Skip to main content
Erschienen in: Allergy, Asthma & Clinical Immunology 1/2020

Open Access 01.12.2020 | Research

Predominant patterns of β-lactam hypersensitivity in a single German Allergy Center: exanthem induced by aminopenicillins, anaphylaxis by cephalosporins

verfasst von: Philipp Schrüfer, Knut Brockow, Johanna Stoevesandt, Axel Trautmann

Erschienen in: Allergy, Asthma & Clinical Immunology | Ausgabe 1/2020

Abstract

Background

Penicillins and other β-lactam antibiotics are the most common elicitors of allergic drug reaction. However, data on the pattern of clinical reaction types elicited by specific β-lactams are scarce and inconsistent. We aimed to determine patterns of β-latam allergy, i.e. the association of a clinical reaction type with a specific β-lactam antibiotic.

Methods

We retrospectively evaluated data from 800 consecutive patients with suspected β-lactam hypersensitivity over a period of 11 years in a single German Allergy Center.

Results

β-lactam hypersensitivity was definitely excluded in 595 patients, immediate-type (presumably IgE-mediated) hypersensitivity was diagnosed in 70 and delayed-type hypersensitivity in 135 cases. Most (59 out of 70, 84.3%) immediate-type anaphylactic reactions were induced by a limited number of cephalosporins. Delayed reactions were regularly caused by an aminopenicillin (127 out of 135, 94.1%) and usually manifested as a measles-like exanthem (117 out of 135, 86.7%). Intradermal testing proved to be the most useful method for diagnosing β-lactam allergy, but prick testing was already positive in 24 out of 70 patients with immediate-type hypersensitivity (34.3%). Patch testing in addition to intradermal testing did not provide additional information for the diagnosis of delayed-type hypersensitivity. Almost all β-lactam allergic patients tolerated at least one, usually several alternative substances out of the β-lactam group.

Conclusions

We identified two patterns of β-lactam hypersensitivity: aminopenicillin-induced exanthem and anaphylaxis triggered by certain cephalosporins. Intradermal skin testing was the most useful method to detect both IgE-mediated and delayed-type β-lactam hypersensitivity.
Hinweise

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13223-020-00488-0.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
DRESS
Drug reaction with eosinophilia and systemic symptoms
FDE
Fixed drug eruption
SDRIFE
Symmetrical drug-related intertriginous and flexural exanthem

Background

Among commonly used drugs, β-lactam antibiotics, particularly penicillins and cephalosporins, are most frequently associated with an allergic hypersensitivity reaction [1]. Up to 10% of the population claim to be allergic to penicillin [2] though penicillin allergy can be confirmed in only a minority of cases. The negative impact of unverified penicillin allergy on future antibiotic treatment and subsequent health care costs was clearly demonstrated [3, 4].
The sheer number of cases impedes thorough diagnostic work-up of all patients claiming to be allergic to β-lactam antibiotics by an allergy specialist. Once an acute infection requires immediate antibiotic treatment, there is usually no time for testing, and/or equipment and specialist knowledge are not available. The clinical picture and diagnosis of an allergic reaction induced by penicillin or other β-lactam antibiotics is comprehensively presented in reviews and guidelines [5, 6]. However, it remains unknown whether all individual β-lactams are regularly associated with the entire clinical spectrum of drug hypersensitivity reactions.
With the present data evaluation in a single Allergy Center, we aimed: (i) To identify clinical reaction patterns and assess their association with specific β-lactam antibiotics. (ii) To assess the utility of currently available diagnostic methods for different reaction types. (iii) To evaluate whether patients with confirmed penicillin or cephalosporin allergy tolerate an alternative β-lactam.

Methods

Patients

We retrospectively evaluated 800 patients referred to our Allergy Center from January 2009 to December 2019 for diagnostic work-up of an immediate-type or delayed-type hypersensitivity reaction attributed to a β-lactam antibiotic by the treating physician. The severity of immediate reactions (i.e. anaphylaxis) was classified as mild, moderate or severe as specified in Additional file 1 [7]. Delayed reactions included measles-like (maculo-papular) exanthem, symmetrical drug-related intertriginous and flexural exanthem (SDRIFE), fixed drug eruption (FDE), and drug reaction with eosinophilia and systemic symptoms (DRESS). The institutional review board of the University Hospital Würzburg consented to the retrospective review and publication of anonymized data.

