates with S phase replication checkpoint proteins Claspin and Tipin, and is required for the phosphorylation and activation of Chk1 by ATR and ATM-dependent Chk2-mediated signaling of DNA double strand breaks [8, 9].
Although the connection between cancer and the cell cycle machinery that controls cell proliferation has been evident for some time, and there is mounting evidence to suggest that disruption of the circadian rhythm may increase susceptibility to certain malignancies [1012], little is known about TIMELESS’s role in tumorigenesis. Our previous case–control study demonstrated significant genetic and epigenetic associations of TIMELESS and breast cancer risk [13]. A recent study has also shown that higher levels of TIMELESS expression in colorectal cancer tissue is associated with TNM stages III-IV and microsatellite instability [14]. In contrast, findings from another study point to the down-regulation of TIMELESS in hepatocellular carcinomas [15].
In the current study, we report our findings from the expression profiling analysis of TIMELESS in different tumor types using publically available online tools and microarray datasets, and a loss-of-function analysis using TIMELESS-targeting siRNA oligos followed by a whole-genome expression microarray and network analysis. We also tested one of the potential roles of TIMELESS suggested by our network analysis using a MTS assay and observed that TIMELESS knockdown decreased the proliferation rate of MCF7 breast cancer cells.

Methods

Data mining of TIMELESS expression in different tumor types

To explore whether TIMELESS expression is altered in different cancer types, we first performed a comprehensive search using the Oncomine 4.4 online database (https://​www.​oncomine.​org; accessed on September 7, 2011) [16] for expression array comparisons involving tissues drawn from cancer patients and healthy controls. The keywords used were: Gene: “TIMELESS”; Analysis Type: “Cancer vs. Normal Analysis”. The search returned a total of 194 analyses conducted in 93 unique studies across various cancer types using different array platforms. Further details regarding tissue collection and the experimental protocol of each array are available in the Oncomine database, or from the original publications.
We then investigated whether aberrant TIMELESS expression was associated with tumor stage or prognostic outcome. We searched and analyzed publicly available microarray data sets containing tumor stage or clinical outcome information from the Gene Expression Omnibus (GEO) [17] and ArrayExpress databases (http://​www.​ebi.​ac.​uk/​arrayexpress; accessed on September 8, 2011). The cervical cancer data set (GEO accession # GSE7803) contains gene expression data of normal cervical tissue, high-grade squamous intraepithelial lesions and invasive squamous cell carcinomas [18]. The ArrayExpress breast cancer data set (accession # E-TABM-276) examined gene expression in malignant breast tumor tissue, adjacent tissue exhibiting cystic changes, adjacent normal breast tissue and tissue drawn from healthy controls [19]. The prostate cancer data set GSE8511 includes tissue from benign prostate and localized and metastatic prostate tumor tissues [20], and GSE21034 contains samples from normal adjacent benign prostate and primary and metastatic prostate tumor tissues [21]. GSE2034 examined the association between gene expression in tissues drawn from primary breast cancer patients and their clinical outcomes [22]. The GOBO online tool (Gene Expression-Based Outcome for Breast Cancer Online co.bmc.lu.se/gobo), designed for prognostic validation of genes in a pooled breast cancer data set comprising 1881 cases from 11 public microarray data sets, was used to validate our analysis of the GSE2034 breast cancer data set [23].

Cell culture and treatments

All experimental procedures were approved by the Institutional Review Board at Yale University and the National Cancer Institute. To determine TIMELESS’s role in tumorigenesis, we then performed an in vitro loss-of-function analysis using TIMELESS-targeting siRNA oligos followed by a whole-genome expression microarray. Human HeLa cells (American Type Culture Collection, Manassas, VA) were maintained in Dulbecco’s modified Eagle medium (Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine serum (Invitrogen) and 1% penicillin/streptomycin (Sigma-Aldrich, St. Louis, MO). Short interfering RNA (siRNA) oligonucleotides targeting exon 11 of TIMELESS (Ambion ID s17053; cat. no. 4392420) and a scrambled sequence negative control oligonucleotide were designed and manufactured by Ambion, Inc. (Ambion/Applied Biosystems). Each oligonucleotide was reverse-transfected in 12-well plates with ~10,000 cells/well at a final concentration of 10 nM using the Lipofectamine RNAiMAX transfection reagent (Invitrogen).

RNA isolation and quantification

RNA was isolated using the RNA Mini Kit (Qiagen), with on-column DNA digestion, according to the protocols of the manufacturer for mammalian cells. RNA was quantified using a NanoDrop spectrophotometer (Thermo Scientific), and first-strand cDNA was synthesized using the AffinityScript cDNA Kit (Stratagene) with random ninemer primers. TIMELESS mRNA expression was measured by quantitative real-time PCR performed in duplicate using the Power SYBR Green PCR master mix (Applied Biosystems) and a standard thermal cycling procedure on an ABI 7500 instrument (Applied Biosystems). RNA quantity was normalized using HPRT1, and TIMELESS silencing was quantified using the 2−ΔΔCt method.

Genome-wide expression microarray

Gene expression differences in normal HeLa cells and those with reduced TIMELESS levels were examined by whole genome microarray (Agilent, Inc., 44 K chip, performed by MoGene, LC). RNA was isolated from biological replicates of each treatment condition (TIMELESS-targeting or scrambled negative control). Gene expression fold changes in TIMELESS knockdown cells relative to the mock siRNA-treated negative control were determined for each replicate. Samples with inadequate signal intensity (i.e., intensity < 50 in both the Cy3 and Cy5 channels), and transcripts with adjusted P-values greater than 0.05 in either biological replicate were discarded. To further reduce the number of false positive observations, and to enrich for biologically relevant expression changes, the remaining transcripts were defined as significantly differentially expressed only if they displayed a mean fold change in expression of at least |2|.

Pathway-based network analysis

We then interrogated the differentially expressed transcripts for network and functional interrelatedness using the Ingenuity Pathway Analysis software tool (Ingenuity Systems; http://​www.​ingenuity.​com). The software uses an extensive database of functional interactions which are drawn from peer-reviewed publications and are manually maintained [24]. P-values for individual networks were obtained by comparing the likelihood of obtaining the same number of transcripts or greater in a random gene set as are actually present in the input set (i.e., the set of genes differentially expressed following TIMELESS knockdown) using a Fisher's exact test, based on the hypergeometric distribution. Our microarray data were uploaded to the Gene Expression Omnibus [17] database (http://​www.​ncbi.​nlm.​nih.​gov/​projects/​geo/​; accession # pending). The differential expression of several genes detected by the microarray was assessed and confirmed by quantitative real-time PCR. The primers used were designed in house and the sequences are provided in Additional file 1: Table S1.

Cell proliferation assay

The results from our network analysis suggested us to further investigate TIMELESS’s potential role in cellular growth and proliferation. HeLa and MCF7 cells (American Type Culture Collection) were reverse transfected with siRNA oligos targeting TIMELESS and a scrambled sequence negative control in 96-well plates using the Lipofectamine RNAiMAX transfection reagent (Invitrogen). Cell proliferation was analyzed in triplicate at baseline, 24 hours, 48 hours, 72 hours, and 96 hours using the CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS) kit (Promega Corporation, Madison, WI) and the absorbance was measured using an Epoch microplate spectrophotometer (BioTek, Winooski, VT).

