Skip to main content
Erschienen in: Current Hematologic Malignancy Reports 4/2013

01.12.2013 | Myeloproliferative Disorders (JJ Kiladjian, Section Editor)

Preclinical Models for Drug Selection in Myeloproliferative Neoplasms

verfasst von: Niccolò Bartalucci, Costanza Bogani, Alessandro M. Vannucchi

Erschienen in: Current Hematologic Malignancy Reports | Ausgabe 4/2013

Einloggen, um Zugang zu erhalten

Abstract

The discovery that an abnormally activated JAK-STAT signaling pathway is central to the pathogenesis of myeloproliferative neoplasms has promoted the clinical development of small-molecule JAK2 inhibitors. These agents have shown remarkable efficacy in disease control, but do not induce molecular remission; on the other hand, interferon holds the promise to target the putative hematopoietic progenitor cell initiating the disease. The presence of additional molecular abnormalities indicates a high molecular complexity of myeloproliferative neoplasms, and the need for simultaneously targeting different targets. Several drugs are currently under study as single agents and in combination. This review briefly describes the several in vitro and in vivo models of myeloproliferative neoplasms that are being used as preclinical models for drug development.
Literatur
1.
Zurück zum Zitat Tefferi A, Thiele J, Orazi A, et al. Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: recommendations from an ad hoc international expert panel. Blood. 2007;110:1092–7.PubMedCrossRef Tefferi A, Thiele J, Orazi A, et al. Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: recommendations from an ad hoc international expert panel. Blood. 2007;110:1092–7.PubMedCrossRef
2.
Zurück zum Zitat Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumors of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumors of haematopoietic and lymphoid tissues. Lyon: IARC; 2008.
3.
Zurück zum Zitat Dameshek W. Some speculations on the myeloproliferative syndromes. Blood. 1951;6:372–5.PubMed Dameshek W. Some speculations on the myeloproliferative syndromes. Blood. 1951;6:372–5.PubMed
4.
Zurück zum Zitat James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–8.PubMedCrossRef James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–8.PubMedCrossRef
5.
Zurück zum Zitat Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054–61.PubMed Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054–61.PubMed
6.
Zurück zum Zitat Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–97.PubMedCrossRef Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–97.PubMedCrossRef
7.
Zurück zum Zitat Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352:1779–90.PubMedCrossRef Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352:1779–90.PubMedCrossRef
9.
Zurück zum Zitat •• Vainchenker W, Delhommeau F, Constantinescu SN, Bernard OA. New mutations and pathogenesis of myeloproliferative neoplasms. Blood. 2011;118:1723–35. An excellent review highligting the mutationla complexity of MPN.PubMedCrossRef •• Vainchenker W, Delhommeau F, Constantinescu SN, Bernard OA. New mutations and pathogenesis of myeloproliferative neoplasms. Blood. 2011;118:1723–35. An excellent review highligting the mutationla complexity of MPN.PubMedCrossRef
10.
Zurück zum Zitat •• Verstovsek S, Mesa RA, Gotlib J, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. New Engl J Med. 2012;366:799–807. One of two phase III studies demonstrating the clinical efficacy of the anti-JAK1 and JAK2 inhibitor ruxolitinib in MF.PubMedCrossRef •• Verstovsek S, Mesa RA, Gotlib J, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. New Engl J Med. 2012;366:799–807. One of two phase III studies demonstrating the clinical efficacy of the anti-JAK1 and JAK2 inhibitor ruxolitinib in MF.PubMedCrossRef