β-lactam-specific serum IgE

Immunoglobulin E binding to benzyl penicilloyl, phenoxymethyl penicilloyl, amoxicilloyl, ampicilloyl, and cefaclor was determined by ImmunoCAP (Thermo Fisher Scientific, Freiburg, Germany) [8]. A value of > 0.35 kUA/L was considered significant only in patients with a convincing history of an IgE-mediated reaction, i.e. the anaphylaxis spectrum.

β-lactam skin testing

Skin testing was performed according to international guidelines and included reading at 15 min in suspected immediate reactions and additional readings on days two, three, and four in delayed reactions [9]. Patients were tested with a series of different penicillins and cephalosporins; the concentrations used for patch, prick, and intradermal skin testing are detailed in Additional file 2. Test concentrations for intradermal testing are within the range recommended in guidelines, for prick and patch testing comparatively high concentrations were used in our Allergy Center (Additional file 2). At the 15 min reading, a wheal of more than 3 mm in diameter with surrounding erythema was considered a positive prick test result, and a wheal of at least 6 mm was assessed as positive in intradermal testing. An erythematous and infiltrated plaque or eczematous lesion, clearly visible and palpable on days two, three, and four was interpreted as a positive delayed-type skin test reaction [10].

β-lactam challenge testing

Patients with negative β-lactam-specific IgE and negative skin test results underwent diagnostic challenge. Challenge testing was also performed to identify an alternative tolerated β-lactam antibiotic in patients with proven β-lactam allergy. General principles of our protocol are based on guideline recommendations [11]: (i) Provocation testing was performed after a minimum of 6 weeks following a delayed reaction, and a minimum of 2 weeks following an immediate reaction. (ii) β-lactam doses were incrementally increased to an average daily dose and adapted to age, kidney function or weight if necessary (Additional file 2). (iii) Intervals of 30 min were kept between individual doses. (iv) Patients were observed for at least four hours after the last dose and were advised to present for objective examination if any symptoms developed within the next hours or days. Primary aim of the prolonged monitoring was not only to observe a reaction (IgE-mediated anaphylaxis will develop within 30 min, a delayed-type reaction at earliest after several hours) but rather to calm down the oftentimes quite anxious patient before he leaves definitely the Allergy Center.

Results

In 205 out of total 800 evaluated patients, a diagnosis of β-lactam hypersensitivity could be established in our Allergy Center, based on an overall assessment including history, the clinical reaction and results of testing. β-lactam hypersensitivity could be definitely excluded in the remaining 595 cases by negative serum IgE and negative skin testing followed by challenge of the incriminated β-lactam antibiotic (data not shown). The time interval between the β-lactam associated reaction and allergy testing of all 800 patients was ≤ 1 year in 491 cases, > 1 to 5 years in 79, > 5 to 10 years in 30, > 10 years in 181, unclear or not sufficiently documented in 19.

Immediate-type β-lactam hypersensitivity

Out of 205 cases with β-lactam hypersensitivity, an immediate-type (presumably IgE-mediated) reaction was diagnosed in 70 (34.1%) (Table 1, Fig. 1). Diagnosis was based on positive testing (i.e. prick testing, intradermal testing, serum IgE) together with a convincing history in 65 cases (92.9%), in two on a positive challenge and in the remaining three on history alone. Twenty-six patients developed predominantly urticaria/angioedema with negligible to minor systemic signs; 44 moderate to severe anaphylaxis. Fifty-nine out of the 70 immediate reactions were induced by a cephalosporin (84.3%) (Table 1). In 34 cases with immediate-type β-lactam hypersensitivity, the β-lactam antibiotic was administered intravenously; 24 out of these developed an intraoperative anaphylactic incident during general anesthesia.
Table 1
Diagnosis, causal as well as tolerated β-lactam antibiotic in 205 patients with β-lactam hypersensitivity
 