Statistical analyses

Statistical analyses were performed using the SAS statistical software, version 9.2 (SAS Institute). Student t-tests and one-way ANOVA were applied to calculate differences in TIMELESS expression across different tumor stages, as well as differences in cell proliferation rate. The log-rank test was used to estimate the differences in survival between cancer patients with differing levels of TIMELESS expression. Due to the multiple comparisons inherent in our microarray analysis, adjustments were made to control for false discoveries using the Benjamini-Hochberg method, as previously described, to obtain a false discovery rate-adjusted P-value for each observation (referred to as the Q-value) [25].

Results

Overexpression of TIMELESS in different types of tumor tissues

Searching for “TIMELESS” expression in “cancer vs. normal” tissues in the Oncomine database returned a total of 194 analyses from 93 unique studies across various cancer types. 32 analyses in 20 unique studies were identified as statistically significant with P-values < 0.01 and fold change ≥ |2|. 31 out of 32 analyses exhibited increased TIMELESS expression in tumor relative to normal tissues while only one showed decreased expression (Additional file 1: Table S2). A volcano plot was generated using -log10 transformed P-values and the fold change of TIMELESS expression in tumor versus normal tissues extracted from each analysis. The size of each circle is proportional to the size of the analysis it corresponds to (Figure 1A). The plot indicates that TIMELESS expression is frequently elevated in tumor relative to normal tissues across multiple cancer types.

Increased TIMELESS expression is associated with more advanced tumor stage and poorer breast cancer prognosis

To investigate whether TIMELESS expression is associated with tumor stage and clinical outcome, we analyzed five publicly available microarray data sets extracted from the GEO and ArrayExpress online databases: GSE7803 (cervical cancer), GSE21034 (prostate cancer), GSE8511 (prostate cancer), GSE2034 (breast cancer), and E-TABM-276 (breast cancer). We observed that TIMELESS expression in invasive cervical cancer tissue was significantly higher than in normal tissue (P < 0.001) and preinvasive cervical cancer tissue (P < 0.001) (Figure 1B). In the breast cancer study E-TABM-276, TIMELESS expression in breast tissue from healthy controls was significantly lower than in invasive carcinomas (P < 0.001) or tissues exhibiting cystic changes (P < 0.05). Likewise, TIMELESS expression in adjacent normal breast tissues was significantly lower than in either invasive carcinomas or tissues with cystic changes (P < 0.001 and P < 0.05, respectively) (Figure 1C). Similarly, in both of the two prostate cancer studies, significantly increased TIMELESS expression was observed in metastatic tumor tissue compared to primary prostate tumor tissue and benign tissue (Figure 1D and E).
Analyzing the lymph node-negative breast cancer data set of GSE2034, we found that patients with lower TIMELESS expression levels were more likely to have a higher rate of distant metastasis-free survival (DMFS) (P < 0.05). Interrogating TIMELESS expression using the GOBO database revealed similar results: increased TIMELESS expression was associated with lower DMFS rate not only in the general breast tumor population (P < 0.005), but also in tumor subtypes, including lymph node-negative (P < 0.001), ER-positive (P < 0.001), and lymph node- negative ER-positive (P < 0.001) breast tumors (Figure 2).

Cancer-relevant network formed by TIMELESS-influenced genes

To explore TIMELESS’s potential functional significance in regulating cancer-relevant gene networks, we performed a loss-of-function analysis using TIMELESS-targeting siRNA oligos, followed by a whole genome expression microarray and subsequent network analysis. Prior to the microarray, TIMELESS knockdown was confirmed using quantitative RT-PCR. TIMELESS mRNA levels were reduced by more than 90% following knockdown (P < 0.01) (Additional file 2: Figure S1). In the array, 660 transcripts fit our significance criteria for differential expression following TIMELESS knockdown (Q < 0.05 and mean fold change ≥ |2|). Validation of differential expression was performed on nine genes using quantitative real-time PCR (Additional file 2: Figure S2). This gene set was examined for functional interrelatedness using the Ingenuity Pathway Analysis software tool. Cancer was identified as the top disease significantly associated with the input gene set, while cellular movement, development, and growth and proliferation were identified as the top three molecular and cellular functions.
Thirteen functional networks were identified as being significantly associated with the input gene set (P < 1.0E-10), the majority of which are cancer-related (Additional file 1: Table S3). The top functional network (P = 1.0E-32, Figure 3) formed by TIMELESS-affected genes was defined as having relevance for “cellular movement, immune cell trafficking, [and] gene expression”. Every one of the twenty-six genes within this top network has been reported to be involved in carcinogenesis or tumor progression. Among them, CXCL1[26], EDN1 [27], EPAS1[28, 29], GDP15[30, 31], IL8[32, 33], KRT17[34, 35], CRKL[36, 37], DTL[38], PTGFR[39], KDM3A[40], PODXL[41], RGS20[42], and TSLP[43] are observed to be frequently overexpressed in cancer cells and are suggested to be involved in cancer development, tumor progression or poorer prognostic outcome. In contrast, SOD2[44, 45], RHOB[46, 47], G0S2[48], EMP1[49], TNFRSF4[50], TNFSF4[51], DMBT1[52, 53], LIFR[54], TFPI2[55], and EPHB6[56] are frequently down-regulated in cancer and may be associated with tumor suppression or favorable prognostic outcome. A summary of the genes in this network, along with a brief description of relevant functions, Q-values and fold changes following TIMELESS knockdown, is presented in Table 1.
Table 1
Molecules in the top ( P= 1.0E-32) network of genes differentially expressed following TIMELESS knockdown
Symbol
RefSeq
Description
Fold change
Q-Value
BMP7
AL567265
Growth factor, may play a role in early development
2.41
5.2E-05
CRKL
NM_005207
Activates the RAS and JUN kinase signaling pathways and transform fibroblast in RAS-dependent fashion, candidate oncogene
-3.04
3.3E-06
CXCL1
NM_001511
Chemokine (C-X-C motif) ligand 1, regulates cell trafficking
2.10
1.4E-04
DMBT1
NM_007329
Plays a role in the interaction of tumor cells and the immune system, candidate tumor suppressor
-5.26
1.3E-12
DTL
NM_016448
Denticleless homolog (Drosophila), required for cell cycle control, DNA damage response and translesion DNA sythesis
-2.34
2.0E-11
EDN1
NM_001955
Endothelin 1, growth factor, involved in tumor progression
4.26
5.8E-32
EMP1
BC017854
Endothelia membrane protein 1
5.33
7.1E-13
EPAS1
NM_001430
Endothelia PAS domain protein 1, transcription factor, involved in the induction of genes regulated by oxygen
3.21
6.7E-11
EPHB6
NM_004445
EPH receptor B6, modulates cell adheson and migration, mediates numerous developmental processes, particularly in the nervous system.
-2.62
2.9E-05
GOS2
NM_015714
G0/G1 switch regulatory protein 2, potential oncogene
3.37
3.8E-09
GDF15
NM_004864
Growth differentiation factor 15, member of the transforming growth factor-beta superfamily, regulates tissue differentiation and maintenance
4.49
3.5E-12
IL8
NM_000584
Interleukin 8, cytokine, inhibits the proliferation of tumor cells
5.10
1.7E-11
KDM3A
NM_018433
May play a role in hormone-dependent transcription acivation and histone code, involved in spermatogenesis and obesity resistance
-2.13
1.5E-08
KRT17
NM_000422
Type I intermediate filament chain keratin 17, may be a marker for basal cell differentiation in complex epithelia
3.45
1.1E-07
LIFR
NM_002310
Leukemia inhibitory factor which is involved in cellular differentiation, proliferation and survival
2.77
2.7E-11
OSM
NM_020530
Cytokine, inhibits the proliferation of a number cell lines
3.23
1.5E-06
PKIA
NM_006823
Protein kinase inhibitor alpha
-3.30
7.2E-09
PODXL
NM_005397
Podocalyxin-like, involved in regulation of both adhesion and cell morphology and cancer progression
-2.47
3.5E-06
PTGFR
NM_000959
Prostaglandin F receptor
5.31
1.1E-08
RGS20
NM_170587
Regulation of G-protein signaling 20, accelarate transit through the cycle of GTP binding and hydrolysis and thereby accelerate signaling kinetics and termination
-3.34
3.4E-08
RHOB
NM_004040
Mediates apoptosis in neo plastically transformed cells after DNA damage, affects cell adhesion and growth factor signaling in transformed cells, involved in intracellular protein trafficking of a number of proteins
2.16
1.2E-04
SOD2
BC016934
Member of the iron/manganese superoxide dismutase family potential tumor suppressor
15.90
2.1E-14
TFPI2
ENST00000222543
Tissue factor pathway inhibitor 2, may play a role in the regulation of plasmin-mediated matrix remodeling
-5.19
4.9E-12
TNFRSF4
NM_003327
Tumor necrosis factor receptor superfamily, member 4, may suppresses apoptosis, plays a role in T cells-dependent B cell proliferation and differentiation
-2.09
8.6E-03
TNFSF4
NM_003326
Tumor necrosis factor (ligand) superfamily, member 4, directly mediates adhesion of activated T cells to vasular endothelial cells
2.18
6.9E-04
TSLP
NM_033035
Thymic stromal lymphopoietin, induces release of T cell-attracting chemokines from monocytes and enhances the maturation of CD11c(+) dendtritic cells
-4.68
8.0E-09