11.
Zurück zum Zitat •• Harrison C, Kiladjian JJ, Al-Ali HK, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366:787–98. One of two phase III studies demonstrating the clinical efficacy of the anti-JAK1 and JAK2 inhibitor ruxolitinib in MF.PubMedCrossRef •• Harrison C, Kiladjian JJ, Al-Ali HK, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366:787–98. One of two phase III studies demonstrating the clinical efficacy of the anti-JAK1 and JAK2 inhibitor ruxolitinib in MF.PubMedCrossRef
12.
Zurück zum Zitat Quintás-Cardama A, Kantarjian H, Cortes J, Verstovsek S. Janus kinase inhibitors for the treatment of myeloproliferative neoplasias and beyond. Nat Rev Drug Discov. 2011;10:127–40.PubMedCrossRef Quintás-Cardama A, Kantarjian H, Cortes J, Verstovsek S. Janus kinase inhibitors for the treatment of myeloproliferative neoplasias and beyond. Nat Rev Drug Discov. 2011;10:127–40.PubMedCrossRef
13.
Zurück zum Zitat Vannucchi AM. From palliation to targeted therapy in myelofibrosis. N Engl J Med. 2010;363:1180–2.PubMedCrossRef Vannucchi AM. From palliation to targeted therapy in myelofibrosis. N Engl J Med. 2010;363:1180–2.PubMedCrossRef
14.
Zurück zum Zitat •• Bogani C, Bartalucci N, Martinelli S, et al. mTOR inhibitors alone and in combination with JAK2 inhibitors effectively inhibit cells of myeloproliferative neoplasms. PLoS ONE. 2013;8:e54826. Evidence using in vitro models of the activity of anti-mTOR compounds in MPN.PubMedCrossRef •• Bogani C, Bartalucci N, Martinelli S, et al. mTOR inhibitors alone and in combination with JAK2 inhibitors effectively inhibit cells of myeloproliferative neoplasms. PLoS ONE. 2013;8:e54826. Evidence using in vitro models of the activity of anti-mTOR compounds in MPN.PubMedCrossRef
15.
Zurück zum Zitat Barrio S, Gallardo M, Arenas A, et al. Inhibition of related JAK/STAT pathways with molecular targeted drugs shows strong synergy with ruxolitinib in chronic myeloproliferative neoplasm. Br J Haematol. 2013;161:667–76.PubMedCrossRef Barrio S, Gallardo M, Arenas A, et al. Inhibition of related JAK/STAT pathways with molecular targeted drugs shows strong synergy with ruxolitinib in chronic myeloproliferative neoplasm. Br J Haematol. 2013;161:667–76.PubMedCrossRef
16.
Zurück zum Zitat Amaru Calzada A, Pedrini O, Finazzi G, et al. Givinostat and hydroxyurea synergize in vitro to induce apoptosis of cells from JAK2(V617F) myeloproliferative neoplasm patients. Exp Hematol. 2013;41:253.e2–60.e2.CrossRef Amaru Calzada A, Pedrini O, Finazzi G, et al. Givinostat and hydroxyurea synergize in vitro to induce apoptosis of cells from JAK2(V617F) myeloproliferative neoplasm patients. Exp Hematol. 2013;41:253.e2–60.e2.CrossRef
17.
Zurück zum Zitat Hart S, Goh KC, Novotny-Diermayr V, et al. SB1518, a novel macrocyclic pyrimidine-based JAK2 inhibitor for the treatment of myeloid and lymphoid malignancies. Leukemia. 2011;25:1751–9.PubMedCrossRef Hart S, Goh KC, Novotny-Diermayr V, et al. SB1518, a novel macrocyclic pyrimidine-based JAK2 inhibitor for the treatment of myeloid and lymphoid malignancies. Leukemia. 2011;25:1751–9.PubMedCrossRef
18.
Zurück zum Zitat Fleischman AG, Aichberger KJ, Luty SB, et al. TNFalpha facilitates clonal expansion of JAK2V617F positive cells in myeloproliferative neoplasms. Blood. 2011;118:6392–8.PubMedCrossRef Fleischman AG, Aichberger KJ, Luty SB, et al. TNFalpha facilitates clonal expansion of JAK2V617F positive cells in myeloproliferative neoplasms. Blood. 2011;118:6392–8.PubMedCrossRef
19.
Zurück zum Zitat Nakaya Y, Shide K, Niwa T, et al. Efficacy of NS-018, a potent and selective JAK2/Src inhibitor, in primary cells and mouse models of myeloproliferative neoplasms. Blood Cancer J. 2011;1:e29.PubMedCrossRef Nakaya Y, Shide K, Niwa T, et al. Efficacy of NS-018, a potent and selective JAK2/Src inhibitor, in primary cells and mouse models of myeloproliferative neoplasms. Blood Cancer J. 2011;1:e29.PubMedCrossRef
