Skip to main content
Erschienen in: Targeted Oncology 4/2018

10.07.2018 | Original Research Article

Preparation of Folic Acid-Targeted Temperature-Sensitive Magnetoliposomes and their Antitumor Effects In Vitro and In Vivo

verfasst von: Xihui Wang, Rui Yang, Chunyan Yuan, Yanli An, Qiusha Tang, Daozhen Chen

Erschienen in: Targeted Oncology | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Background

Ovarian cancer is a common gynecologic malignancy with poor prognosis, requiring innovative new therapeutic strategies. Temperature-controlled drug delivery to cancer cells represents a novel, promising, targeted treatment approach.

Objective

We prepared folate receptor-targeted thermosensitive liposomes wrapped with the HSP90 inhibitor 17-AAG and superparamagnetic material (17-AAG/MTSLs-FA), and tested the efficacy of these targeted magnetoliposomes in vitro and in vivo.

Methods

Magnetic thermosensitive liposomes wrapped with 17-AAG were coprecipitated with Fe3O4 magnetic nanoparticles and prepared by a rotary evaporation method. Experiments were conducted with SKOV3 human ovarian cancer cells and MCF7 human breast carcinoma cells to evaluate the anti-tumor effects.

Results

17-AAG/MTSLs-FA prepared in this study met the basic requirements for therapeutic application. The preparation method is relatively simple and the raw materials are readily available. The product exhibited strong magnetism, high encapsulation efficiencies, and satisfactory performance. The liposomes combined with hyperthermia significantly inhibited the proliferation of SKOV3 cells and induced apoptosis. Experiments using a mouse subcutaneous model as well as an ascites tumor xenograft model indicated that 17-AAG/MTSLs-FA was stable in vivo and effectively targeted tumor tissues expressing the folate receptor.