TIMELESS knockdown decreases breast cancer cell proliferation rate

As suggested by the findings of our network analysis, we tested TIMELESS’s potential role in cellular growth and proliferation using a MTS assay. As shown in Figure 4, transfection with TIMELESS-targeting siRNA oligos significantly decreased MCF7 cell growth compared to untreated MCF7 cells (P < 0.05) and negative control cells (P < 0.05). A similar trend was observed with HeLa cells, but only a slight, yet not statistically significant, decrease in proliferation rate was observed compared to negative control cells (P = 0.156).

Discussion

Since the hypothesis linking circadian disruption to increased breast cancer risk was first proposed twenty years ago, there have been many molecular epidemiologic studies implicating the tumorigenic importance of circadian variations, including genetic and epigenetic variations, and aberrant gene expression [10, 57, 58]. TIMELESS, which regulates directly or indirectly the activity of autoregulatory components of the mammalian circadian core, has been shown to play an essential role in the cell cycle checkpoint response [8, 9]. As a potential molecular bridge between the cell cycle and the circadian regulatory systems, TIMELESS is also likely to play a significant role in tumorigenesis.
In our previous breast cancer case–control study, we found significant associations between two tagging SNPs in the TIMELESS gene and decreased breast cancer susceptibility. TIMELESS promoter hypomethylation in peripheral blood lymphocytes was also found to be significantly associated with later-stage breast cancer. In the current study, we observed that TIMELESS is frequently overexpressed in tumor relative to normal tissues in several cancer types, and that elevated expression of TIMELESS is significantly associated with later tumor stages and poorer breast cancer prognosis. Our findings also provide the first evidence suggesting the diagnostic and prognostic potential of TIMELESS in cancer.
Intriguingly, all 26 genes in the top IPA-generated network have been reported to be involved in cancer. G0S2 (3.37-fold increase), which encodes a mitochondrial protein that specifically interacts with Bcl-2, is a proapoptotic factor, and its ectopic expression induces apoptosis in diverse human cancer cell lines in which endogenous G0S2 is normally epigenetically silenced [48]. Similarly, RhoB (2.16-fold increase) is a well-characterized small GTPase that can inhibit cell proliferation, survival and invasion, and it is often down-regulated in cancer cells [47]. EMP1 (5.33-fold increase) encodes a potential tumor suppressor that is associated with cellular proliferation and metastasis [49]. DMBT1 (Deleted in malignant brain tumors 1 protein) (5.26-fold decrease) is a putative tumor suppressor gene frequently deleted in brain, gastrointestinal and lung cancers and down-regulated in breast cancer and prostate cancer [59]. Interestingly, Superoxide dismutase (SOD2), a probable tumor suppressor responsible for the destruction of superoxide free radicals [44], displayed a 15.9-fold increase in expression following TIMELESS knockdown. Additionally, Endothelin-1 (EDN1) (4.26-fold increase) encodes a growth factor that is frequently produced by cancer cells and plays a key role in cell growth, differentiation, apoptosis, and tumorigenesis [27]. Bone Morphogenetic protein 7 (BMP7) (2.41-fold increase), also known as osteogenic protein 1 (OP-1), encodes a multifunctional growth factor belonging to the TGF-β superfamily. Elevated BMP7 levels are reported to be correlated with the depth of colorectal tumor invasion, liver metastasis and cancer-related death [60], as well as the levels of estrogen and progesterone receptor, both of which are important markers for breast cancer prognosis and therapy [61]. Similarly, GDF15 (4.49-fold increase), which encodes another member of the TGF-β superfamily, was reported to exert proapoptotic and anti-tumorigenic functions on colorectal, prostate, and breast cancer cells in vitro and on colon and blioblastoma tumors in vivo[62]. IL8 (5.1-fold increase) has also been reported to have functions in the regulation of angiogenesis, cell growth and survival, leukocyte infiltration, and modification of immune responses [63]. These data suggest that loss of TIMELESS expression has the potential to influence a set of cancer-relevant genes, although most of these genes showing altered expression may not interact directly with TIMELESS. However, without further mechanistic investigations, it is not possible to identify whether these transcripts are direct or indirect targets of TIMELESS.
Timeless, together with its constitutive binding partner, Tipin, functions as a replisome-associated protein which interacts with components of the endogenous replication fork complex [64]. Moreover, siRNA-mediated TIMELESS down-regulation attenuates DNA replication efficiency [64]. Consistent with this observation, we observed a significant decrease in MCF7 cell proliferation after TIMELESS knockdown. However, we found only a slight but non-significant decrease in cell proliferation in HeLa cells following TIMELESS knockdown. This latter observation is consistent with the finding that TIMELESS down-regulation did not have a significant effect on cell proliferation in HeLa cells previously reported by Masai et al. [65]. As a recent study conducted by Engelen et al. revealed elevated TIMELESS expression in tissues undergoing active proliferation, the implication is that increased TIMELESS expression may be a characteristic of all highly proliferative cells, rather than one exclusive to cancer tissues. However, this relationship does not necessarily diminish the significance of TIMELESS in cancer simply because heightened cellular proliferation can be an important driver of the cancerous state. Even if TIMELESS expression is elevated as a result of, rather than a precursor to, heightened proliferation, TIMELESS expression may represent a natural response to abnormal proliferative rates and its potential physiological significance in cancer cannot be discounted. Further mechanistic studies are needed to investigate the precise role of TIMELESS on cellular growth and proliferation in different cancer types, as well as the capacity of TIMELESS to influence other potentially cancer-relevant pathways, including cell motility, invasiveness, and DNA damage response.
Although initial screening found a similar anti-proliferative response to a second siRNA, only the siRNA that conferred the greater phenotypic effect was chosen for subsequent assays. Given the inherent difficulty in controlling for off-target effects in any knockdown experiment performed using a single siRNA, the results presented here should be subjected to independent validation with use of a second siRNA. Furthermore, there is evidence to suggest that the anti-proliferative response observed from TIMELESS silencing could be partly attributable to apoptosis. It is evident that proliferation of transfected cells plateaus between the 48 hour and 72 hour time points and decreases thereafter, marking a period of gradual cell death. The degree to which silencing of TIMELESS elicits an apoptotic response should be the subject of a future investigation.

