Skip to main content
Erschienen in: Radiation Oncology 1/2018

Open Access 01.12.2018 | Research

Preliminary toxicity results using partial breast 3D-CRT with once daily hypo-fractionation and deep inspiratory breath hold

verfasst von: Roman O. Kowalchuk, Kara D. Romano, Daniel M. Trifiletti, Sunil W. Dutta, Timothy N. Showalter, Monica M. Morris

Erschienen in: Radiation Oncology | Ausgabe 1/2018

Abstract

Background

To evaluate the clinical outcomes of patients treated with 3D conformal Hypo-fractionated, deep Inspiratory breath-hold (DIBH), Partial breast radiotherapy, termed “HIP.” HIP was implemented to merge the schedule of once-daily breast hypofractionation with partial breast treatment.

Methods

We identified 38 breast cancers in 37 patients from 2013 to 2014 treated at our institution with HIP following lumpectomy for early stage breast cancer. Patients received a hypo-fractionated course (≤ 20 fractions) of once daily radiation to the partial breast (lumpectomy cavity + margin) utilizing DIBH regardless of laterality. Clinical and treatment-related characteristics were obtained, including target volume and organ at risk (OAR) dosimetric characteristics. Patients were followed clinically and with at least yearly mammograms for up to 36 months (range 5–36 months). Acute and late toxicity was scored using the Common Terminology Criteria for Adverse Events (CTCAE) v4.03.

Results

Patients received a median dose of 42.56 Gy in 16 Fractions (Fx) (range 40.05–53.2 Gy; and 15–20 Fx). OAR doses were low, with a mean heart dose of 0.37 Gy, an ipsilateral lung V20 mean of 4%, and a contralateral lung V5 of 1%. Acute toxicity (≤ grade 2) was present in 79% (n = 30) of the cases, with dermatitis being the most common finding (63%). Late grade 1–2 toxicity was present in 42% (n = 16) of the cases, with hyperpigmentation being the most common finding (n = 9). There were no severe acute or late toxicities (≥ grade 3). At a median follow up of 21 months, there were no local, regional, or distant failures.

Conclusions

We report limited toxicity in this low risk cohort of patients with early stage breast cancer treated with HIP, a unique and logical combination of 3-D conformal external beam radiotherapy, moderate hypo-fractionation, and DIBH.
Abkürzungen
ALND
Axillary lymph node dissection
APBI
Accelerated partial breast irradiation
ASTRO
American Society for Radiation Oncology
BCT
Breast conservation therapy
BED
Biologically equivalent dose
BED10
Biologically effective dose for tissue/tumor with an α/β ratio of 10, 3 and 1.5, respectively
CT
Computed tomography
CTCAE v4.03
Common Toxicity Criteria for Adverse Events
CTV
Clinical target volume
DCIS
Ductal carcinoma in situ
DIBH
Deep inspiratory breath-hold
Dmax
Maximum point dose
EQD2
Equivalent dose in 2 Gy fractions
ER
Estrogen receptor
Fx
Fractions
GTV
Gross tumor volume
Gy
Gray
HER2
Human epidermal growth factor receptor 2
HIP
Hypo-fractionated, deep Inspiratory breath-hold, Partial breast radiotherapy
IBTR
Ipsilateral breast tumor recurrence
IRB
Institutional review board
LVSI
Lympho-vascular space invasion
NSABP
National Surgical Adjuvant Breast and Bowel Project
PBI
Partial breast irradiation
PR
Progesterone receptor
PTV
Planning target volume
RMH/GOC
Royal Marsden Hospital / Gloucestershire Oncology Center
RT
Radiation therapy
RTOG
Radiation Therapy Oncology Group
SLNBx
Sentinel lymph node biopsy
V20
Volume of an organ receiving at least 20 Gy
V5
Volume of an organ receiving at least 5 Gy
WBI
Whole breast irradiation