20.
Zurück zum Zitat Anand S, Stedham F, Gudgin E, et al. Increased basal intracellular signaling patterns do not correlate with JAK2 genotype in human myeloproliferative neoplasms. Blood. 2011;118:1610–21.PubMedCrossRef Anand S, Stedham F, Gudgin E, et al. Increased basal intracellular signaling patterns do not correlate with JAK2 genotype in human myeloproliferative neoplasms. Blood. 2011;118:1610–21.PubMedCrossRef
21.
Zurück zum Zitat Vicari L, Martinetti D, Buccheri S, et al. Increased phospho-mTOR expression in megakaryocytic cells derived from CD34+ progenitors of essential thrombocythaemia and myelofibrosis patients. Br J Haematol. 2012;159:237–40.PubMedCrossRef Vicari L, Martinetti D, Buccheri S, et al. Increased phospho-mTOR expression in megakaryocytic cells derived from CD34+ progenitors of essential thrombocythaemia and myelofibrosis patients. Br J Haematol. 2012;159:237–40.PubMedCrossRef
22.
Zurück zum Zitat Chou T-C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70:440–6.PubMedCrossRef Chou T-C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70:440–6.PubMedCrossRef
23.
Zurück zum Zitat Vannucchi AM, Lasho TL, Guglielmelli P, et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013;27:1861–9.PubMedCrossRef Vannucchi AM, Lasho TL, Guglielmelli P, et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013;27:1861–9.PubMedCrossRef
24.
Zurück zum Zitat Wernig G, Mercher T, Okabe R, et al. Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood. 2006;107:4274–81.PubMedCrossRef Wernig G, Mercher T, Okabe R, et al. Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood. 2006;107:4274–81.PubMedCrossRef
25.
Zurück zum Zitat Lacout C, Pisani DF, Tulliez M, et al. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood. 2006;108:1652–60.PubMedCrossRef Lacout C, Pisani DF, Tulliez M, et al. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood. 2006;108:1652–60.PubMedCrossRef
26.
Zurück zum Zitat Zaleskas VM, Krause DS, Lazarides K, et al. Molecular pathogenesis and therapy of polycythemia induced in mice by JAK2 V617F. PLoS ONE. 2006;1:e18.PubMedCrossRef Zaleskas VM, Krause DS, Lazarides K, et al. Molecular pathogenesis and therapy of polycythemia induced in mice by JAK2 V617F. PLoS ONE. 2006;1:e18.PubMedCrossRef
27.
Zurück zum Zitat Bumm TG, Elsea C, Corbin AS, et al. Characterization of murine JAK2V617F-positive myeloproliferative disease. Cancer Res. 2006;66:11156–65.PubMedCrossRef Bumm TG, Elsea C, Corbin AS, et al. Characterization of murine JAK2V617F-positive myeloproliferative disease. Cancer Res. 2006;66:11156–65.PubMedCrossRef
28.
Zurück zum Zitat Wernig G, Kharas MG, Okabe R, et al. Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell. 2008;13:311–20.PubMedCrossRef Wernig G, Kharas MG, Okabe R, et al. Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell. 2008;13:311–20.PubMedCrossRef
29.
Zurück zum Zitat Tyner JW, Bumm TG, Deininger J, et al. CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms. Blood. 2010;115:5232–40.PubMedCrossRef Tyner JW, Bumm TG, Deininger J, et al. CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms. Blood. 2010;115:5232–40.PubMedCrossRef
30.
Zurück zum Zitat Shide K, Shimoda HK, Kumano T, et al. Development of ET, primary myelofibrosis and PV in mice expressing JAK2 V617F. Leukemia. 2008;22:87–95.PubMedCrossRef Shide K, Shimoda HK, Kumano T, et al. Development of ET, primary myelofibrosis and PV in mice expressing JAK2 V617F. Leukemia. 2008;22:87–95.PubMedCrossRef
31.