Conclusions

In summary, these findings, although preliminary, support the findings from our previous breast cancer case–control study, and provide further evidence of the link between TIMELESS and carcinogenesis. The expression profiling analysis of the tissue-specific microarray data suggests that TIMELESS is frequently overexpressed in various types of tumor tissues, and elevated TIMELESS expression is associated with advanced tumor stage and poorer breast cancer prognosis. These data, in conjunction with the findings from the network analysis and the cell proliferation assay, suggest TIMELESS may be involved in the tumorigenic process. However, further mechanistic investigations are warranted to further elucidate the precise role of TIMELESS in tumorigenesis, and to help in the development of targeted therapeutic strategies.

Acknowledgments

This work was supported by the National Institutes of Health grant (grants ES018915 and CA122676). Yingying’s visit at Yale University was supported by the China Scholarship Council (CSC).
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interest

The authors declare that they have no competing interest.

Authors’ contributions

YYM was responsible for performing database searches, analyzing microarray data, carrying out cell proliferation assays, and preparing the first manuscript draft. AF carried out the initial cell culture experiments and aided in manuscript preparation. DL helped to optimize conditions required for TIMELESS knockdown. YZ aided in experimental design and manuscript preparation. TZ and KC helped with manuscript preparation. All authors have read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Young MW, Kay SA: Time zones: a comparative genetics of circadian clocks. Nat Rev Genet. 2001, 2: 702-715. 10.1038/35088576.CrossRefPubMed Young MW, Kay SA: Time zones: a comparative genetics of circadian clocks. Nat Rev Genet. 2001, 2: 702-715. 10.1038/35088576.CrossRefPubMed
2.
Zurück zum Zitat Ko CH, Takahashi JS: Molecular components of the mammalian circadian clock. Hum Mol Genet. 2006, 15 (2): R271-R277.CrossRefPubMed Ko CH, Takahashi JS: Molecular components of the mammalian circadian clock. Hum Mol Genet. 2006, 15 (2): R271-R277.CrossRefPubMed
3.
4.
Zurück zum Zitat Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S: Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004, 73: 39-85. 10.1146/annurev.biochem.73.011303.073723.CrossRefPubMed Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S: Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004, 73: 39-85. 10.1146/annurev.biochem.73.011303.073723.CrossRefPubMed
5.
Zurück zum Zitat Levi F, Filipski E, Iurisci I, Li XM, Innominato P: Cross-talks between circadian timing system and cell division cycle determine cancer biology and therapeutics. Cold Spring Harb Symp Quant Biol. 2007, 72: 465-475. 10.1101/sqb.2007.72.030.CrossRefPubMed Levi F, Filipski E, Iurisci I, Li XM, Innominato P: Cross-talks between circadian timing system and cell division cycle determine cancer biology and therapeutics. Cold Spring Harb Symp Quant Biol. 2007, 72: 465-475. 10.1101/sqb.2007.72.030.CrossRefPubMed
6.
Zurück zum Zitat Bjarnason GA, Jordan R: Circadian variation of cell proliferation and cell cycle protein expression in man: clinical implications. Prog Cell Cycle Res. 2000, 4: 193-206.CrossRefPubMed Bjarnason GA, Jordan R: Circadian variation of cell proliferation and cell cycle protein expression in man: clinical implications. Prog Cell Cycle Res. 2000, 4: 193-206.CrossRefPubMed
7.
Zurück zum Zitat Unsal-Kacmaz K, Mullen TE, Kaufmann WK, Sancar A: Coupling of human circadian and cell cycles by the timeless protein. Mol Cell Biol. 2005, 25: 3109-3116. 10.1128/MCB.25.8.3109-3116.2005.CrossRefPubMedPubMedCentral Unsal-Kacmaz K, Mullen TE, Kaufmann WK, Sancar A: Coupling of human circadian and cell cycles by the timeless protein. Mol Cell Biol. 2005, 25: 3109-3116. 10.1128/MCB.25.8.3109-3116.2005.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Dheekollu J, Wiedmer A, Hayden J, Speicher D, Gotter AL, Yen T, Lieberman PM: Timeless links replication termination to mitotic kinase activation. PLoS One. 2011, 6: e19596-10.1371/journal.pone.0019596.CrossRefPubMedPubMedCentral Dheekollu J, Wiedmer A, Hayden J, Speicher D, Gotter AL, Yen T, Lieberman PM: Timeless links replication termination to mitotic kinase activation. PLoS One. 2011, 6: e19596-10.1371/journal.pone.0019596.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Yang XM, Wood PA, Hrushesky WJM: Mammalian TIMELESS Is Required for ATM-dependent CHK2 Activation and G(2)/M Checkpoint Control. J Biol Chem. 2010, 285: 3030-3034. 10.1074/jbc.M109.050237.CrossRefPubMed Yang XM, Wood PA, Hrushesky WJM: Mammalian TIMELESS Is Required for ATM-dependent CHK2 Activation and G(2)/M Checkpoint Control. J Biol Chem. 2010, 285: 3030-3034. 10.1074/jbc.M109.050237.CrossRefPubMed
10.
Zurück zum Zitat Stevens RG: Circadian disruption and breast cancer: from melatonin to clock genes. Epidemiology. 2005, 16: 254-258. 10.1097/01.ede.0000152525.21924.54.CrossRefPubMed Stevens RG: Circadian disruption and breast cancer: from melatonin to clock genes. Epidemiology. 2005, 16: 254-258. 10.1097/01.ede.0000152525.21924.54.CrossRefPubMed
11.
Zurück zum Zitat Stevens RG, Rea MS: Light in the built environment: potential role of circadian disruption in endocrine disruption and breast cancer. Canc Causes Control. 2001, 12: 279-287. 10.1023/A:1011237000609.CrossRef Stevens RG, Rea MS: Light in the built environment: potential role of circadian disruption in endocrine disruption and breast cancer. Canc Causes Control. 2001, 12: 279-287. 10.1023/A:1011237000609.CrossRef
12.
Zurück zum Zitat Hanahan D, Weinberg RA: The hallmarks of cancer. Cell. 2000, 100: 57-70. 10.1016/S0092-8674(00)81683-9.CrossRefPubMed Hanahan D, Weinberg RA: The hallmarks of cancer. Cell. 2000, 100: 57-70. 10.1016/S0092-8674(00)81683-9.CrossRefPubMed
13.