Immediate-type hypersensitivity (n = 70)
Delayed-type hypersensitivity (n = 135)
Males/females
28 / 42
48 / 87
Median age (range, years)
47 (11–76)
50 (7–83]
Anaphylaxis
 Mild
26
n.a.
 Moderate
27
 Severe
17
Delayed reaction
 Measles-like exanthem
n.a.
117
 SDRIFE
12
 FDE
3
 DRESS
3
Causal β-lactam antibiotic
 Aminopenicillin (amoxicillin or ampicillin)
3
91
 Aminopenicillin + benzyl penicillin
2
36
 Cefuroxime
12
2
 Cefazolin
9
0
 Ceftriaxone
4
1
 Cefaclor
4
0
 Several cephalosporins
18
1
 Cephalosporin + aminopenicillin
12
0
 Benzyl / phenoxymethyl penicillin
3
3
 Piperacillin + tazobactam
3
0
 Flucloxacillin
0
1
Tolerated β-lactam antibiotics (several different β-lactams per case possible)
 Aminopenicillin (amoxicillin or ampicillin)
31
4
 Cephalosporin
58
179
 Phenoxymethyl penicillin
32
48
DRESS, drug reaction with eosinophilia and systemic symptoms; FDE, fixed drug eruption; SDRIFE, symmetrical drug-related intertriginous and flexural exanthem; n.a., not applicable

Delayed-type β-lactam hypersensitivity

Out of 205 cases, delayed-type β-lactam hypersensitivity was diagnosed in 135 patients (65.9%). Out of these, 117 developed a measles-like exanthem (86.7%) and 12 a SDRIFE reaction pattern (8.9%) (Table 1). A comparatively small number of cases were diagnosed as FDE (n = 3) or DRESS (n = 3). Diagnosis of these forms of a drug hypersensitivity reaction was based on established clinical and laboratory criteria [1214]. The three DRESS cases developed a skin eruption compatible with acute generalized exanthematous pustulosis (AGEP), but due to accompanying hepatitis the reaction had to be classified finally as DRESS [13]. Most delayed reactions (n = 127, 94.1%) were caused by the aminopenicillins amoxicillin or ampicillin. Thirty-six out of the 127 patients (28.3%) with delayed-type aminopenicillin hypersensitivity were concomitantly sensitized to benzyl penicillin (Table 1).

β-lactam-specific serum IgE and skin testing

Test results are depicted in detail in Table 2 and are summarized in Fig. 1. In 24 out of 70 cases (34.3%) with immediate-type β-lactam hypersensitivity, the prick test was clearly positive after 15 min. Thirty-four (48.6%) cases of immediate-type β-lactam hypersensitivity could only be detected by intradermal testing, the prick test yielded a (false) negative result (Table 2). In seven cases, the diagnosis of IgE-mediated allergy was based on the detection of β-lactam-specific serum IgE together with a convincing history (Table 2, Fig. 1). One-hundred-fifteen out of 135 patients (85.2%) with delayed-type hypersensitivity had a positive intradermal test. Skin prick testing was also positive in 68 of 115 intradermal test-positive individuals (59.1%) with delayed-type hypersensitivity.
Table 2
Results of β-lactam-specific serum IgE, skin and challenge testing
 
Serum IgE
Prick
Intradermal
Patch
Challenge
Cases (n)
Immediate-type hypersensitivity (n = 70)
 + 
n.d
n.d
n.a
n.d
7
 + 
n.d
n.d
6
 + 
 + 
n.d
18
 + 
n.d
34
 + 
2
Refused
3
Delayed-type hypersensitivity (n = 135)
n.a.
 + 
 + 
n.d
6
 + 
 + 
n.d
n.d
8
 + 
 + 
 + 
n.d
54
 + 
n.d
n.d
1
 + 
n.d
33
 + 
 + 
n.d
11
 + 
n.d
n.d
3
 + 
17
Refused
2
 + , Positive result; –, negative result; n.a., not applicable; n.d., not done. The criteria defining positive serum IgE, positive prick, positive intradermal, and positive patch testing are described in the Sect ."Methods"

Diagnostic β-lactam challenge testing

Both, prick and intradermal testing were false negative in only 2 out of 70 cases of immediate-type β-lactam hypersensitivity (2.9%), and the diagnosis was confirmed by challenge which triggered an anaphylactic reaction (Table 2, Fig. 1). In 17 skin test-negative patients, delayed-type hypersensitivity was confirmed by positive challenge; thirteen patients developed measles-like exanthem, three a SDRIFE, and one FDE.