Background

Breast cancer is the most commonly diagnosed malignancy among women in the United States. In 2013, there were an estimated 232,340 new cases accounting for 29% of all newly diagnosed cancers [1]. Breast conservation therapy (BCT), which includes lumpectomy (surgical resection of the tumor alone) and radiation therapy (RT), is the nationally accepted standard treatment approach for early stage breast cancer and is used in 70% of such patients [2, 3].
The use of adjuvant whole breast irradiation (WBI) following breast conservation surgery has been demonstrated in numerous clinical trials to reduce the rates of ipsilateral breast tumor recurrence (IBTR) by over 50% compared to lumpectomy alone [4, 5]. The advantage of BCT over mastectomy is avoidance of a larger surgical procedure, shorter surgical recovery time, superior cosmetic outcomes, and organ preservation; however, the disadvantage of adjuvant WBI is the prolonged treatment time of 3–7 weeks and additional radiation-induced toxicities. With strong clinical evidence to support its use, hypo-fractionation has become increasingly popular for patients in Canada and the United States for early stage breast cancer [2, 6, 7]. There is sufficient evidence from randomized clinical trials that hypo-fractionated RT is now considered the national preferred option for the majority of patients [6, 8, 9].
Approximately 75% of breast tumor recurrences occur within or near the lumpectomy cavity, triggering attempts to decrease the volume of breast treated with radiation [1012]. PBI in conjunction with further hypofractionation, termed accelerated partial breast irradiation (APBI) can be delivered in several forms – brachytherapy with multicatheter balloons, brachytherapy with interstitial implants, or 3-dimensional conformal external beam radiotherapy (3D-CRT). Early data suggests that APBI is safe and effective, and it has been endorsed by the NCCN Guidelines [2]. Various selection criteria exist to guide clinicians in choosing the optimal patients for this technique, but generally, women at sufficient risk for local failure warranting adjuvant therapy, but not regional or distant failure, should be considered [1316].
The optimal APBI dose and fractionation is currently unclear. The National Surgical Adjuvant Breast and Bowel Project (NSABP) B-39 clinical trial used a dose of 38.5 Gy in 10 fractions delivered twice daily for 3D-CRT and 34 Gy in 10 fractions for brachytherapy [17]. The 38.5 Gy dose was chosen as the biologically equivalent dose (BED) to 45 Gy in 25 fractions assuming an alpha/beta ratio of 10. This same dose was used in the Radiation Therapy Oncology Group (RTOG) 0319 clinical trial [18]. However, this dose and fractionation has led to concerns regarding the increased incidence of late cosmetic toxicity, including subcutaneous fibrosis and fat necrosis [19]. Further, some patients and providers may prefer once-daily fractionation schedules over twice-daily. IMRT has also been used with APBI, notably in the Florence NCT02104895 trial. A dose of 30 Gy in 5 daily fractions was compared to WBI of 50 Gy in 25 fractions, with a boost of 10 Gy in five fractions. In 520 patients, no significant difference was found in ipsilateral breast tumor recurrence or overall survival, and improved acute and late cosmetic outcomes were found in the APBI group [20]. The use of interstitial multicatheter brachytherapy for APBI has been studied, and Strnad et al. presented five year results of non-inferiority of local recurrence (1.44%) and side effects [21].
Taken together, there is strong evidence for the use of moderate hypo-fractionation (15–20 fractions) and PBI. A technique for hypo-fractionated PBI using 3D-CRT with deep inspiratory breath hold (HIP: hypo-fractionated inspiratory partial breast irradiation) was implemented at our institution. The 3D-CRT PBI is a particularly useful treatment technique, as it is applicable and readily available to nearly all centers. HIP merged two types of radiation therapy in a novel way by offering “Canadian” hypo-fractionation (15–20 daily fractions) with a partial breast volume. Deep inspiration breath-hold (DIBH) was employed to reduce cardiac dose [2224] and improve target volume coverage by immobilizing the breast and decreasing toxicity to the ipsilateral lung [25].
This study seeks to identify early clinical outcomes of early stage breast cancer, including efficacy and toxicity associated with HIP.

Methods

Data collection

We conducted a retrospective analysis of 37 patients with 38 breast cancers treated with3D-CRT, hypo-fractionated PBI from 2013 to 2014 under our uniform institutional policy for HIP during this time period. Approval was obtained from institutional review board (IRB) prior to evaluating outcomes for these patients.
Clinical data was recorded for all eligible patients including: age, stage, histology, grade, estrogen/progesterone receptor status, Her-2-neu amplification status, lympho-vascular space invasion, multifocal disease, surgical margins, menopausal status, and adjuvant therapies (endocrine therapy or chemotherapy).

Treatment planning

CT simulation and technique

All patients underwent a computed tomography (CT) simulation positioned on a breast board in the supine position with arms raised overhead and a Vac-Lok (Med Tech Inc., Orange City, IA) for custom immobilization. Radio-dense markers were placed at the time of simulation to delineate the visible borders of breast tissue and the lumpectomy scar. DIBH technique was used for all patients regardless of laterality to increase the accuracy of the target volume location and reduce heart dose, as previously reported [26]. Patients were positioned with both arms raised over the head and custom immobilization. Then, the Varian real-time position management (RPM) system was used to initiate DIBH imaging and monitor the duration and displacement of each patient’s breath hold. This RPM signal was used as a baseline, and upper and lower limits of 0.5 cm from the baseline were established, such that treatment would only take place if the patient’s breath hold was within this displacement gate. Free breathing was allowed between treatment fields or if multiple breath holds were required for a given field [26]. All patients were treated with PBI using a once-daily fractionation schedule with a 3D conformal plan using multiple non-coplanar beams. Image-guidance included first day MV portal imaging and daily kV imaging to verify positioning and alignment.

Target volumes

The partial breast target volumes were based on the RTOG 1005 and NSABP B-39 clinical trials [17, 27]. The lumpectomy gross tumor volume (GTV) included all clinical and radiographic information of the excision cavity, architectural distortion, lumpectomy scar, seroma, and/or surgical clips. The use of surgical clips is standard for such cases at this institution. The lumpectomy clinical target volume (CTV) was defined as GTV + 10–15 mm uniform expansion and this was limited posteriorly at the anterior surface of the pectoralis muscles and anteriorly 5 mm from skin. The lumpectomy planning target volume (PTV) was defined as CTV + 7 - 10 mm. The beam apertures were chosen based on the PTV. To evaluate our target volume coverage and dose-volume constraints, the PTV was copied to create a PTV_Eval. The PTV_Eval was defined as PTV excluding the region outside of breast tissue, i.e. cropped posteriorly at the anterior border of the pectoralis muscles and anteriorly 5 mm from skin. One characteristic treatment plan is shown in Fig. 1.