Zurück zum Zitat Fu A, Leaderer D, Zheng T, Hoffman AE, Stevens RG, Zhu Y: Genetic and epigenetic associations of circadian gene TIMELESS and breast cancer risk. Mol Carcinog. 2011, 51 (12): 923-929.CrossRefPubMed Fu A, Leaderer D, Zheng T, Hoffman AE, Stevens RG, Zhu Y: Genetic and epigenetic associations of circadian gene TIMELESS and breast cancer risk. Mol Carcinog. 2011, 51 (12): 923-929.CrossRefPubMed
14.
Zurück zum Zitat Mazzoccoli G, Panza A, Valvano MR, Palumbo O, Carella M, Pazienza V, Biscaglia G, Tavano F, Di Sebastiano P, Andriulli A, Piepoli A: Clock gene expression levels and relationship with clinical and pathological features in colorectal cancer patients. Chronobiol Int. 2011, 28: 841-851. 10.3109/07420528.2011.615182.CrossRefPubMed Mazzoccoli G, Panza A, Valvano MR, Palumbo O, Carella M, Pazienza V, Biscaglia G, Tavano F, Di Sebastiano P, Andriulli A, Piepoli A: Clock gene expression levels and relationship with clinical and pathological features in colorectal cancer patients. Chronobiol Int. 2011, 28: 841-851. 10.3109/07420528.2011.615182.CrossRefPubMed
15.
Zurück zum Zitat Lin YM, Chang JH, Yeh KT, Yang MY, Liu TC, Lin SF, Su WW, Chang JG: Disturbance of circadian gene expression in hepatocellular carcinoma. Mol Carcinog. 2008, 47: 925-933. 10.1002/mc.20446.CrossRefPubMed Lin YM, Chang JH, Yeh KT, Yang MY, Liu TC, Lin SF, Su WW, Chang JG: Disturbance of circadian gene expression in hepatocellular carcinoma. Mol Carcinog. 2008, 47: 925-933. 10.1002/mc.20446.CrossRefPubMed
16.
Zurück zum Zitat Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM: ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 2004, 6: 1-6.CrossRefPubMedPubMedCentral Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM: ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 2004, 6: 1-6.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Fischer-Doetzkies E, Georg J: [Shift-work management in nursing]. Pflege Aktuell. 2005, 59: 72-75.PubMed Fischer-Doetzkies E, Georg J: [Shift-work management in nursing]. Pflege Aktuell. 2005, 59: 72-75.PubMed
18.
Zurück zum Zitat Zhai Y, Kuick R, Nan B, Ota I, Weiss SJ, Trimble CL, Fearon ER, Cho KR: Gene expression analysis of preinvasive and invasive cervical squamous cell carcinomas identifies HOXC10 as a key mediator of invasion. Canc Res. 2007, 67: 10163-10172. 10.1158/0008-5472.CAN-07-2056.CrossRef Zhai Y, Kuick R, Nan B, Ota I, Weiss SJ, Trimble CL, Fearon ER, Cho KR: Gene expression analysis of preinvasive and invasive cervical squamous cell carcinomas identifies HOXC10 as a key mediator of invasion. Canc Res. 2007, 67: 10163-10172. 10.1158/0008-5472.CAN-07-2056.CrossRef
19.
Zurück zum Zitat Cheng AS, Culhane AC, Chan MW, Venkataramu CR, Ehrich M, Nasir A, Rodriguez BA, Liu J, Yan PS, Quackenbush J, et al: Epithelial progeny of estrogen-exposed breast progenitor cells display a cancer-like methylome. Canc Res. 2008, 68: 1786-1796. 10.1158/0008-5472.CAN-07-5547.CrossRef Cheng AS, Culhane AC, Chan MW, Venkataramu CR, Ehrich M, Nasir A, Rodriguez BA, Liu J, Yan PS, Quackenbush J, et al: Epithelial progeny of estrogen-exposed breast progenitor cells display a cancer-like methylome. Canc Res. 2008, 68: 1786-1796. 10.1158/0008-5472.CAN-07-5547.CrossRef
20.
Zurück zum Zitat Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, et al: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009, 457: 910-914. 10.1038/nature07762.CrossRefPubMedPubMedCentral Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, et al: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009, 457: 910-914. 10.1038/nature07762.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, et al: Integrative genomic profiling of human prostate cancer. Canc Cell. 2010, 18: 11-22. 10.1016/j.ccr.2010.05.026.CrossRef Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, et al: Integrative genomic profiling of human prostate cancer. Canc Cell. 2010, 18: 11-22. 10.1016/j.ccr.2010.05.026.CrossRef
22.
Zurück zum Zitat Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, Brodsky AS, Keeton EK, Fertuck KC, Hall GF, et al: Genome-wide analysis of estrogen receptor binding sites. Nat Genet. 2006, 38: 1289-1297. 10.1038/ng1901.CrossRefPubMed Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, Brodsky AS, Keeton EK, Fertuck KC, Hall GF, et al: Genome-wide analysis of estrogen receptor binding sites. Nat Genet. 2006, 38: 1289-1297. 10.1038/ng1901.CrossRefPubMed
23.
Zurück zum Zitat Ringner M, Fredlund E, Hakkinen J, Borg A, Staaf J: GOBO: gene expression-based outcome for breast cancer online. PLoS One. 2011, 6: e17911-10.1371/journal.pone.0017911.CrossRefPubMedPubMedCentral Ringner M, Fredlund E, Hakkinen J, Borg A, Staaf J: GOBO: gene expression-based outcome for breast cancer online. PLoS One. 2011, 6: e17911-10.1371/journal.pone.0017911.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, Chen RO, Brownstein BH, Cobb JP, Tschoeke SK, et al: A network-based analysis of systemic inflammation in humans. Nature. 2005, 437: 1032-1037. 10.1038/nature03985.CrossRefPubMed Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, Chen RO, Brownstein BH, Cobb JP, Tschoeke SK, et al: A network-based analysis of systemic inflammation in humans. Nature. 2005, 437: 1032-1037. 10.1038/nature03985.CrossRefPubMed
25.
Zurück zum Zitat Benjamini Y, Hochberg Y: Controlling the false discovery rate - a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B Meth. 1995, 57: 289-300. Benjamini Y, Hochberg Y: Controlling the false discovery rate - a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B Meth. 1995, 57: 289-300.
26.
Zurück zum Zitat Cheng WL, Wang CS, Huang YH, Tsai MM, Liang Y, Lin KH: Overexpression of CXCL1 and its receptor CXCR2 promote tumor invasion in gastric cancer. Ann Oncol. 2011, 22: 2267-2276. 10.1093/annonc/mdq739.CrossRefPubMed Cheng WL, Wang CS, Huang YH, Tsai MM, Liang Y, Lin KH: Overexpression of CXCL1 and its receptor CXCR2 promote tumor invasion in gastric cancer. Ann Oncol. 2011, 22: 2267-2276. 10.1093/annonc/mdq739.CrossRefPubMed
27.