Challenge testing to identify an alternative tolerated β-lactam antibiotic

In 177 out of 205 cases with β-lactam hypersensitivity (86.3%), we identified at least one tolerated alternative β-lactam antibiotic by challenge testing (Fig. 1). Patients with delayed-type aminopenicillin hypersensitivity tolerated at least one, mostly two or three alternative cephalosporins without an aminobenzyl R1 side chain, i.e. cefuroxime, cefazolin, and ceftriaxone (Table 1). In patients with immediate-type cephalosporin hypersensitivity, challenge testing proved regularly tolerance of another cephalosporin carrying a different R1 side chain, phenoxymethyl penicillin, and aminopenicillins (Table 1).

Discussion

Our data from a single German Allergy Center indicate that immediate anaphylactic reactions were usually triggered by a cephalosporin, whereas the aminopenicillins amoxicillin and ampicillin predominantly caused an exanthematous skin rash. Importantly, for all reaction types and β-lactams, intradermal testing seems to be the most useful method to detect sensitization.
Single cephalosporins including cefuroxime, cefazolin, and ceftriaxone were responsible for the majority of (presumably IgE-mediated) immediate-type hypersensitivity reactions to β-lactam antibiotics in our series. Single shot intravenous administration of cephalosporins has accordingly been identified as an important elicitor of intraoperative anaphylaxis leading to hypotension and increased ventilation pressure [15, 16].
The different clinical forms of delayed-type β-lactam hypersensitivity are comprehensively described and discussed in a number of recent reviews [5, 6, 17]. Surprisingly, the by far most common clinical manifestation, measles-like exanthem, receives relatively little attention [18]. The term uncomplicated exanthem has been introduced in order to underline the absence of severe systemic involvement. Sub-febrile temperature or a slight increase of liver enzymes are occasionally observed during episodes of an exanthematous rash, but may also be caused by the infectious disease treated with the β-lactam antibiotic. Aminopenicillin-induced measles-like exanthem does not belong to the spectrum of severe drug reactions, and the fear that Stevens-Johnson syndrome or toxic epidermal necrolysis will develop, if the causative aminopenicillin is continued or re-administered is not justified [19].
According to international standards, we used a commercial immunoassay to determine allergen-specific IgE [8, 20]. Cefaclor is currently the only available cephalosporin for ImmunoCAP testing. Our data, however, show, that immediate-type β-lactam hypersensitivity is mainly triggered by other cephalosporins including ceftriaxone, cefazolin or cefuroxime, for which no validated serological IgE test exits [21]. Additional laboratory methods including the basophil activation test or the lymphocyte transformation test may yield sensitive and specific results, e.g. in the diagnosis of aminopenicillin-induced exanthem [22, 23].
The most powerful method to detect β-lactam allergy in our data evaluation was intradermal testing. As a requirement, the respective β-lactam must be available for intravenous administration, and 1:10 or a higher dilution is needed to obtain a non-irritating test concentration. The intradermal test concentrations used in our series are within the range of published standards [9]. Prick testing can be done with undiluted β-lactams including tablets but is commonly considered to be diagnostically less helpful than intradermal testing [24]. Our current data, however, show that a reasonable proportion of patients with immediate-type β-lactam hypersensitivity (34.3%) has a positive prick test result. It was postulated that skin testing for the diagnosis of delayed (non-immediate) reactions to β-lactam antibiotics may be optimized by a combination of prick, intradermal, and patch tests [17]. Patch testing in our series was only positive in patients with a concurrently positive intradermal test and, therefore, did not add to the overall utility of testing and might be dispensable.
According to current recommendations, oral β-lactam antibiotics were preferably used for challenge testing in our series if available. Intravenous challenge, however, has the clear advantage that the infusion can be stopped immediately in case of an anaphylactic reaction [11]. The optimal dose for challenge testing is still controversially debated. A certain, albeit low threshold dose, is required in order to reliably elicit an objective clinical reaction in allergic individuals. Our protocol includes the incremental increase to an average daily dose of the respective β-lactam, which should be sufficient to trigger symptoms in a sensitized patient. The risk of sensitization or an immunological boost by challenge testing is estimated to be very low [25, 26]. Accordingly, we are not aware of any patient that reacted again to a β-lactam antibiotic which was previously tolerated in our challenge procedure.
Co-sensitization to numerous or even all different β-lactam antibiotics seems to be extremely rare. The side chain structure of the β-lactam ring of penicillins (R at C6) and cephalosporins (R1 at C7) seems to be the most important antigenic determinant [27]. The structural similarity of the R side chain of aminopenicillins and benzyl penicillin probably explains the 28.3% rate of cross-reactions observed in this series. The cross-reactivity between aminopenicillins and certain (amino) cephalosporins, namely cefalexin, cefaclor, and cefadroxil, may be attributed to an identical or very similar R and R1 side chain [28]. In this series and in accordance with published data, we demonstrate that patients with aminopenicillin allergy almost always tolerate cephalosporins with a different R1 side chain including cefazolin, ceftriaxone, and cefuroxime [29, 30].