Plan evaluation

Treatment related characteristics and dosimetric data were recorded including: laterality, total dose, number of fractions, and organ at risk data including heart mean dose, volume of heart receiving 20 Gy or more (heart V20), volume of ipsilateral lung receiving 20 Gy or more (ipsilateral lung V20), volume of contralateral lung receiving 5 Gy or more (contralateral lung V5), contralateral breast maximum and mean.

Treatment outcomes

During treatment, patients were evaluated by a physician at least once weekly, including the radiation and breast oncology teams. Clinical follow up data includes history, physical exam, and mammograms. Breast cancer recurrence was recorded as: ipsilateral breast tumor recurrence (IBTR) (in the PTV, outside the PTV, or skin), ipsilateral nodal recurrence, contralateral breast failure, or distant failure.
Toxicity was graded according to the Common Toxicity Criteria for Adverse Events (CTCAE v4.03) to evaluate both acute (≤ 90 days post-treatment) and late (> 90 days post-treatment) findings [28]. Toxicities were reported as fatigue, breast pain, dermatitis, pruritus, skin hyper/hypo-pigmentation, skin induration, skin ulceration, telangiectasia, breast fibrosis, lung complications, heart complications, and lymphopenia.

Results

Clinical characteristics

Of the 38 breast cancers in this study, 23.7% were stage 0, 86.8% were stage IA, 0% were stage IB, and 7.9% were stage IIA. Patient and tumor characteristics are listed in Table 1. All patients were deemed “suitable” or “cautionary” per ASTRO consensus guidelines for APBI [16]. While 78.9% of the patients were considered cautionary per the 2009 recommendations, this number decreased to 36.8% in the updated 2016 recommendations, as seen in Table 2 [29]. The recent update stated that ductal carcinoma in situ (DCIS) is suitable for APBI if it is screening-detected, low to intermediate nuclear grade, size ≤2.5 cm, and resected with margins negative at ≥3 mm. Of the cautionary patients, 43% were estrogen receptor negative, and 36% had invasive lobular carcinoma (ILC) on histologic review. Clinical outcomes using APBI with ILC have been found to be no different than those with invasive ductal histology, hence their inclusion in this study [30]. There were no unsuitable patients treated in this study.
Table 1
Patient and tumor characteristics of 38 breast cancers and 37 patients
Characteristics
n
%
Female
38
100
Age (median, years)
 
62 years (range: 52–79)
Laterality
 Right
18
47
 Left
20
53
Menopausal status
 Pre-menopausal
0
 
 Post-menopausal
37
97
 Unknown
1
3
Surgical margin
 Negative
37
97
 Positive
1
3
Surgery, breast
 Lumpectomy
38
100
 Mastectomy
0
 
Surgery, Axilla
 None
11
29
 SLNBx
27
71
 ALND
0
 
Histology
 DCIS
12
32
 Invasive Ductal Carcinoma
21
55
 Invasive Lobular Carcinoma
5
13
T stage
 Tis
9
24
 T1a
5
13
 T1b
9
24
 T1c
12
32
 T2
3
8
N stage
 N0
38
100
M stage
 M0
38
100
LVSI
 No
11
29
 Yes
0
 
 Not reported
27
71
Grade
 1
8
21
 2
21
55
 3
9
24
ER+
32
84
 Unknown
0
 
PR+
20
53
 Unknown
8
21
HER2+
2
5
 Unknown
12
32
Multi-focal
14
37
Hormonal therapy
28
74
Chemotherapy
5
13
Abbreviations: SLNBx sentinel lymph node biopsy, ALND axillary lymph node dissection, DCIS ductal carcinoma in situ, LVSI lympho-vascular space invasion, ER estrogen receptor, PR progesterone receptor, HER2 human epidermal growth factor receptor 2
Table 2
Patient category according to ASTRO consensus guidelines for APBI
ASTRO consensus
Category
n
%
APBI Group (2009 Original)
Suitable
8
21.1
Cautionary
30
78.9
Unsuitable
0
 