Zurück zum Zitat Kim TH, Xiong H, Zhang Z, Ren B: Beta-Catenin activates the growth factor endothelin-1 in colon cancer cells. Oncogene. 2005, 24: 597-604. 10.1038/sj.onc.1208237.CrossRefPubMed Kim TH, Xiong H, Zhang Z, Ren B: Beta-Catenin activates the growth factor endothelin-1 in colon cancer cells. Oncogene. 2005, 24: 597-604. 10.1038/sj.onc.1208237.CrossRefPubMed
28.
Zurück zum Zitat Bangoura G, Liu ZS, Qian Q, Jiang CQ, Yang GF, Jing S: Prognostic significance of HIF-2alpha/EPAS1 expression in hepatocellular carcinoma. World J Gastroenterol. 2007, 13: 3176-3182.CrossRefPubMedPubMedCentral Bangoura G, Liu ZS, Qian Q, Jiang CQ, Yang GF, Jing S: Prognostic significance of HIF-2alpha/EPAS1 expression in hepatocellular carcinoma. World J Gastroenterol. 2007, 13: 3176-3182.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Mohammed N, Rodriguez M, Garcia V, Garcia JM, Dominguez G, Pena C, Herrera M, Gomez I, Diaz R, Soldevilla B, et al: EPAS1 mRNA in plasma from colorectal cancer patients is associated with poor outcome in advanced stages. Oncol Lett. 2011, 2: 719-724.PubMedPubMedCentral Mohammed N, Rodriguez M, Garcia V, Garcia JM, Dominguez G, Pena C, Herrera M, Gomez I, Diaz R, Soldevilla B, et al: EPAS1 mRNA in plasma from colorectal cancer patients is associated with poor outcome in advanced stages. Oncol Lett. 2011, 2: 719-724.PubMedPubMedCentral
30.
Zurück zum Zitat Wallin U, Glimelius B, Jirstrom K, Darmanis S, Nong RY, Ponten F, Johansson C, Pahlman L, Birgisson H: Growth differentiation factor 15: a prognostic marker for recurrence in colorectal cancer. Br J Canc. 2011, 104: 1619-1627. 10.1038/bjc.2011.112.CrossRef Wallin U, Glimelius B, Jirstrom K, Darmanis S, Nong RY, Ponten F, Johansson C, Pahlman L, Birgisson H: Growth differentiation factor 15: a prognostic marker for recurrence in colorectal cancer. Br J Canc. 2011, 104: 1619-1627. 10.1038/bjc.2011.112.CrossRef
31.
Zurück zum Zitat Staff AC, Trovik J, Eriksson AG, Wik E, Wollert KC, Kempf T, Salvesen HB: Elevated plasma growth differentiation factor-15 correlates with lymph node metastases and poor survival in endometrial cancer. Clin Canc Res. 2011, 17: 4825-4833. 10.1158/1078-0432.CCR-11-0715.CrossRef Staff AC, Trovik J, Eriksson AG, Wik E, Wollert KC, Kempf T, Salvesen HB: Elevated plasma growth differentiation factor-15 correlates with lymph node metastases and poor survival in endometrial cancer. Clin Canc Res. 2011, 17: 4825-4833. 10.1158/1078-0432.CCR-11-0715.CrossRef
32.
Zurück zum Zitat Xie K: Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev. 2001, 12: 375-391. 10.1016/S1359-6101(01)00016-8.CrossRefPubMed Xie K: Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev. 2001, 12: 375-391. 10.1016/S1359-6101(01)00016-8.CrossRefPubMed
33.
Zurück zum Zitat Benoy IH, Salgado R, Van Dam P, Geboers K, Van Marck E, Scharpe S, Vermeulen PB, Dirix LY: Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clin Canc Res. 2004, 10: 7157-7162. 10.1158/1078-0432.CCR-04-0812.CrossRef Benoy IH, Salgado R, Van Dam P, Geboers K, Van Marck E, Scharpe S, Vermeulen PB, Dirix LY: Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clin Canc Res. 2004, 10: 7157-7162. 10.1158/1078-0432.CCR-04-0812.CrossRef
34.
Zurück zum Zitat Depianto D, Kerns ML, Dlugosz AA, Coulombe PA: Keratin 17 promotes epithelial proliferation and tumor growth by polarizing the immune response in skin. Nat Genet. 2010, 42: 910-914. 10.1038/ng.665.CrossRefPubMedPubMedCentral Depianto D, Kerns ML, Dlugosz AA, Coulombe PA: Keratin 17 promotes epithelial proliferation and tumor growth by polarizing the immune response in skin. Nat Genet. 2010, 42: 910-914. 10.1038/ng.665.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Economescu MC, Necula LG, Dragu D, Badea L, Dima SO, Tudor S, Nastase A, Popescu I, Diaconu CC: Identification of potential biomarkers for early and advanced gastric adenocarcinoma detection. Hepatogastroenterology. 2010, 57: 1453-1464. Economescu MC, Necula LG, Dragu D, Badea L, Dima SO, Tudor S, Nastase A, Popescu I, Diaconu CC: Identification of potential biomarkers for early and advanced gastric adenocarcinoma detection. Hepatogastroenterology. 2010, 57: 1453-1464.
36.
Zurück zum Zitat Kim YH, Kwei KA, Girard L, Salari K, Kao J, Pacyna-Gengelbach M, Wang P, Hernandez-Boussard T, Gazdar AF, Petersen I, et al: Genomic and functional analysis identifies CRKL as an oncogene amplified in lung cancer. Oncogene. 2010, 29: 1421-1430. 10.1038/onc.2009.437.CrossRefPubMed Kim YH, Kwei KA, Girard L, Salari K, Kao J, Pacyna-Gengelbach M, Wang P, Hernandez-Boussard T, Gazdar AF, Petersen I, et al: Genomic and functional analysis identifies CRKL as an oncogene amplified in lung cancer. Oncogene. 2010, 29: 1421-1430. 10.1038/onc.2009.437.CrossRefPubMed
37.
Zurück zum Zitat Padmanabhan RA, Nirmala L, Murali M, Laloraya M: CrkL is a co-activator of estrogen receptor alpha that enhances tumorigenic potential in cancer. Mol Endocrinol. 2011, 25: 1499-1512. 10.1210/me.2011-0008.CrossRefPubMed Padmanabhan RA, Nirmala L, Murali M, Laloraya M: CrkL is a co-activator of estrogen receptor alpha that enhances tumorigenic potential in cancer. Mol Endocrinol. 2011, 25: 1499-1512. 10.1210/me.2011-0008.CrossRefPubMed
38.
Zurück zum Zitat Baraniskin A, Birkenkamp-Demtroder K, Maghnouj A, Zollner H, Munding J, Klein-Scory S, Reinacher-Schick A, Schwarte-Waldhoff I, Schmiegel W, Hahn SA: MiR-30a-5p suppresses tumor growth in colon carcinoma by targeting DTL. Carcinogenesis. 2012, 33 (4): 732-739. 10.1093/carcin/bgs020.CrossRefPubMed Baraniskin A, Birkenkamp-Demtroder K, Maghnouj A, Zollner H, Munding J, Klein-Scory S, Reinacher-Schick A, Schwarte-Waldhoff I, Schmiegel W, Hahn SA: MiR-30a-5p suppresses tumor growth in colon carcinoma by targeting DTL. Carcinogenesis. 2012, 33 (4): 732-739. 10.1093/carcin/bgs020.CrossRefPubMed
39.
Zurück zum Zitat Sossey-Alaoui K, Kitamura E, Cowell JK: Fine mapping of the PTGFR gene to 1p31 region and mutation analysis in human breast cancer. Int J Mol Med. 2001, 7: 543-546.PubMed Sossey-Alaoui K, Kitamura E, Cowell JK: Fine mapping of the PTGFR gene to 1p31 region and mutation analysis in human breast cancer. Int J Mol Med. 2001, 7: 543-546.PubMed
40.