Zurück zum Zitat Xing S, Ho WT, Zhao W, et al. Transgenic expression of JAK2V617F causes myeloproliferative disorders in mice. Blood. 2008;111:5109–17.PubMedCrossRef Xing S, Ho WT, Zhao W, et al. Transgenic expression of JAK2V617F causes myeloproliferative disorders in mice. Blood. 2008;111:5109–17.PubMedCrossRef
32.
Zurück zum Zitat Tiedt R, Hao-Shen H, Sobas MA, et al. Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood. 2008;111:3931–40.PubMedCrossRef Tiedt R, Hao-Shen H, Sobas MA, et al. Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood. 2008;111:3931–40.PubMedCrossRef
33.
Zurück zum Zitat •• Kubovcakova L, Lundberg P, Grisouard J, et al. Differential effects of hydroxyurea and INC424 on mutant allele burden and myeloproliferative phenotype in a JAK2-V617F polycythemia vera mouse model. Blood. 2013;121:1188–99. Detailed study of the different mechanisms of action of hydroxyurea and interferon-alpha in a JAK2V617F-mutated animal model of MPN.PubMedCrossRef •• Kubovcakova L, Lundberg P, Grisouard J, et al. Differential effects of hydroxyurea and INC424 on mutant allele burden and myeloproliferative phenotype in a JAK2-V617F polycythemia vera mouse model. Blood. 2013;121:1188–99. Detailed study of the different mechanisms of action of hydroxyurea and interferon-alpha in a JAK2V617F-mutated animal model of MPN.PubMedCrossRef
34.
Zurück zum Zitat Akada H, Yan D, Zou H, et al. Conditional expression of heterozygous or homozygous Jak2V617F from its endogenous promoter induces a polycythemia vera-like disease. Blood. 2010;115:3589–97.PubMedCrossRef Akada H, Yan D, Zou H, et al. Conditional expression of heterozygous or homozygous Jak2V617F from its endogenous promoter induces a polycythemia vera-like disease. Blood. 2010;115:3589–97.PubMedCrossRef
35.
Zurück zum Zitat Marty C, Lacout C, Martin A, et al. Myeloproliferative neoplasm induced by constitutive expression of JAK2V617F in knock-in mice. Blood. 2010;116:783–7.PubMedCrossRef Marty C, Lacout C, Martin A, et al. Myeloproliferative neoplasm induced by constitutive expression of JAK2V617F in knock-in mice. Blood. 2010;116:783–7.PubMedCrossRef
36.
Zurück zum Zitat Mullally A, Lane SW, Ball B, et al. Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells. Cancer Cell. 2010;17:584–96.PubMedCrossRef Mullally A, Lane SW, Ball B, et al. Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells. Cancer Cell. 2010;17:584–96.PubMedCrossRef
37.
Zurück zum Zitat Li J, Spensberger D, Ahn JS, et al. JAK2 V617F impairs hematopoietic stem cell function in a conditional knock-in mouse model of JAK2 V617F-positive essential thrombocythemia. Blood. 2010;116:1528–38.PubMedCrossRef Li J, Spensberger D, Ahn JS, et al. JAK2 V617F impairs hematopoietic stem cell function in a conditional knock-in mouse model of JAK2 V617F-positive essential thrombocythemia. Blood. 2010;116:1528–38.PubMedCrossRef
38.
Zurück zum Zitat Akada H, Hamada S, Mohi MG. Efficacy of vorinostat in a murine model of polycythemia vera. Blood (ASH Annual Meeting Abstracts). 2010;116 Abstract 629. Akada H, Hamada S, Mohi MG. Efficacy of vorinostat in a murine model of polycythemia vera. Blood (ASH Annual Meeting Abstracts). 2010;116 Abstract 629.
39.
Zurück zum Zitat •• Mullally A, Bruedigam C, Poveromo L, et al. Depletion of Jak2V617F MPN-propagating stem cells by interferon-alpha in a murine model of polycythemia vera. Blood. 2013;121:3692–702. Evidence using an animal JAK2V617F mutated model that interferon-alpha can target the MPN stem cell.PubMedCrossRef •• Mullally A, Bruedigam C, Poveromo L, et al. Depletion of Jak2V617F MPN-propagating stem cells by interferon-alpha in a murine model of polycythemia vera. Blood. 2013;121:3692–702. Evidence using an animal JAK2V617F mutated model that interferon-alpha can target the MPN stem cell.PubMedCrossRef
40.