Limitations of our study

Data were retrospectively extracted from patient records, resulting in a certain methodological inhomogeneity, e.g. not all patients were examined with all skin test methods. The frequency of certain β-lactam antibiotics as a trigger of an allergic reaction depends on general usage and prescription rate. Consequently, our data from a single German Allergy Center may not be generalizable to other regions or study centers.

Conclusions

i.
In this patient series, immediate-type β-lactam hypersensitivity was most commonly triggered by single cephalosporins including cefuroxime, cefazolin, and ceftriaxone, frequently as full-blown anaphylaxis.
 
ii.
The aminopenicillins amoxicillin and ampicillin were leading elicitors of delayed-type β-lactam hypersensitivity. They mainly caused measles-like exanthem; in contrast to other series, other forms of a delayed drug reaction including SDRIFE, FDE, and DRESS were far less common.
 
iii.
Intradermal testing of β-lactam antibiotics in a non-irritating dilution was the most powerful method for the diagnosis of both immediate and delayed-type β-lactam hypersensitivity. Preliminary prick testing detected IgE-mediated allergy in almost one third of cases. In our hands, additional patch testing does not add to the overall utility of skin testing.
 
iv.
Almost all our patients with proven β-lactam allergy tolerated at least one, usually several alternative substances out of the β-lactam group.
 

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13223-020-00488-0.

Acknowledgements

None.
The institutional review board of the University Hospital Würzburg consented to the retrospective review and publication of anonymized data.
No similar data has been or will be published or submitted elsewhere while our manuscript is under consideration at Allergy, Asthma & Clinical Immunology.