Conclusions

Folic acid-conjugated 17-AAG magnetic thermosensitive liposomes in combination with an alternating magnetic field for heating can achieve a synergistic anti-tumor effect of chemotherapy and heat treatment, potentially offering a new method for ovarian cancer treatment.
Literatur
1.
2.
Zurück zum Zitat Nakayama K, Nakayama N, Katagiri H, Miyazaki K. Mechanisms of ovarian Cancer metastasis: biochemical pathways. Int J Mol Sci. 2012;13(9):11705–17.CrossRefPubMedPubMedCentral Nakayama K, Nakayama N, Katagiri H, Miyazaki K. Mechanisms of ovarian Cancer metastasis: biochemical pathways. Int J Mol Sci. 2012;13(9):11705–17.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Pelicci PG, Dalton P, Orecchia R. Heating cancer stem cells to reduce tumor relapse. Breast Cancer Res. 2011;13(3):1–2.CrossRef Pelicci PG, Dalton P, Orecchia R. Heating cancer stem cells to reduce tumor relapse. Breast Cancer Res. 2011;13(3):1–2.CrossRef
4.
Zurück zum Zitat May JP, Li SD. Hyperthermia-induced drug targeting. Expert Opin Drug Deliv. 2013;10(4):511–27.CrossRefPubMed May JP, Li SD. Hyperthermia-induced drug targeting. Expert Opin Drug Deliv. 2013;10(4):511–27.CrossRefPubMed
5.
Zurück zum Zitat Jordan A, Scholz R, Wust P, Fähling H, Felix R. Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater. 1999;201(1–3):413–9.CrossRef Jordan A, Scholz R, Wust P, Fähling H, Felix R. Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater. 1999;201(1–3):413–9.CrossRef
6.
Zurück zum Zitat Hu R, Ma S, Ke X, Jiang H, Wei D, Wang W. Effect of interleukin-2 treatment combined with magnetic fluid hyperthermia on Lewis lung cancer-bearing mice. Biomed Rep. 2016;4(1):59–62.CrossRefPubMed Hu R, Ma S, Ke X, Jiang H, Wei D, Wang W. Effect of interleukin-2 treatment combined with magnetic fluid hyperthermia on Lewis lung cancer-bearing mice. Biomed Rep. 2016;4(1):59–62.CrossRefPubMed
7.
Zurück zum Zitat Li XH, Rong PF, Jin HK, Wang W, Tang JT. Magnetic fluid hyperthermia induced by radiofrequency capacitive field for the treatment of transplanted subcutaneous tumors in rats. Exp Ther Med. 2012;3(2):279.CrossRefPubMed Li XH, Rong PF, Jin HK, Wang W, Tang JT. Magnetic fluid hyperthermia induced by radiofrequency capacitive field for the treatment of transplanted subcutaneous tumors in rats. Exp Ther Med. 2012;3(2):279.CrossRefPubMed
8.
Zurück zum Zitat Duncan RF. Inhibition of Hsp90 function delays and impairs recovery from heat shock. FEBS J. 2005;272(20):5244–56.CrossRefPubMed Duncan RF. Inhibition of Hsp90 function delays and impairs recovery from heat shock. FEBS J. 2005;272(20):5244–56.CrossRefPubMed
9.
Zurück zum Zitat Giubellino A, Sourbier C, Lee MJ, Scroggins B, Bullova P, Landau M, et al. Targeting heat shock protein 90 for the treatment of malignant pheochromocytoma. PLoS ONE. 2013;8(2):e56083.CrossRefPubMedPubMedCentral Giubellino A, Sourbier C, Lee MJ, Scroggins B, Bullova P, Landau M, et al. Targeting heat shock protein 90 for the treatment of malignant pheochromocytoma. PLoS ONE. 2013;8(2):e56083.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Katragadda U, Fan W, Wang Y, Teng Q, Tan C. Combined delivery of paclitaxel and tanespimycin via micellar nanocarriers: pharmacokinetics, efficacy and metabolomic analysis. PLoS ONE. 2013;8(3):e58619.CrossRefPubMedPubMedCentral Katragadda U, Fan W, Wang Y, Teng Q, Tan C. Combined delivery of paclitaxel and tanespimycin via micellar nanocarriers: pharmacokinetics, efficacy and metabolomic analysis. PLoS ONE. 2013;8(3):e58619.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Kneidl B, Peller M, Winter G, Lindner LH, Hossann M. Thermosensitive liposomal drug delivery systems: state of the art review. Int J Nanomed. 2014;2014(1):4387–98. Kneidl B, Peller M, Winter G, Lindner LH, Hossann M. Thermosensitive liposomal drug delivery systems: state of the art review. Int J Nanomed. 2014;2014(1):4387–98.
12.