Zurück zum Zitat Ulich TR, del Castillo J, Senaldi G, et al. Systemic hematologic effects of PEG-rHuMGDF-induced megakaryocyte hyperplasia in mice. Blood. 1996;87:5006–15.PubMed Ulich TR, del Castillo J, Senaldi G, et al. Systemic hematologic effects of PEG-rHuMGDF-induced megakaryocyte hyperplasia in mice. Blood. 1996;87:5006–15.PubMed
41.
Zurück zum Zitat Ohwada A, Rafii S, Moore MA, Crystal RG. In vivo adenovirus vector-mediated transfer of the human thrombopoietin cDNA maintains platelet levels during radiation- and chemotherapy-induced bone marrow suppression. Blood. 1996;88:778–84.PubMed Ohwada A, Rafii S, Moore MA, Crystal RG. In vivo adenovirus vector-mediated transfer of the human thrombopoietin cDNA maintains platelet levels during radiation- and chemotherapy-induced bone marrow suppression. Blood. 1996;88:778–84.PubMed
42.
Zurück zum Zitat Cannizzo SJ, Frey BM, Raffi S, et al. Augmentation of blood platelet levels by intratracheal administration of an adenovirus vector encoding human thrombopoietin cDNA. Nat Biotechnol. 1997;15:570–3.PubMedCrossRef Cannizzo SJ, Frey BM, Raffi S, et al. Augmentation of blood platelet levels by intratracheal administration of an adenovirus vector encoding human thrombopoietin cDNA. Nat Biotechnol. 1997;15:570–3.PubMedCrossRef
43.
Zurück zum Zitat Abina MA, Tulliez M, Duffour MT, et al. Thrombopoietin (TPO) knockout phenotype induced by cross-reactive antibodies against TPO following injection of mice with recombinant adenovirus encoding human TPO. J Immunol. 1998;160:4481–9.PubMed Abina MA, Tulliez M, Duffour MT, et al. Thrombopoietin (TPO) knockout phenotype induced by cross-reactive antibodies against TPO following injection of mice with recombinant adenovirus encoding human TPO. J Immunol. 1998;160:4481–9.PubMed
44.
Zurück zum Zitat Frey BM, Rafii S, Teterson M, et al. Adenovector-mediated expression of human thrombopoietin cDNA in immune-compromised mice: insights into the pathophysiology of osteomyelofibrosis. J Immunol. 1998;160:691–9.PubMed Frey BM, Rafii S, Teterson M, et al. Adenovector-mediated expression of human thrombopoietin cDNA in immune-compromised mice: insights into the pathophysiology of osteomyelofibrosis. J Immunol. 1998;160:691–9.PubMed
45.
Zurück zum Zitat Yan XQ, Lacey D, Fletcher F, et al. Chronic exposure to retroviral vector encoded MGDF (mpl-ligand) induces lineage-specific growth and differentiation of megakaryocytes in mice. Blood. 1995;86:4025–33.PubMed Yan XQ, Lacey D, Fletcher F, et al. Chronic exposure to retroviral vector encoded MGDF (mpl-ligand) induces lineage-specific growth and differentiation of megakaryocytes in mice. Blood. 1995;86:4025–33.PubMed
46.
Zurück zum Zitat Villeval JL, Cohen-Solal K, Tulliez M, et al. High thrombopoietin production by hematopoietic cells induces a fatal myeloproliferative syndrome in mice. Blood. 1997;90:4369–83.PubMed Villeval JL, Cohen-Solal K, Tulliez M, et al. High thrombopoietin production by hematopoietic cells induces a fatal myeloproliferative syndrome in mice. Blood. 1997;90:4369–83.PubMed
47.
Zurück zum Zitat Zhou W, Toombs CF, Zou T, et al. Transgenic mice overexpressing human c-mpl ligand exhibit chronic thrombocytosis and display enhanced recovery from 5-fluorouracil or antiplatelet serum treatment. Blood. 1997;89:1551–9.PubMed Zhou W, Toombs CF, Zou T, et al. Transgenic mice overexpressing human c-mpl ligand exhibit chronic thrombocytosis and display enhanced recovery from 5-fluorouracil or antiplatelet serum treatment. Blood. 1997;89:1551–9.PubMed
48.
Zurück zum Zitat Kakumitsu H, Kamezaki K, Shimoda K, et al. Transgenic mice overexpressing murine thrombopoietin develop myelofibrosis and osteosclerosis. Leuk Res. 2005;29:761–9.PubMedCrossRef Kakumitsu H, Kamezaki K, Shimoda K, et al. Transgenic mice overexpressing murine thrombopoietin develop myelofibrosis and osteosclerosis. Leuk Res. 2005;29:761–9.PubMedCrossRef