Zurück zum Zitat Cho HS, Toyokawa G, Daigo Y, Hayami S, Masuda K, Ikawa N, Yamane Y, Maejima K, Tsunoda T, Field HI, et al: The JmjC domain-containing histone demethylase KDM3A is a positive regulator of the G(1)/S transition in cancer cells via transcriptional regulation of the HOXA1 gene. Int J Canc. 2011, 131 (3): E179-E189.CrossRef Cho HS, Toyokawa G, Daigo Y, Hayami S, Masuda K, Ikawa N, Yamane Y, Maejima K, Tsunoda T, Field HI, et al: The JmjC domain-containing histone demethylase KDM3A is a positive regulator of the G(1)/S transition in cancer cells via transcriptional regulation of the HOXA1 gene. Int J Canc. 2011, 131 (3): E179-E189.CrossRef
41.
Zurück zum Zitat Chevillard S, Ugolin N, Vielh P, Ory K, Levalois C, Elliott D, Clayman GL, El-Naggar AK: Gene expression profiling of differentiated thyroid neoplasms: diagnostic and clinical implications. Clin Canc Res. 2004, 10: 6586-6597. 10.1158/1078-0432.CCR-04-0053.CrossRef Chevillard S, Ugolin N, Vielh P, Ory K, Levalois C, Elliott D, Clayman GL, El-Naggar AK: Gene expression profiling of differentiated thyroid neoplasms: diagnostic and clinical implications. Clin Canc Res. 2004, 10: 6586-6597. 10.1158/1078-0432.CCR-04-0053.CrossRef
42.
Zurück zum Zitat Riker AI, Enkemann SA, Fodstad O, Liu S, Ren S, Morris C, Xi Y, Howell P, Metge B, Samant RS, et al: The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis. BMC Med Genom. 2008, 1: 13-10.1186/1755-8794-1-13.CrossRef Riker AI, Enkemann SA, Fodstad O, Liu S, Ren S, Morris C, Xi Y, Howell P, Metge B, Samant RS, et al: The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis. BMC Med Genom. 2008, 1: 13-10.1186/1755-8794-1-13.CrossRef
43.
Zurück zum Zitat Papatriantafyllou M: Tumour immunology: TSLP drives human tumour progression. Nat Rev Immunol. 2011, 11: 235-10.1038/nri2961.CrossRefPubMed Papatriantafyllou M: Tumour immunology: TSLP drives human tumour progression. Nat Rev Immunol. 2011, 11: 235-10.1038/nri2961.CrossRefPubMed
44.
Zurück zum Zitat Bravard A, Sabatier L, Hoffschir F, Ricoul M, Luccioni C, Dutrillaux B: SOD2: a new type of tumor-suppressor gene?. Int J Canc. 1992, 51: 476-480. 10.1002/ijc.2910510323.CrossRef Bravard A, Sabatier L, Hoffschir F, Ricoul M, Luccioni C, Dutrillaux B: SOD2: a new type of tumor-suppressor gene?. Int J Canc. 1992, 51: 476-480. 10.1002/ijc.2910510323.CrossRef
45.
Zurück zum Zitat Liu X, Wang A, Lo Muzio L, Kolokythas A, Sheng S, Rubini C, Ye H, Shi F, Yu T, Crowe DL, Zhou X: Deregulation of manganese superoxide dismutase (SOD2) expression and lymph node metastasis in tongue squamous cell carcinoma. BMC Canc. 2010, 10: 365-10.1186/1471-2407-10-365.CrossRef Liu X, Wang A, Lo Muzio L, Kolokythas A, Sheng S, Rubini C, Ye H, Shi F, Yu T, Crowe DL, Zhou X: Deregulation of manganese superoxide dismutase (SOD2) expression and lymph node metastasis in tongue squamous cell carcinoma. BMC Canc. 2010, 10: 365-10.1186/1471-2407-10-365.CrossRef
46.
Zurück zum Zitat Zhou J, Zhu Y, Zhang G, Liu N, Sun L, Liu M, Qiu M, Luo D, Tang Q, Liao Z, et al: A distinct role of RhoB in gastric cancer suppression. Int J Canc. 2011, 128: 1057-1068. 10.1002/ijc.25445.CrossRef Zhou J, Zhu Y, Zhang G, Liu N, Sun L, Liu M, Qiu M, Luo D, Tang Q, Liao Z, et al: A distinct role of RhoB in gastric cancer suppression. Int J Canc. 2011, 128: 1057-1068. 10.1002/ijc.25445.CrossRef
47.
Zurück zum Zitat Huang M, Prendergast GC: RhoB in cancer suppression. Histol Histopathol. 2006, 21: 213-218.PubMed Huang M, Prendergast GC: RhoB in cancer suppression. Histol Histopathol. 2006, 21: 213-218.PubMed
48.
Zurück zum Zitat Welch C, Santra MK, El-Assaad W, Zhu XC, Huber WE, Keys RA, Teodoro JG, Green MR: Identification of a protein, G0S2, that lacks Bcl-2 homology domains and Interacts with and antagonizes Bcl-2. Canc Res. 2009, 69: 6782-6789. 10.1158/0008-5472.CAN-09-0128.CrossRef Welch C, Santra MK, El-Assaad W, Zhu XC, Huber WE, Keys RA, Teodoro JG, Green MR: Identification of a protein, G0S2, that lacks Bcl-2 homology domains and Interacts with and antagonizes Bcl-2. Canc Res. 2009, 69: 6782-6789. 10.1158/0008-5472.CAN-09-0128.CrossRef
49.
Zurück zum Zitat Zhang J, Cao W, Xu Q, Chen WT: The expression of EMP1 is downregulated in oral squamous cell carcinoma and possibly associated with tumour metastasis. J Clin Pathol. 2011, 64: 25-29. 10.1136/jcp.2010.082404.CrossRefPubMed Zhang J, Cao W, Xu Q, Chen WT: The expression of EMP1 is downregulated in oral squamous cell carcinoma and possibly associated with tumour metastasis. J Clin Pathol. 2011, 64: 25-29. 10.1136/jcp.2010.082404.CrossRefPubMed
50.
Zurück zum Zitat Jensen SM, Maston LD, Gough MI, Ruby CE, Redmond WL, Crittenden M, Li YH, Puri S, Poehlein CH, Morris N, et al: Signaling through OX40 enhances antitumor immunity. Semin Oncol. 2010, 37: 524-532. 10.1053/j.seminoncol.2010.09.013.CrossRefPubMedPubMedCentral Jensen SM, Maston LD, Gough MI, Ruby CE, Redmond WL, Crittenden M, Li YH, Puri S, Poehlein CH, Morris N, et al: Signaling through OX40 enhances antitumor immunity. Semin Oncol. 2010, 37: 524-532. 10.1053/j.seminoncol.2010.09.013.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Buglio D, Khaskhely NM, Voo KS, Martinez-Valdez H, Liu YJ, Younes A: HDAC11 plays an essential role in regulating OX40 ligand expression in Hodgkin lymphoma. Blood. 2011, 117: 2910-2917. 10.1182/blood-2010-08-303701.CrossRefPubMedPubMedCentral Buglio D, Khaskhely NM, Voo KS, Martinez-Valdez H, Liu YJ, Younes A: HDAC11 plays an essential role in regulating OX40 ligand expression in Hodgkin lymphoma. Blood. 2011, 117: 2910-2917. 10.1182/blood-2010-08-303701.CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Du J, Guan M, Fan J, Jiang H: Loss of DMBT1 expression in human prostate cancer and its correlation with clinical progressive features. Urology. 2011, 77 (509): e509-e513. Du J, Guan M, Fan J, Jiang H: Loss of DMBT1 expression in human prostate cancer and its correlation with clinical progressive features. Urology. 2011, 77 (509): e509-e513.
54.