Zurück zum Zitat Lokerse WJM, Bolkestein M, Hagen TLMT, Jong MD, Eggermont AMM, Grüll H, et al. Investigation of particle accumulation, chemosensitivity and thermosensitivity for effective solid tumor therapy using thermosensitive liposomes and hyperthermia. Theranostics. 2016;6(10):1717–31.CrossRefPubMedPubMedCentral Lokerse WJM, Bolkestein M, Hagen TLMT, Jong MD, Eggermont AMM, Grüll H, et al. Investigation of particle accumulation, chemosensitivity and thermosensitivity for effective solid tumor therapy using thermosensitive liposomes and hyperthermia. Theranostics. 2016;6(10):1717–31.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Hossann M, Syunyaeva Z, Schmidt R, Zengerle A, Eibl H, Issels RD, et al. Proteins and cholesterol lipid vesicles are mediators of drug release from thermosensitive liposomes. J Control Release. 2012;162(2):400–6.CrossRefPubMed Hossann M, Syunyaeva Z, Schmidt R, Zengerle A, Eibl H, Issels RD, et al. Proteins and cholesterol lipid vesicles are mediators of drug release from thermosensitive liposomes. J Control Release. 2012;162(2):400–6.CrossRefPubMed
14.
Zurück zum Zitat Moussa M, Goldberg SN, Kumar G, Sawant RR, Levchenko T, Torchilin VP, et al. Nanodrug-enhanced radiofrequency tumor ablation: effect of micellar or liposomal carrier on drug delivery and treatment efficacy. PLoS ONE. 2014;9(8):e102727.CrossRefPubMedPubMedCentral Moussa M, Goldberg SN, Kumar G, Sawant RR, Levchenko T, Torchilin VP, et al. Nanodrug-enhanced radiofrequency tumor ablation: effect of micellar or liposomal carrier on drug delivery and treatment efficacy. PLoS ONE. 2014;9(8):e102727.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Dicheva BM, Hagen TLMT, Schipper D, Seynhaeve ALB, Rhoon GCV, Eggermont AMM, et al. Targeted and heat-triggered doxorubicin delivery to tumors by dual targeted cationic thermosensitive liposomes. J Control Release. 2014;195:37-48.CrossRefPubMed Dicheva BM, Hagen TLMT, Schipper D, Seynhaeve ALB, Rhoon GCV, Eggermont AMM, et al. Targeted and heat-triggered doxorubicin delivery to tumors by dual targeted cationic thermosensitive liposomes. J Control Release. 2014;195:37-48.CrossRefPubMed
16.
Zurück zum Zitat Zhan C, Li C, Wei X, Lu W, Lu W. Toxins and derivatives in molecular pharmaceutics: drug delivery and targeted therapy. Adv Drug Deliv Rev. 2015;90:101–18.CrossRefPubMed Zhan C, Li C, Wei X, Lu W, Lu W. Toxins and derivatives in molecular pharmaceutics: drug delivery and targeted therapy. Adv Drug Deliv Rev. 2015;90:101–18.CrossRefPubMed
17.
Zurück zum Zitat Reddy JA, Allagadda VM, Leamon CP. Targeting therapeutic and imaging agents to folate receptor positive tumors. Curr Pharm Biotechnol. 2005;6(2):131-50. Reddy JA, Allagadda VM, Leamon CP. Targeting therapeutic and imaging agents to folate receptor positive tumors. Curr Pharm Biotechnol. 2005;6(2):131-50.
18.
Zurück zum Zitat Yang R, An YL, Miao FQ, Li MF, Liu PD, Tang QS. Preparation of folic acid-conjugated, doxorubicin-loaded, magnetic bovine serum albumin nanospheres and their antitumor effects in vitro and in vivo. Int J Nanomed. 2014;2014(1):4231–43.CrossRef Yang R, An YL, Miao FQ, Li MF, Liu PD, Tang QS. Preparation of folic acid-conjugated, doxorubicin-loaded, magnetic bovine serum albumin nanospheres and their antitumor effects in vitro and in vivo. Int J Nanomed. 2014;2014(1):4231–43.CrossRef
19.
Zurück zum Zitat Yang R, An LY, Miao QF, Li FM, Han Y, Wang HX, et al. Effective elimination of liver cancer stem-like cells by CD90 antibody targeted thermosensitive magnetoliposomes. Oncotarget. 2016;7(24):35894–916.PubMedPubMedCentral Yang R, An LY, Miao QF, Li FM, Han Y, Wang HX, et al. Effective elimination of liver cancer stem-like cells by CD90 antibody targeted thermosensitive magnetoliposomes. Oncotarget. 2016;7(24):35894–916.PubMedPubMedCentral
20.
Zurück zum Zitat Devarajan E, Huang S. STAT3 as a central regulator of tumor metastases. Curr Mol Med. 2009;9(5):626–33. Devarajan E, Huang S. STAT3 as a central regulator of tumor metastases. Curr Mol Med. 2009;9(5):626–33.
21.
Zurück zum Zitat Prabhu RH, Patravale VB, Joshi MD. Polymeric nanoparticles for targeted treatment in oncology: current insights. Int J Nanomed. 2015;10(1):1001–18. Prabhu RH, Patravale VB, Joshi MD. Polymeric nanoparticles for targeted treatment in oncology: current insights. Int J Nanomed. 2015;10(1):1001–18.