49.
Zurück zum Zitat Yanagida M, Ide Y, Imai A, et al. The role of transforming growth factor-beta in PEG-rHuMGDF-induced reversible myelofibrosis in rats. Br J Haematol. 1997;99:739–45.PubMedCrossRef Yanagida M, Ide Y, Imai A, et al. The role of transforming growth factor-beta in PEG-rHuMGDF-induced reversible myelofibrosis in rats. Br J Haematol. 1997;99:739–45.PubMedCrossRef
50.
Zurück zum Zitat Chagraoui H, Komura E, Tulliez M, et al. Prominent role of TGF-beta 1 in thrombopoietin-induced myelofibrosis in mice. Blood. 2002;100:3495–503.PubMedCrossRef Chagraoui H, Komura E, Tulliez M, et al. Prominent role of TGF-beta 1 in thrombopoietin-induced myelofibrosis in mice. Blood. 2002;100:3495–503.PubMedCrossRef
51.
Zurück zum Zitat Chagraoui H, Tulliez M, Smayra T, et al. Stimulation of osteoprotegerin production is responsible for osteosclerosis in mice overexpressing TPO. Blood. 2003;101:2983–9.PubMedCrossRef Chagraoui H, Tulliez M, Smayra T, et al. Stimulation of osteoprotegerin production is responsible for osteosclerosis in mice overexpressing TPO. Blood. 2003;101:2983–9.PubMedCrossRef
52.
Zurück zum Zitat Wagner-Ballon O, Pisani DF, Gastinne T, et al. Proteasome inhibitor bortezomib impairs both myelofibrosis and osteosclerosis induced by high thrombopoietin levels in mice. Blood. 2007;110:345–53.PubMedCrossRef Wagner-Ballon O, Pisani DF, Gastinne T, et al. Proteasome inhibitor bortezomib impairs both myelofibrosis and osteosclerosis induced by high thrombopoietin levels in mice. Blood. 2007;110:345–53.PubMedCrossRef
53.
Zurück zum Zitat Barosi G, Gattoni E, Guglielmelli P, et al. Phase I/II study of single-agent bortezomib for the treatment of patients with myelofibrosis. Clinical and biological effects of proteasome inhibition. Am J Hematol. 2010;85:616–9.PubMedCrossRef Barosi G, Gattoni E, Guglielmelli P, et al. Phase I/II study of single-agent bortezomib for the treatment of patients with myelofibrosis. Clinical and biological effects of proteasome inhibition. Am J Hematol. 2010;85:616–9.PubMedCrossRef
54.
Zurück zum Zitat McDevitt MA, Fujiwara Y, Shivdasani RA, Orkin SH. An upstream, DNase I hypersensitive region of the hematopoietic-expressed transcription factor GATA-1 gene confers developmental specificity in transgenic mice. Proc Natl Acad Sci U S A. 1997;94:7976–81.PubMedCrossRef McDevitt MA, Fujiwara Y, Shivdasani RA, Orkin SH. An upstream, DNase I hypersensitive region of the hematopoietic-expressed transcription factor GATA-1 gene confers developmental specificity in transgenic mice. Proc Natl Acad Sci U S A. 1997;94:7976–81.PubMedCrossRef
55.
Zurück zum Zitat McDevitt MA, Shivdasani RA, Fujiwara Y, et al. A "knockdown" mutation created by cis-element gene targeting reveals the dependence of erythroid cell maturation on the level of transcription factor GATA-1. Proc Natl Acad Sci U S A. 1997;94:6781–5.PubMedCrossRef McDevitt MA, Shivdasani RA, Fujiwara Y, et al. A "knockdown" mutation created by cis-element gene targeting reveals the dependence of erythroid cell maturation on the level of transcription factor GATA-1. Proc Natl Acad Sci U S A. 1997;94:6781–5.PubMedCrossRef
56.
Zurück zum Zitat Vyas P, Ault K, Jackson CW, et al. Consequences of GATA-1 deficiency in megakaryocytes and platelets. Blood. 1999;93:2867–75.PubMed Vyas P, Ault K, Jackson CW, et al. Consequences of GATA-1 deficiency in megakaryocytes and platelets. Blood. 1999;93:2867–75.PubMed
57.
Zurück zum Zitat Vannucchi AM, Bianchi L, Cellai C, et al. Development of myelofibrosis in mice genetically impaired for GATA-1 expression (GATA-1(low) mice). Blood. 2002;100:1123–32.PubMedCrossRef Vannucchi AM, Bianchi L, Cellai C, et al. Development of myelofibrosis in mice genetically impaired for GATA-1 expression (GATA-1(low) mice). Blood. 2002;100:1123–32.PubMedCrossRef