APBI Group (2016 Update)
Suitable
24
63.2
Cautionary
14
36.8
Unsuitable
0
 
Abbreviations: ASTRO American Society for Radiation Oncology

Treatment characteristics

The median total dose was 42.56 Gy (range of 40.05–53.20 Gy), over a median 16 Fx (range of 15–20 Fx). Table 3 provides radiation treatment characteristics of the entire cohort.
Table 3
Radiation treatment characteristics of 38 breast cancers treated with HIP
Characteristics
Value
Total Dose (mean, Gy)
43.54 (range: 40.05–53.20)
Total Dose (median, Gy)
42.56
Total Fractions (mean, Fx)
16 (range: 15–20)
Total Fractions (median, Fx)
16
Modality
 Photon only
33 (86.8%)
 Mixed beam (photon/electron)
5 (13.2%)
Heart mean dose (median, Gy)
0.37 (range: 0.14–0.94)
Heart mean dose, right breast (mean, Gy)
0.36
Heart mean dose, left breast (mean, Gy)
0.38
Heart V20 (mean, %)
0
Heart V20 (median, %)
0
Ipsilateral lung V20 (median, %)
4.0
Contralateral lung V5 (median, %, n = 17)
1.3
Contralateral breast Dmax (median, Gy, n = 13)
1.4
Contralateral breast mean (median, Gy, n = 13)
0.2
Abbreviations: Dmax maximum point dose

Toxicity

Toxicity data is listed in Table 4. Acute toxicity of any kind was recorded in 30 of 38 cases (79%) within 90 days of completion of treatment. There were no grade 3 or greater acute toxicities. Overall, acute dermatitis (58% grade 1 and 5% grade2) was the most common finding, followed by fatigue (8% grade 1 and 5% grade 2) and hyperpigmentation (13% grade 1). There were no cases of hypopigmentation, ulceration, telangiectasia, or fibrosis.
Table 4
Toxicity following 3D-CRT external beam HIP (according to CTCAE v 4.0)
 
Grade 1
Grade 2
Grade 3–5
Acute Toxicitya (n = 30 cases)
 Dermatitis
22
2
0
 Pruritus
1
0
0
 Hyperpigmentation
5
0
0
 Hypopigmentation
0
0
0
 Induration
2
0
0
 Ulceration
0
0
0
 Telangiectasia
0
0
0
 Fibrosis
0
0
0
 Fatigue
3
2
0
 Pain
4
1
0
Late Toxicityb (n = 16 cases)
 Dermatitis
0
0
0
 Pruritus
0
0
0
 Hyperpigmentation
0
0
0
 Hypopigmentation
9
0
0
 Induration
1
0
0
 Ulceration
0
0
0
 Telangiectasia
0
0
0
 Fibrosis
8
0
0
 Fatigue
1
0
0
 Pain
0
0
0
a≤ 90 days from the start of radiation therapy
b> 90 days from the start of radiation therapy
Late toxicity of any kind was recorded in 16 of 36 cases (42%). Long term data was not available for 2 cases. There were no grade 2 or greater late toxicities. Only grade 1 toxicity was noted, and it was most commonly hyperpigmentation (24%), followed by fibrosis (21%). There were no cases of late dermatitis, pruritus, hypopigmentation, ulceration, telangiectasia, or pain.

Disease control

At a median follow up of 21 months, there were no local, regional, or distant failures, including IBTR in and out of the field, skin recurrence, and contralateral breast failure.

Discussion

Our results demonstrate a favorable rate of acute and late toxicity following HIP. The Whelan Trial reported comparable rates of good or excellent cosmetic outcomes in the control WBI group compared to the hypo-fractionated arm (71% vs. 70%) at 10 years of follow up [8]. The Royal Marsden Hospital/Gloucestershire Oncology Center (RMH/GOC) trial similarly found that 30.3–45.7% of patients recorded some change in breast appearance at 5 years [31]. Similarly, our results showed that 10 of 38 treatments resulted in breast appearance changes (26.3%). Further, our data showed no cases of telangiectasia, whereas the RMH/GOC trial showed rates of 13.8–14.3%.
Some concerns remain regarding late toxicity and poor cosmesis. The RAPID trial compared standard WBI to 38.5 Gy in 10 Fx external beam APBI, showing worse grade 1–2 toxicity and cosmesis in the experimental APBI arm at 3 years [32]. Conversely, the UK IMPORT LOW trial utilized a dose of 40 Gy in 15 Fx to the partial breast, and this trial not only found PBI at this dose to be non-inferior regarding local relapse but also adverse effects were similar to better when compared to WBI [33]. The PBI group had better late outcomes at 5 years regarding skin change, overall breast appearance, smaller breast, and breast firmness. Thus, although some data raises concern regarding APBI toxicity (e.g. the RAPID trial), there is a growing body of literature demonstrating non-inferior – or even superior – toxicity outcomes [33].
The low incidence of late adverse effects reported in our study coupled with the improved cosmesis in the IMPORT LOW study may reflect the inherent differences of dose fractionation. Late-responding normal tissues (e.g. dermal skin) are characterized by a low α/β ratio. Figure 2 demonstrates that the frequently utilized dose fractionation schedules for PBI (including 38.5 Gy in 10 Fx) have similar EQD2 and BED10 values compared to standard WBI hypo-fractionation doses (used in both these patients and the IMPORT LOW study); however, the BED3 and BED 1.5 of normal tissues is substantially higher with the 38.5 Gy in 10 Fx schedule.
DIBH was developed to reduce cardiac dose. Epidemiological studies have found higher mortality from myocardial infarction with left-sided breast RT compared to right-sided, and reduction of cardiac dose has been shown to decrease ischemic heart disease [2224]. In this study, heart V20 was 0%, and the mean heart dose was 0.37 Gy (range 0.14–0.94 Gy). Compared to brachytherapy APBI, DIBH WBI has been shown to have a lower heart dose [34]. In our study, the low heart dose is likely a combination of PBI and DIBH. DIBH also further immobilizes the breast during treatment, improving the accuracy of dose delivery and reducing radiation doses to the ipsilateral lung [35]. In this case, ipsilateral lung V20 had a mean of 4.0% (range 0–13).
The limitations of this study include the retrospective analysis by nature, which obfuscates detailed cosmetic analysis at long term intervals. The follow up of 22 months is likely insufficient time to capture many instances of IBTR, but it is sufficient to note acute toxicity and most late toxicity associated with RT. The cohort size is small, largely due to the unique scheduling and delivery method applied to this patient set.