Competing interests

The authors declare that they have no conflicts of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Demoly P, Adkinson NF, Brockow K, et al. International consensus on drug allergy. Allergy. 2014;69(4):420–37.CrossRef Demoly P, Adkinson NF, Brockow K, et al. International consensus on drug allergy. Allergy. 2014;69(4):420–37.CrossRef
2.
Zurück zum Zitat Macy E. Penicillin and beta-lactam allergy: epidemiology and diagnosis. Curr Allergy Asthma Rep. 2014;14(11):476.CrossRef Macy E. Penicillin and beta-lactam allergy: epidemiology and diagnosis. Curr Allergy Asthma Rep. 2014;14(11):476.CrossRef
3.
Zurück zum Zitat Li M, Krishna MT, Razaq S, Pillay D. A real-time prospective evaluation of clinical pharmaco-economic impact of diagnostic label of “penicillin allergy” in a UK teaching hospital. J Clin Pathol. 2014;67(12):1088–92.CrossRef Li M, Krishna MT, Razaq S, Pillay D. A real-time prospective evaluation of clinical pharmaco-economic impact of diagnostic label of “penicillin allergy” in a UK teaching hospital. J Clin Pathol. 2014;67(12):1088–92.CrossRef
4.
Zurück zum Zitat Macy E, Contreras R. Health care use and serious infection prevalence associated with penicillin “allergy” in hospitalized patients: A cohort study. J Allergy Clin Immunol. 2014;133(3):790–6.CrossRef Macy E, Contreras R. Health care use and serious infection prevalence associated with penicillin “allergy” in hospitalized patients: A cohort study. J Allergy Clin Immunol. 2014;133(3):790–6.CrossRef
5.
Zurück zum Zitat Mirakian R, Leech SC, Krishna MT, et al. Management of allergy to penicillins and other beta-lactams. Clin Exp Allergy. 2015;45(2):300–27.CrossRef Mirakian R, Leech SC, Krishna MT, et al. Management of allergy to penicillins and other beta-lactams. Clin Exp Allergy. 2015;45(2):300–27.CrossRef
6.
Zurück zum Zitat Blanca M, Romano A, Torres MJ, et al. Update on the evaluation of hypersensitivity reactions to betalactams. Allergy. 2009;64(2):183–93.CrossRef Blanca M, Romano A, Torres MJ, et al. Update on the evaluation of hypersensitivity reactions to betalactams. Allergy. 2009;64(2):183–93.CrossRef
7.
Zurück zum Zitat Brown SG. Clinical features and severity grading of anaphylaxis. J Allergy Clin Immunol. 2004;114(2):371–6.CrossRef Brown SG. Clinical features and severity grading of anaphylaxis. J Allergy Clin Immunol. 2004;114(2):371–6.CrossRef
8.
Zurück zum Zitat Blanca M, Mayorga C, Torres MJ, et al. Clinical evaluation of Pharmacia CAP System RAST FEIA amoxicilloyl and benzylpenicilloyl in patients with penicillin allergy. Allergy. 2001;56(9):862–70.CrossRef Blanca M, Mayorga C, Torres MJ, et al. Clinical evaluation of Pharmacia CAP System RAST FEIA amoxicilloyl and benzylpenicilloyl in patients with penicillin allergy. Allergy. 2001;56(9):862–70.CrossRef
9.
Zurück zum Zitat Brockow K, Garvey LH, Aberer W, et al. Skin test concentrations for systemically administered drugs – an ENDA/EAACI Drug Allergy Interest Group position paper. Allergy. 2013;68(6):702–12.CrossRef Brockow K, Garvey LH, Aberer W, et al. Skin test concentrations for systemically administered drugs – an ENDA/EAACI Drug Allergy Interest Group position paper. Allergy. 2013;68(6):702–12.CrossRef
10.
Zurück zum Zitat Friedmann PS, Ardern-Jones M. Patch testing in drug allergy. Curr Opin Allergy Clin Immunol. 2010;10(4):291–6.CrossRef Friedmann PS, Ardern-Jones M. Patch testing in drug allergy. Curr Opin Allergy Clin Immunol. 2010;10(4):291–6.CrossRef
11.
Zurück zum Zitat Aberer W, Bircher A, Romano A, et al. Drug provocation testing in the diagnosis of drug hypersensitivity reactions: general considerations. Allergy. 2003;58(9):854–63.CrossRef Aberer W, Bircher A, Romano A, et al. Drug provocation testing in the diagnosis of drug hypersensitivity reactions: general considerations. Allergy. 2003;58(9):854–63.CrossRef
12.
Zurück zum Zitat Flowers H, Brodell R, Brents M, Wyatt JP. Fixed drug eruptions: presentation, diagnosis, and management. South Med J. 2014;107(11):724–7.CrossRef Flowers H, Brodell R, Brents M, Wyatt JP. Fixed drug eruptions: presentation, diagnosis, and management. South Med J. 2014;107(11):724–7.CrossRef