58.
Zurück zum Zitat Vannucchi AM, Migliaccio AR, Paoletti F, et al. Pathogenesis of myelofibrosis with myeloid metaplasia: lessons from mouse models of the disease. Semin Oncol. 2005;32:365–72.PubMedCrossRef Vannucchi AM, Migliaccio AR, Paoletti F, et al. Pathogenesis of myelofibrosis with myeloid metaplasia: lessons from mouse models of the disease. Semin Oncol. 2005;32:365–72.PubMedCrossRef
59.
Zurück zum Zitat Vannucchi AM, Bianchi L, Paoletti F, et al. A pathobiologic pathway linking thrombopoietin, GATA-1, and TGF-beta1 in the development of myelofibrosis. Blood. 2005;105:3493–501.PubMedCrossRef Vannucchi AM, Bianchi L, Paoletti F, et al. A pathobiologic pathway linking thrombopoietin, GATA-1, and TGF-beta1 in the development of myelofibrosis. Blood. 2005;105:3493–501.PubMedCrossRef
60.
Zurück zum Zitat Martelli F, Ghinassi B, Panetta B, et al. Variegation of the phenotype induced by the Gata1low mutation in mice of different genetic backgrounds. Blood. 2005;106:4102–13.PubMedCrossRef Martelli F, Ghinassi B, Panetta B, et al. Variegation of the phenotype induced by the Gata1low mutation in mice of different genetic backgrounds. Blood. 2005;106:4102–13.PubMedCrossRef
61.
Zurück zum Zitat Vannucchi AM, Pancrazzi A, Guglielmelli P, et al. Abnormalities of GATA-1 in megakaryocytes from patients with idiopathic myelofibrosis. Am J Pathol. 2005;167:849–58.PubMedCrossRef Vannucchi AM, Pancrazzi A, Guglielmelli P, et al. Abnormalities of GATA-1 in megakaryocytes from patients with idiopathic myelofibrosis. Am J Pathol. 2005;167:849–58.PubMedCrossRef
62.
Zurück zum Zitat Migliaccio AR, Martelli F, Verrucci M, et al. Altered SDF-1/CXCR4 axis in patients with primary myelofibrosis and in the Gata1(low) mouse model of the disease. Exp Hematol. 2008;36:158–71.PubMedCrossRef Migliaccio AR, Martelli F, Verrucci M, et al. Altered SDF-1/CXCR4 axis in patients with primary myelofibrosis and in the Gata1(low) mouse model of the disease. Exp Hematol. 2008;36:158–71.PubMedCrossRef
63.
Zurück zum Zitat Rosti V, Massa M, Vannucchi AM, et al. The expression of CXCR4 is down-regulated on the CD34+ cells of patients with myelofibrosis with myeloid metaplasia. Blood Cells Mol Dis. 2007;38:280–6.PubMedCrossRef Rosti V, Massa M, Vannucchi AM, et al. The expression of CXCR4 is down-regulated on the CD34+ cells of patients with myelofibrosis with myeloid metaplasia. Blood Cells Mol Dis. 2007;38:280–6.PubMedCrossRef
64.
Zurück zum Zitat Bogani C, Ponziani V, Guglielmelli P, et al. Hypermethylation of CXCR4 promoter in CD34+ cells from patients with primary myelofibrosis. Stem Cells. 2008;26:1920–30.PubMedCrossRef Bogani C, Ponziani V, Guglielmelli P, et al. Hypermethylation of CXCR4 promoter in CD34+ cells from patients with primary myelofibrosis. Stem Cells. 2008;26:1920–30.PubMedCrossRef
65.
Zurück zum Zitat Verrucci M, Pancrazzi A, Aracil M, et al. CXCR4-independent rescue of the myeloproliferative defect of the Gata1(low) myelofibrosis mouse model by Aplidin(R). J Cell Physiol. 2010;225:490–9.PubMedCrossRef Verrucci M, Pancrazzi A, Aracil M, et al. CXCR4-independent rescue of the myeloproliferative defect of the Gata1(low) myelofibrosis mouse model by Aplidin(R). J Cell Physiol. 2010;225:490–9.PubMedCrossRef
66.
Zurück zum Zitat •• Zingariello M, Martelli F, Ciaffoni F, et al. Characterization of the TGF-beta1 signaling abnormalities in the Gata1low mouse model of myelofibrosis. Blood. 2013;121:3345–63. Strong experimental support of the prominent role of TGF-beta 1 signaling in the GATA-1low animal model of MF.PubMedCrossRef •• Zingariello M, Martelli F, Ciaffoni F, et al. Characterization of the TGF-beta1 signaling abnormalities in the Gata1low mouse model of myelofibrosis. Blood. 2013;121:3345–63. Strong experimental support of the prominent role of TGF-beta 1 signaling in the GATA-1low animal model of MF.PubMedCrossRef