Conclusion

We report limited toxicity without early recurrences in this low risk cohort of patients with early stage breast cancer treated with HIP, a unique combination of 3D-CRT external beam radiotherapy, moderate hypo-fractionation, and DIBH. HIP offers early recurrence and toxicity findings consistent with previous PBI trials, such as IMPORT LOW, and the addition of DIBH offers the potential to further reduce patient motion and toxicity.

Funding

This research required no funding.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
Approval was obtained from institutional review board (IRB) prior to evaluating outcomes for these patients.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
2.
Zurück zum Zitat Gradishar WJ, Anderson BO, Balassanian R, Blair SL, Burstein HJ, Cyr A, et al. NCCN guidelines insights breast Cancer, version 1.2016. J Natl Compr Cancer Netw. 2015;13:1475–85.CrossRef Gradishar WJ, Anderson BO, Balassanian R, Blair SL, Burstein HJ, Cyr A, et al. NCCN guidelines insights breast Cancer, version 1.2016. J Natl Compr Cancer Netw. 2015;13:1475–85.CrossRef
3.
Zurück zum Zitat Agarwal S, Pappas L, Neumayer L, Kokeny K, Agarwal J. Effect of breast conservation therapy vs mastectomy on disease-specific survival for early-stage breast cancer. JAMA Surg. 2014;149:267–74.CrossRefPubMed Agarwal S, Pappas L, Neumayer L, Kokeny K, Agarwal J. Effect of breast conservation therapy vs mastectomy on disease-specific survival for early-stage breast cancer. JAMA Surg. 2014;149:267–74.CrossRefPubMed
4.
Zurück zum Zitat Fisher B, Anderson S, Bryant J, Margolese RG, Deutsch M, Fisher ER, et al. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med. 2002;347:1233–41.CrossRefPubMed Fisher B, Anderson S, Bryant J, Margolese RG, Deutsch M, Fisher ER, et al. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med. 2002;347:1233–41.CrossRefPubMed
5.
Zurück zum Zitat Veronesi U, Saccozzi R, Del Vecchio M, Banfi A, Clemente C, De Lena M, et al. Comparing radical mastectomy with quadrantectomy, axillary dissection, and radiotherapy in patients with small cancers of the breast. N Engl J Med. 1981;305:6–11.CrossRefPubMed Veronesi U, Saccozzi R, Del Vecchio M, Banfi A, Clemente C, De Lena M, et al. Comparing radical mastectomy with quadrantectomy, axillary dissection, and radiotherapy in patients with small cancers of the breast. N Engl J Med. 1981;305:6–11.CrossRefPubMed
6.
Zurück zum Zitat Smith BD, Bentzen SM, Correa CR, Hahn CA, Hardenbergh PH, Ibbott GS, et al. Fractionation for whole breast irradiation: an American Society for Radiation Oncology (ASTRO) evidence-based guideline. Int J Radiat Oncol Biol Phys. 2011;81:59–68.CrossRefPubMed Smith BD, Bentzen SM, Correa CR, Hahn CA, Hardenbergh PH, Ibbott GS, et al. Fractionation for whole breast irradiation: an American Society for Radiation Oncology (ASTRO) evidence-based guideline. Int J Radiat Oncol Biol Phys. 2011;81:59–68.CrossRefPubMed
7.
Zurück zum Zitat Tran K, Rahal R, Brundage M, Fung S, Louzado C, Milosevic M, et al. Use of low-value radiotherapy practices in Canada: an analysis of provincial cancer registry data. Curr Oncol. 2016;23:351–5.CrossRefPubMedPubMedCentral Tran K, Rahal R, Brundage M, Fung S, Louzado C, Milosevic M, et al. Use of low-value radiotherapy practices in Canada: an analysis of provincial cancer registry data. Curr Oncol. 2016;23:351–5.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Whelan TJ, Pignol JP, Levine MN, Julian JA, MacKenzie R, Parpia S, et al. Long-term results of hypofractionated radiation therapy for breast cancer. N Engl J Med. 2010;362:513–20.CrossRefPubMed Whelan TJ, Pignol JP, Levine MN, Julian JA, MacKenzie R, Parpia S, et al. Long-term results of hypofractionated radiation therapy for breast cancer. N Engl J Med. 2010;362:513–20.CrossRefPubMed
9.
Zurück zum Zitat Kim KS, et al. Hypofractionated whole breast irradiation: new standard in early breast cancer after breast-conserving surgery. Radiat Oncol J. 2016;34(2):81.CrossRefPubMedPubMedCentral Kim KS, et al. Hypofractionated whole breast irradiation: new standard in early breast cancer after breast-conserving surgery. Radiat Oncol J. 2016;34(2):81.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Fisher ER, Anderson S, Tan-Chiu E, Fisher B, Eaton L, Wolmark N. Fifteen-year prognostic discriminants for invasive breast carcinoma: National Surgical Adjuvant Breast and bowel project Protocol-06. Cancer. 2001;91:1679–87.CrossRefPubMed Fisher ER, Anderson S, Tan-Chiu E, Fisher B, Eaton L, Wolmark N. Fifteen-year prognostic discriminants for invasive breast carcinoma: National Surgical Adjuvant Breast and bowel project Protocol-06. Cancer. 2001;91:1679–87.CrossRefPubMed