13.
Zurück zum Zitat Kano Y, Shiohara T. The variable clinical picture of drug-induced hypersensitivity syndrome/drug rash with eosinophilia and systemic symptoms in relation to the eliciting drug. Immunol Allergy Clin North Am. 2009;29(3):481–501.CrossRef Kano Y, Shiohara T. The variable clinical picture of drug-induced hypersensitivity syndrome/drug rash with eosinophilia and systemic symptoms in relation to the eliciting drug. Immunol Allergy Clin North Am. 2009;29(3):481–501.CrossRef
14.
Zurück zum Zitat Häusermann P, Harr T, Bircher AJ. Baboon syndrome resulting from systemic drugs: is there strife between SDRIFE and allergic contact dermatitis syndrome? Contact Dermatitis. 2004;51(5–6):297–310.CrossRef Häusermann P, Harr T, Bircher AJ. Baboon syndrome resulting from systemic drugs: is there strife between SDRIFE and allergic contact dermatitis syndrome? Contact Dermatitis. 2004;51(5–6):297–310.CrossRef
15.
Zurück zum Zitat Volcheck GW, Hepner DL. Identification and management of perioperative anaphylaxis. J Allergy Clin Immunol Pract. 2019;7(7):2134–42.CrossRef Volcheck GW, Hepner DL. Identification and management of perioperative anaphylaxis. J Allergy Clin Immunol Pract. 2019;7(7):2134–42.CrossRef
16.
Zurück zum Zitat Trautmann A, Seidl C, Stoevesandt J, Seitz CS. General anaesthesia-induced anaphylaxis: impact of allergy testing on subsequent anaesthesia. Clin Exp Allergy. 2016;46(1):125–32.CrossRef Trautmann A, Seidl C, Stoevesandt J, Seitz CS. General anaesthesia-induced anaphylaxis: impact of allergy testing on subsequent anaesthesia. Clin Exp Allergy. 2016;46(1):125–32.CrossRef
17.
Zurück zum Zitat Romano A, Blanca M, Torres MJ, et al. Diagnosis of nonimmediate reactions to beta-lactam antibiotics. Allergy. 2004;59(11):1153–60.CrossRef Romano A, Blanca M, Torres MJ, et al. Diagnosis of nonimmediate reactions to beta-lactam antibiotics. Allergy. 2004;59(11):1153–60.CrossRef
18.
Zurück zum Zitat Brockow K, Ardern-Jones MR, Mockenhaupt M, et al. EAACI position paper on how to classify cutaneous manifestations of drug hypersensitivity. Allergy. 2019;74(1):14–27.CrossRef Brockow K, Ardern-Jones MR, Mockenhaupt M, et al. EAACI position paper on how to classify cutaneous manifestations of drug hypersensitivity. Allergy. 2019;74(1):14–27.CrossRef
19.
Zurück zum Zitat Trautmann A, Benoit S, Goebeler M, Stoevesandt J. “Treating through” Decision and follow-up in antibiotic therapy-associated exanthemas. J Allergy Clin Immunol Pract. 2017;5(6):1650–6.CrossRef Trautmann A, Benoit S, Goebeler M, Stoevesandt J. “Treating through” Decision and follow-up in antibiotic therapy-associated exanthemas. J Allergy Clin Immunol Pract. 2017;5(6):1650–6.CrossRef
20.
Zurück zum Zitat Macy E, Goldberg B, Poon KY. Use of commercial anti-penicillin IgE fluorometric enzyme immunoassays to diagnose penicillin allergy. Ann Allergy Asthma Immunol. 2010;105(2):136–41.CrossRef Macy E, Goldberg B, Poon KY. Use of commercial anti-penicillin IgE fluorometric enzyme immunoassays to diagnose penicillin allergy. Ann Allergy Asthma Immunol. 2010;105(2):136–41.CrossRef
21.
Zurück zum Zitat Uyttebroek AP, Decuyper II, Bridts CH, et al. Cefazolin hypersensitivity: toward optimized diagnosis. J Allergy Clin Immunol Pract. 2016;4(6):1232–6.CrossRef Uyttebroek AP, Decuyper II, Bridts CH, et al. Cefazolin hypersensitivity: toward optimized diagnosis. J Allergy Clin Immunol Pract. 2016;4(6):1232–6.CrossRef
22.
Zurück zum Zitat Mayorga C, Celik G, Rouzaire P, et al. In vitro tests for drug hypersensitivity reactions: an ENDA/EAACI Drug Allergy Interest Group position paper. Allergy. 2016;71(8):1103–34.CrossRef Mayorga C, Celik G, Rouzaire P, et al. In vitro tests for drug hypersensitivity reactions: an ENDA/EAACI Drug Allergy Interest Group position paper. Allergy. 2016;71(8):1103–34.CrossRef
23.
Zurück zum Zitat Trautmann A, Seitz CS, Stoevesandt J, Kerstan A. Aminopenicillin-associated exanthem: lymphocyte transformation testing revisited. Clin Exp Allergy. 2014;44(12):1531–8.CrossRef Trautmann A, Seitz CS, Stoevesandt J, Kerstan A. Aminopenicillin-associated exanthem: lymphocyte transformation testing revisited. Clin Exp Allergy. 2014;44(12):1531–8.CrossRef