67.
Zurück zum Zitat Baffert F, Regnier C, De Pover A, et al. Potent and selective inhibition of polycythemia by the quinoxaline JAK2 inhibitor NVP-BSK805. Mol Cancer Ther. 2010;9:1945–55.PubMedCrossRef Baffert F, Regnier C, De Pover A, et al. Potent and selective inhibition of polycythemia by the quinoxaline JAK2 inhibitor NVP-BSK805. Mol Cancer Ther. 2010;9:1945–55.PubMedCrossRef
68.
Zurück zum Zitat Quintas-Cardama A, Vaddi K, Liu P, et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood. 2010;115:3109–17.PubMedCrossRef Quintas-Cardama A, Vaddi K, Liu P, et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood. 2010;115:3109–17.PubMedCrossRef
69.
Zurück zum Zitat Pikman Y, Lee BH, Mercher T, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3:e270.PubMedCrossRef Pikman Y, Lee BH, Mercher T, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3:e270.PubMedCrossRef
70.
Zurück zum Zitat Pardanani AD, Levine RL, Lasho T, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood. 2006;108:3472–6.PubMedCrossRef Pardanani AD, Levine RL, Lasho T, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood. 2006;108:3472–6.PubMedCrossRef
71.
Zurück zum Zitat Koppikar P, Abdel-Wahab O, Hedvat C, et al. Efficacy of the JAK2 inhibitor INCB16562 in a murine model of MPLW515L-induced thrombocytosis and myelofibrosis. Blood. 2010;115:2919–27.PubMedCrossRef Koppikar P, Abdel-Wahab O, Hedvat C, et al. Efficacy of the JAK2 inhibitor INCB16562 in a murine model of MPLW515L-induced thrombocytosis and myelofibrosis. Blood. 2010;115:2919–27.PubMedCrossRef
72.
Zurück zum Zitat Wernig G, Kharas MG, Mullally A, et al. EXEL-8232, a small-molecule JAK2 inhibitor, effectively treats thrombocytosis and extramedullary hematopoiesis in a murine model of myeloproliferative neoplasm induced by MPLW515L. Leukemia. 2012;26:720–7.PubMedCrossRef Wernig G, Kharas MG, Mullally A, et al. EXEL-8232, a small-molecule JAK2 inhibitor, effectively treats thrombocytosis and extramedullary hematopoiesis in a murine model of myeloproliferative neoplasm induced by MPLW515L. Leukemia. 2012;26:720–7.PubMedCrossRef
Metadaten
Titel
Preclinical Models for Drug Selection in Myeloproliferative Neoplasms
verfasst von
Niccolò Bartalucci
Costanza Bogani
Alessandro M. Vannucchi
Publikationsdatum
01.12.2013
Verlag
Springer US
Erschienen in
Current Hematologic Malignancy Reports / Ausgabe 4/2013
Print ISSN: 1558-8211
Elektronische ISSN: 1558-822X
DOI
https://doi.org/10.1007/s11899-013-0182-1

Weitere Artikel der Ausgabe 4/2013

Current Hematologic Malignancy Reports 4/2013 Zur Ausgabe

Myelodysplastic Syndromes (M Sekeres, Section Editor)

When to Transplant MDS, and What to Do When Transplant Fails

Myeloproliferative Disorders (JJ Kiladjian, Section Editor)

Genetic Basis of MPN: Beyond JAK2-V617F

Myeloproliferative Disorders (JJ Kiladjian, Section Editor)

WHO Classification of Myeloproliferative Neoplasms (MPN): A Critical Update

Myeloproliferative Disorders (JJ Kiladjian, Section Editor)

Molecular Classification of Myeloproliferative Neoplasms—Pros and Cons

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

CUP-Syndrom: Künstliche Intelligenz kann Primärtumor finden

30.04.2024 Künstliche Intelligenz Nachrichten

Krebserkrankungen unbekannten Ursprungs (CUP) sind eine diagnostische Herausforderung. KI-Systeme können Pathologen dabei unterstützen, zytologische Bilder zu interpretieren, um den Primärtumor zu lokalisieren.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.