11.
Zurück zum Zitat Faverly DR, Burgers L, Bult P, Holland R. Three dimensional imaging of mammary ductal carcinoma in situ: clinical implications. Semin Diagn Pathol. 1994;11:193–8.PubMed Faverly DR, Burgers L, Bult P, Holland R. Three dimensional imaging of mammary ductal carcinoma in situ: clinical implications. Semin Diagn Pathol. 1994;11:193–8.PubMed
12.
Zurück zum Zitat Kurtz JM, Amalric R, Brandone H, Ayme Y, Spitalier JM. Results of wide excision for mammary recurrence after breast-conserving therapy. Cancer. 1988;61:1969–72.CrossRefPubMed Kurtz JM, Amalric R, Brandone H, Ayme Y, Spitalier JM. Results of wide excision for mammary recurrence after breast-conserving therapy. Cancer. 1988;61:1969–72.CrossRefPubMed
13.
Zurück zum Zitat Shah C, Badiyan S, Ben Wilkinson J, Vicini F, Beitsch P, Keisch M, et al. Treatment efficacy with accelerated partial breast irradiation (APBI): final analysis of the American Society of Breast Surgeons MammoSite((R)) breast brachytherapy registry trial. Ann Surg Oncol. 2013;20:3279–85.CrossRefPubMed Shah C, Badiyan S, Ben Wilkinson J, Vicini F, Beitsch P, Keisch M, et al. Treatment efficacy with accelerated partial breast irradiation (APBI): final analysis of the American Society of Breast Surgeons MammoSite((R)) breast brachytherapy registry trial. Ann Surg Oncol. 2013;20:3279–85.CrossRefPubMed
14.
Zurück zum Zitat Shah C, Vicini F, Wazer DE, Arthur D, Patel RR. The American brachytherapy society consensus statement for accelerated partial breast irradiation. Brachytherapy. 2013;12:267–77.CrossRefPubMed Shah C, Vicini F, Wazer DE, Arthur D, Patel RR. The American brachytherapy society consensus statement for accelerated partial breast irradiation. Brachytherapy. 2013;12:267–77.CrossRefPubMed
15.
Zurück zum Zitat Polgar C, Van Limbergen E, Potter R, Kovacs G, Polo A, Lyczek J, et al. Patient selection for accelerated partial-breast irradiation (APBI) after breast-conserving surgery: recommendations of the Groupe Europeen de Curietherapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) breast cancer working group based on clinical evidence (2009). Radiother Oncol. 2010;94:264–73.CrossRefPubMed Polgar C, Van Limbergen E, Potter R, Kovacs G, Polo A, Lyczek J, et al. Patient selection for accelerated partial-breast irradiation (APBI) after breast-conserving surgery: recommendations of the Groupe Europeen de Curietherapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) breast cancer working group based on clinical evidence (2009). Radiother Oncol. 2010;94:264–73.CrossRefPubMed
16.
Zurück zum Zitat Smith BD, Arthur DW, Buchholz TA, Haffty BG, Hahn CA, Hardenbergh PH, et al. Accelerated partial breast irradiation consensus statement from the American Society for Radiation Oncology (ASTRO). Int J Radiat Oncol Biol Phys. 2009;74:987–1001.CrossRefPubMed Smith BD, Arthur DW, Buchholz TA, Haffty BG, Hahn CA, Hardenbergh PH, et al. Accelerated partial breast irradiation consensus statement from the American Society for Radiation Oncology (ASTRO). Int J Radiat Oncol Biol Phys. 2009;74:987–1001.CrossRefPubMed
17.
Zurück zum Zitat Vicini FA, White J, Arthur D. NSABP B-39/RTOG 0413 protocol, A randomized phase III study of conventional whole breast irradiation (WBI) versus partial breast irradiation (PBI) for women with stage 0, I or II breast cancer. 2005. Vicini FA, White J, Arthur D. NSABP B-39/RTOG 0413 protocol, A randomized phase III study of conventional whole breast irradiation (WBI) versus partial breast irradiation (PBI) for women with stage 0, I or II breast cancer. 2005.
18.
Zurück zum Zitat Vicini FA, et al. Initial efficacy results of RTOG 0319: Three dimensional conformal radiation therapy (3D-CRT) confined to the region of the lumpectomy cavity for Stage I/II breast carcinoma. Int J Radiat Oncol Biol Phys. 2008;72(1):S3.CrossRef Vicini FA, et al. Initial efficacy results of RTOG 0319: Three dimensional conformal radiation therapy (3D-CRT) confined to the region of the lumpectomy cavity for Stage I/II breast carcinoma. Int J Radiat Oncol Biol Phys. 2008;72(1):S3.CrossRef
19.