24.
Zurück zum Zitat Torres MJ, Romano A, Mayorga C, et al. Diagnostic evaluation of a large group of patients with immediate allergy to penicillins: the role of skin testing. Allergy. 2001;56(9):850–6.CrossRef Torres MJ, Romano A, Mayorga C, et al. Diagnostic evaluation of a large group of patients with immediate allergy to penicillins: the role of skin testing. Allergy. 2001;56(9):850–6.CrossRef
25.
Zurück zum Zitat Solensky R, Earl HS, Gruchalla RS. Lack of penicillin resensitization in patients with a history of penicillin allergy after receiving repeated penicillin courses. Arch Intern Med. 2002;162(7):822–6.CrossRef Solensky R, Earl HS, Gruchalla RS. Lack of penicillin resensitization in patients with a history of penicillin allergy after receiving repeated penicillin courses. Arch Intern Med. 2002;162(7):822–6.CrossRef
26.
Zurück zum Zitat Ponvert C, Weilenmann C, Wassenberg J, et al. Allergy to betalactam antibiotics in children: a prospective follow-up study in retreated children after negative responses in skin and challenge tests. Allergy. 2007;62(1):42–6.CrossRef Ponvert C, Weilenmann C, Wassenberg J, et al. Allergy to betalactam antibiotics in children: a prospective follow-up study in retreated children after negative responses in skin and challenge tests. Allergy. 2007;62(1):42–6.CrossRef
27.
Zurück zum Zitat Pichichero ME, Zagursky R. Penicillin and cephalosporin allergy. Ann Allergy Asthma Immunol. 2014;112(5):404–12.CrossRef Pichichero ME, Zagursky R. Penicillin and cephalosporin allergy. Ann Allergy Asthma Immunol. 2014;112(5):404–12.CrossRef
28.
Zurück zum Zitat Blanca M, Mayorga C, Torres MJ, et al. Side-chain-specific reactions to betalactams: 14 years later. Clin Exp Allergy. 2002;32(2):192–7.CrossRef Blanca M, Mayorga C, Torres MJ, et al. Side-chain-specific reactions to betalactams: 14 years later. Clin Exp Allergy. 2002;32(2):192–7.CrossRef
29.
Zurück zum Zitat Trcka J, Seitz CS, Bröcker EB, Gross GE, Trautmann A. Aminopenicillin-induced exanthema allows treatment with certain cephalosporins or phenoxymethyl penicillin. J Antimicro Chemother. 2007;60(1):107–11.CrossRef Trcka J, Seitz CS, Bröcker EB, Gross GE, Trautmann A. Aminopenicillin-induced exanthema allows treatment with certain cephalosporins or phenoxymethyl penicillin. J Antimicro Chemother. 2007;60(1):107–11.CrossRef
30.
Zurück zum Zitat Romano A, Valluzzi RL, Caruso C, Zaffiro A, Quaratino D, Gaeta F. Tolerability of cefazolin and ceftibuten in patients with IgE-mediated aminopenicillin allergy. J Allergy Clin Immunol Pract 2020. Romano A, Valluzzi RL, Caruso C, Zaffiro A, Quaratino D, Gaeta F. Tolerability of cefazolin and ceftibuten in patients with IgE-mediated aminopenicillin allergy. J Allergy Clin Immunol Pract 2020.
Metadaten
Titel
Predominant patterns of β-lactam hypersensitivity in a single German Allergy Center: exanthem induced by aminopenicillins, anaphylaxis by cephalosporins
verfasst von
Philipp Schrüfer
Knut Brockow
Johanna Stoevesandt
Axel Trautmann
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Allergy, Asthma & Clinical Immunology / Ausgabe 1/2020
Elektronische ISSN: 1710-1492
DOI
https://doi.org/10.1186/s13223-020-00488-0

Weitere Artikel der Ausgabe 1/2020

Allergy, Asthma & Clinical Immunology 1/2020 Zur Ausgabe

Eingreifen von Umstehenden rettet vor Erstickungstod!

15.05.2024 Fremdkörperaspiration Nachrichten

Wer sich an einem Essensrest verschluckt und um Luft ringt, benötigt vor allem rasche Hilfe. Dass Umstehende nur in jedem zweiten Erstickungsnotfall bereit waren, diese zu leisten, ist das ernüchternde Ergebnis einer Beobachtungsstudie aus Japan. Doch es gibt auch eine gute Nachricht.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Nur selten Nachblutungen nach Abszesstonsillektomie

03.05.2024 Tonsillektomie Nachrichten

In einer Metaanalyse von 18 Studien war die Rate von Nachblutungen nach einer Abszesstonsillektomie mit weniger als 7% recht niedrig. Nur rund 2% der Behandelten mussten nachoperiert werden. Die Therapie scheint damit recht sicher zu sein.

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.