Zurück zum Zitat Cho YG, Chang X, Park IS, Yamashita K, Shao C, Ha PK, Pai SI, Sidransky D, Kim MS: Promoter methylation of leukemia inhibitory factor receptor gene in colorectal carcinoma. Int J Oncol. 2011, 39: 337-344.PubMedPubMedCentral Cho YG, Chang X, Park IS, Yamashita K, Shao C, Ha PK, Pai SI, Sidransky D, Kim MS: Promoter methylation of leukemia inhibitory factor receptor gene in colorectal carcinoma. Int J Oncol. 2011, 39: 337-344.PubMedPubMedCentral
55.
Zurück zum Zitat Ribarska T, Ingenwerth M, Goering W, Engers R, Schulz WA: Epigenetic inactivation of the placentally imprinted tumor suppressor gene TFPI2 in prostate carcinoma. Canc Genom Proteomics. 2010, 7: 51-60. Ribarska T, Ingenwerth M, Goering W, Engers R, Schulz WA: Epigenetic inactivation of the placentally imprinted tumor suppressor gene TFPI2 in prostate carcinoma. Canc Genom Proteomics. 2010, 7: 51-60.
56.
Zurück zum Zitat Fox BP, Kandpal RP: EphB6 receptor significantly alters invasiveness and other phenotypic characteristics of human breast carcinoma cells. Oncogene. 2009, 28: 1706-1713. 10.1038/onc.2009.18.CrossRefPubMed Fox BP, Kandpal RP: EphB6 receptor significantly alters invasiveness and other phenotypic characteristics of human breast carcinoma cells. Oncogene. 2009, 28: 1706-1713. 10.1038/onc.2009.18.CrossRefPubMed
57.
Zurück zum Zitat Hoffman AE, Zheng T, Stevens RG, Ba Y, Zhang Y, Leaderer D, Yi C, Holford TR, Zhu Y: Clock-cancer connection in non-Hodgkin's lymphoma: a genetic association study and pathway analysis of the circadian gene cryptochrome 2. Canc Res. 2009, 69: 3605-3613. 10.1158/0008-5472.CAN-08-4572.CrossRef Hoffman AE, Zheng T, Stevens RG, Ba Y, Zhang Y, Leaderer D, Yi C, Holford TR, Zhu Y: Clock-cancer connection in non-Hodgkin's lymphoma: a genetic association study and pathway analysis of the circadian gene cryptochrome 2. Canc Res. 2009, 69: 3605-3613. 10.1158/0008-5472.CAN-08-4572.CrossRef
58.
Zurück zum Zitat Hoffman AE, Yi CH, Zheng T, Stevens RG, Leaderer D, Zhang Y, Holford TR, Hansen J, Paulson J, Zhu Y: CLOCK in breast tumorigenesis: genetic, epigenetic, and transcriptional profiling analyses. Canc Res. 2010, 70: 1459-1468. 10.1158/0008-5472.CAN-09-3798.CrossRef Hoffman AE, Yi CH, Zheng T, Stevens RG, Leaderer D, Zhang Y, Holford TR, Hansen J, Paulson J, Zhu Y: CLOCK in breast tumorigenesis: genetic, epigenetic, and transcriptional profiling analyses. Canc Res. 2010, 70: 1459-1468. 10.1158/0008-5472.CAN-09-3798.CrossRef
59.
Zurück zum Zitat Mollenhauer J, Herbertz S, Holmskov U, Tolnay M, Krebs I, Merlo A, Schroder HD, Maier D, Breitling F, Wiemann S, et al: DMBT1 encodes a protein involved in the immune defense and in epithelial differentiation and is highly unstable in cancer. Canc Res. 2000, 60: 1704-1710. Mollenhauer J, Herbertz S, Holmskov U, Tolnay M, Krebs I, Merlo A, Schroder HD, Maier D, Breitling F, Wiemann S, et al: DMBT1 encodes a protein involved in the immune defense and in epithelial differentiation and is highly unstable in cancer. Canc Res. 2000, 60: 1704-1710.
60.
Zurück zum Zitat Motoyama K, Tanaka F, Kosaka Y, Mimori K, Uetake H, Inoue H, Sugihara K, Mori M: Clinical significance of BMP7 in human colorectal cancer. Ann Surg Oncol. 2008, 15: 1530-1537. 10.1245/s10434-007-9746-4.CrossRefPubMed Motoyama K, Tanaka F, Kosaka Y, Mimori K, Uetake H, Inoue H, Sugihara K, Mori M: Clinical significance of BMP7 in human colorectal cancer. Ann Surg Oncol. 2008, 15: 1530-1537. 10.1245/s10434-007-9746-4.CrossRefPubMed
61.
Zurück zum Zitat Schwalbe M, Sanger J, Eggers R, Naumann A, Schmidt A, Hoffken K, Clement JH: Differential expression and regulation of bone morphogenetic protein 7 in breast cancer. Int J Oncol. 2003, 23: 89-95.PubMed Schwalbe M, Sanger J, Eggers R, Naumann A, Schmidt A, Hoffken K, Clement JH: Differential expression and regulation of bone morphogenetic protein 7 in breast cancer. Int J Oncol. 2003, 23: 89-95.PubMed
62.
Zurück zum Zitat Strelau J, Schmeer C, Peterziel H, Sackmann T, Herold-Mende C, Steiner H, Weller M, Unsicker K: Expression and putative functions of GDF-15, a member of the TGF-beta superfamily, in human glioma and glioblastoma cell lines. Canc Lett. 2008, 270: 30-39. 10.1016/j.canlet.2008.04.042.CrossRef Strelau J, Schmeer C, Peterziel H, Sackmann T, Herold-Mende C, Steiner H, Weller M, Unsicker K: Expression and putative functions of GDF-15, a member of the TGF-beta superfamily, in human glioma and glioblastoma cell lines. Canc Lett. 2008, 270: 30-39. 10.1016/j.canlet.2008.04.042.CrossRef
63.
Zurück zum Zitat Yuan A, Chen JJ, Yao PL, Yang PC: The role of interleukin-8 in cancer cells and microenvironment interaction. Front Biosci. 2005, 10: 853-865. 10.2741/1579.CrossRefPubMed Yuan A, Chen JJ, Yao PL, Yang PC: The role of interleukin-8 in cancer cells and microenvironment interaction. Front Biosci. 2005, 10: 853-865. 10.2741/1579.CrossRefPubMed
64.
Zurück zum Zitat Gotter AL, Suppa C, Emanuel BS: Mammalian TIMELESS and Tipin are evolutionarily conserved replication fork-associated factors. J Mol Biol. 2007, 366: 36-52. 10.1016/j.jmb.2006.10.097.CrossRefPubMed Gotter AL, Suppa C, Emanuel BS: Mammalian TIMELESS and Tipin are evolutionarily conserved replication fork-associated factors. J Mol Biol. 2007, 366: 36-52. 10.1016/j.jmb.2006.10.097.CrossRefPubMed
65.
Zurück zum Zitat Yoshizawa-Sugata N, Masai H: Human Tim/Timeless-interacting protein, Tipin, is required for efficient progression of S phase and DNA replication checkpoint. J Biol Chem. 2007, 282: 2729-2740.CrossRefPubMed Yoshizawa-Sugata N, Masai H: Human Tim/Timeless-interacting protein, Tipin, is required for efficient progression of S phase and DNA replication checkpoint. J Biol Chem. 2007, 282: 2729-2740.CrossRefPubMed
Metadaten
Titel
Potential cancer-related role of circadian gene TIMELESS suggested by expression profiling and in vitro analyses
verfasst von
Yingying Mao
Alan Fu
Derek Leaderer
Tongzhang Zheng
Kun Chen
Yong Zhu
Publikationsdatum
01.12.2013
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2013
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-13-498

Weitere Artikel der Ausgabe 1/2013

BMC Cancer 1/2013 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.