Zurück zum Zitat Leonard KL, Hepel JT, Hiatt JR, Dipetrillo TA, Price LL, Wazer DE. The effect of dose-volume parameters and interfraction interval on cosmetic outcome and toxicity after 3-dimensional conformal accelerated partial breast irradiation. Int J Radiat Oncol Biol Phys. 2013;85:623–9.CrossRefPubMed Leonard KL, Hepel JT, Hiatt JR, Dipetrillo TA, Price LL, Wazer DE. The effect of dose-volume parameters and interfraction interval on cosmetic outcome and toxicity after 3-dimensional conformal accelerated partial breast irradiation. Int J Radiat Oncol Biol Phys. 2013;85:623–9.CrossRefPubMed
20.
Zurück zum Zitat Livi L, et al. Accelerated partial breast irradiation using intensity-modulated radiotherapy versus whole breast irradiation: 5-year survival analysis of a phase 3 randomised controlled trial. Eur J Cancer. 2015;51(4):451–63.CrossRefPubMed Livi L, et al. Accelerated partial breast irradiation using intensity-modulated radiotherapy versus whole breast irradiation: 5-year survival analysis of a phase 3 randomised controlled trial. Eur J Cancer. 2015;51(4):451–63.CrossRefPubMed
21.
Zurück zum Zitat Strnad V, et al. 5-year results of accelerated partial breast irradiation using sole interstitial multicatheter brachytherapy versus whole-breast irradiation with boost after breast-conserving surgery for low-risk invasive and in-situ carcinoma of the female breast: a randomised, phase 3, non-inferiority trial. Lancet. 2016;387(10015):229–38.CrossRefPubMed Strnad V, et al. 5-year results of accelerated partial breast irradiation using sole interstitial multicatheter brachytherapy versus whole-breast irradiation with boost after breast-conserving surgery for low-risk invasive and in-situ carcinoma of the female breast: a randomised, phase 3, non-inferiority trial. Lancet. 2016;387(10015):229–38.CrossRefPubMed
22.
Zurück zum Zitat Rutter CE, Chagpar AB, Evans SB. Breast cancer laterality does not influence survival in a large modern cohort: implications for radiation-related cardiac mortality. Int J Radiat Oncol Biol Phys. 2014;90:329–34.CrossRefPubMed Rutter CE, Chagpar AB, Evans SB. Breast cancer laterality does not influence survival in a large modern cohort: implications for radiation-related cardiac mortality. Int J Radiat Oncol Biol Phys. 2014;90:329–34.CrossRefPubMed
23.
Zurück zum Zitat Rutqvist LE, Johansson H. Mortality by laterality of the primary tumour among 55,000 breast cancer patients from the Swedish Cancer Registry. Br J Cancer. 1990;61:866–8.CrossRefPubMedPubMedCentral Rutqvist LE, Johansson H. Mortality by laterality of the primary tumour among 55,000 breast cancer patients from the Swedish Cancer Registry. Br J Cancer. 1990;61:866–8.CrossRefPubMedPubMedCentral
24.
25.
Zurück zum Zitat Shim J-G, et al. Dose-volume analysis of lung and heart according to respiration in breast cancer patients treated with breast conserving surgery. J Breast Cancer. 2012;15(1):105–10.CrossRefPubMedPubMedCentral Shim J-G, et al. Dose-volume analysis of lung and heart according to respiration in breast cancer patients treated with breast conserving surgery. J Breast Cancer. 2012;15(1):105–10.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Reardon KA, Read PW, Morris MM, Reardon MA, Geesey C, Wijesooriya K. A comparative analysis of 3D conformal deep inspiratory-breath hold and free-breathing intensity-modulated radiation therapy for left-sided breast cancer. Med Dosim. 2013;38:190–5.CrossRefPubMed Reardon KA, Read PW, Morris MM, Reardon MA, Geesey C, Wijesooriya K. A comparative analysis of 3D conformal deep inspiratory-breath hold and free-breathing intensity-modulated radiation therapy for left-sided breast cancer. Med Dosim. 2013;38:190–5.CrossRefPubMed
27.
Zurück zum Zitat Radiation Therapy Oncology Group. RTOG 1005: a phase III trial of accelerated whole breast irradiation with hypofractionation plus concurrent boost versus standard whole breast irradiation plus sequential boost for early-stage breast cancer. 2013. Radiation Therapy Oncology Group. RTOG 1005: a phase III trial of accelerated whole breast irradiation with hypofractionation plus concurrent boost versus standard whole breast irradiation plus sequential boost for early-stage breast cancer. 2013.
28.
Zurück zum Zitat US Department of Health and Human Services. Common terminology criteria for adverse events (CTCAE) version 4.0. National Institutes of Health, National Cancer Institute 4.03; 2009. US Department of Health and Human Services. Common terminology criteria for adverse events (CTCAE) version 4.0. National Institutes of Health, National Cancer Institute 4.03; 2009.
29.
Zurück zum Zitat Correa C, Harris EE, Leonardi MC, Smith BD, Taghian AG, Thompson AM, et al. Accelerated partial breast irradiation: executive summary for the update of an ASTRO evidence-based consensus statement. Pract Radiat Oncol. 2017;7:73–9.CrossRefPubMed Correa C, Harris EE, Leonardi MC, Smith BD, Taghian AG, Thompson AM, et al. Accelerated partial breast irradiation: executive summary for the update of an ASTRO evidence-based consensus statement. Pract Radiat Oncol. 2017;7:73–9.CrossRefPubMed
30.
Zurück zum Zitat Shah C, et al. Clinical outcomes using accelerated partial breast irradiation in patients with invasive lobular carcinoma. Int J Radiat Oncol Biol Phys. 2011;81(4):e547–51.CrossRefPubMed Shah C, et al. Clinical outcomes using accelerated partial breast irradiation in patients with invasive lobular carcinoma. Int J Radiat Oncol Biol Phys. 2011;81(4):e547–51.CrossRefPubMed
31.
Zurück zum Zitat Yarnold J, Ashton A, Bliss J, Homewood J, Harper C, Hanson J, et al. Fractionation sensitivity and dose response of late adverse effects in the breast after radiotherapy for early breast cancer: long-term results of a randomised trial. Radiother Oncol. 2005;75:9–17.CrossRefPubMed Yarnold J, Ashton A, Bliss J, Homewood J, Harper C, Hanson J, et al. Fractionation sensitivity and dose response of late adverse effects in the breast after radiotherapy for early breast cancer: long-term results of a randomised trial. Radiother Oncol. 2005;75:9–17.CrossRefPubMed
32.
Zurück zum Zitat Olivotto IA, Whelan TJ, Parpia S, Kim DH, Berrang T, Truong PT, et al. Interim cosmetic and toxicity results from RAPID: a randomized trial of accelerated partial breast irradiation using three-dimensional conformal external beam radiation therapy. J Clin Oncol. 2013;31:4038–45.CrossRefPubMed Olivotto IA, Whelan TJ, Parpia S, Kim DH, Berrang T, Truong PT, et al. Interim cosmetic and toxicity results from RAPID: a randomized trial of accelerated partial breast irradiation using three-dimensional conformal external beam radiation therapy. J Clin Oncol. 2013;31:4038–45.CrossRefPubMed
33.
Zurück zum Zitat Coles CE, et al. Partial-breast radiotherapy after breast conservation surgery for patients with early breast cancer (UK IMPORT LOW trial): 5-year results from a multicentre, randomised, controlled, phase 3, non-inferiority trial. Lancet. 2017;390(10099):1048–60.CrossRefPubMedPubMedCentral Coles CE, et al. Partial-breast radiotherapy after breast conservation surgery for patients with early breast cancer (UK IMPORT LOW trial): 5-year results from a multicentre, randomised, controlled, phase 3, non-inferiority trial. Lancet. 2017;390(10099):1048–60.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Holliday EB, Kirsner SM, Thames HD, Mason BE, Nelson CL, Bloom ES. Lower mean heart dose with deep inspiration breath hold-whole breast irradiation compared with brachytherapy-based accelerated partial breast irradiation for women with left-sided tumors. Pract Radiat Oncol. 2017;7:80–5.CrossRefPubMed Holliday EB, Kirsner SM, Thames HD, Mason BE, Nelson CL, Bloom ES. Lower mean heart dose with deep inspiration breath hold-whole breast irradiation compared with brachytherapy-based accelerated partial breast irradiation for women with left-sided tumors. Pract Radiat Oncol. 2017;7:80–5.CrossRefPubMed
35.
Zurück zum Zitat Essers M, Osman SO, Hol S, Donkers T, Poortmans PM. Accelerated partial breast irradiation (APBI): are breath-hold and volumetric radiation therapy techniques useful? Acta Oncol. 2014;53:788–94.CrossRefPubMed Essers M, Osman SO, Hol S, Donkers T, Poortmans PM. Accelerated partial breast irradiation (APBI): are breath-hold and volumetric radiation therapy techniques useful? Acta Oncol. 2014;53:788–94.CrossRefPubMed
Metadaten
Titel
Preliminary toxicity results using partial breast 3D-CRT with once daily hypo-fractionation and deep inspiratory breath hold
verfasst von
Roman O. Kowalchuk
Kara D. Romano
Daniel M. Trifiletti
Sunil W. Dutta
Timothy N. Showalter
Monica M. Morris
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Radiation Oncology / Ausgabe 1/2018
Elektronische ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-018-1079-x

Weitere Artikel der Ausgabe 1/2018

Radiation Oncology 1/2018 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.