22.
Zurück zum Zitat Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53(2):283–318.PubMed Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53(2):283–318.PubMed
23.
Zurück zum Zitat Chen C, Ke J, Zhou XE, Yi W, Brunzelle JS, Li J, et al. Structural basis for molecular recognition of folic acid by folate receptors. Nature. 2013;500(7463):486.CrossRefPubMedPubMedCentral Chen C, Ke J, Zhou XE, Yi W, Brunzelle JS, Li J, et al. Structural basis for molecular recognition of folic acid by folate receptors. Nature. 2013;500(7463):486.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Zhang Y, Guo L, Roeske RW, Antony AC, Jayaram HN. Pteroyl-γ-glutamate-cysteine synthesis and its application in folate receptor-mediated cancer cell targeting using folate-tethered liposomes. Anal Biochem. 2004;332(1):168–77.CrossRefPubMed Zhang Y, Guo L, Roeske RW, Antony AC, Jayaram HN. Pteroyl-γ-glutamate-cysteine synthesis and its application in folate receptor-mediated cancer cell targeting using folate-tethered liposomes. Anal Biochem. 2004;332(1):168–77.CrossRefPubMed
25.
Zurück zum Zitat Gabizon A, Shmeeda H, Horowitz AT, Zalipsky S. Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Adv Drug Deliv Rev. 2004;56(8):1177–92.CrossRefPubMed Gabizon A, Shmeeda H, Horowitz AT, Zalipsky S. Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Adv Drug Deliv Rev. 2004;56(8):1177–92.CrossRefPubMed
26.
Zurück zum Zitat Bañobrelópez M, Teijeiro A, Rivas J. Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep Pract Oncol Radiother. 2013;18(6):397–400.CrossRef Bañobrelópez M, Teijeiro A, Rivas J. Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep Pract Oncol Radiother. 2013;18(6):397–400.CrossRef
27.
Zurück zum Zitat Li R, Zheng K, Yuan C, Chen Z, Huang M. Be active or not: the relative contribution of active and passive tumor targeting of nanomaterials. Nano. 2017;1(4):346. Li R, Zheng K, Yuan C, Chen Z, Huang M. Be active or not: the relative contribution of active and passive tumor targeting of nanomaterials. Nano. 2017;1(4):346.
28.
Zurück zum Zitat Deshantri AK, Kooijmans SA, Kuijpers SA, Coimbra M, Hoeppener A, Storm G, et al. Liposomal prednisolone inhibits tumor growth in a spontaneous mouse mammary carcinoma model. J Control Release. 2016;243:243–9.CrossRefPubMed Deshantri AK, Kooijmans SA, Kuijpers SA, Coimbra M, Hoeppener A, Storm G, et al. Liposomal prednisolone inhibits tumor growth in a spontaneous mouse mammary carcinoma model. J Control Release. 2016;243:243–9.CrossRefPubMed
29.
Zurück zum Zitat Creixell M, Bohórquez AC, Torres-Lugo M, Rinaldi C. EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano. 2011;5(9):7124–9.CrossRefPubMed Creixell M, Bohórquez AC, Torres-Lugo M, Rinaldi C. EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano. 2011;5(9):7124–9.CrossRefPubMed
30.
Zurück zum Zitat Huang HC, Yang Y, Nanda A, Koria P, Rege K. Synergistic administration of photothermal therapy and chemotherapy to cancer cells using polypeptide-based degradable plasmonic matrices. Nanomedicine. 2011;6(3):459–73.CrossRefPubMed Huang HC, Yang Y, Nanda A, Koria P, Rege K. Synergistic administration of photothermal therapy and chemotherapy to cancer cells using polypeptide-based degradable plasmonic matrices. Nanomedicine. 2011;6(3):459–73.CrossRefPubMed
31.
Zurück zum Zitat Xia M, Huang R, Sakamuru S, Alcorta D, Cho MH, Lee DH, et al. Identification of repurposed small molecule drugs for chordoma therapy. Cancer Biol Ther. 2013;14(7):638–47.CrossRefPubMedPubMedCentral Xia M, Huang R, Sakamuru S, Alcorta D, Cho MH, Lee DH, et al. Identification of repurposed small molecule drugs for chordoma therapy. Cancer Biol Ther. 2013;14(7):638–47.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Lee RJ, Low PS. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim Biophys Acta. 1995;1233(2):134–44.CrossRefPubMed Lee RJ, Low PS. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim Biophys Acta. 1995;1233(2):134–44.CrossRefPubMed
33.
Zurück zum Zitat Hong J, Sun Z, Li Y, Guo Y, Liao Y, Liu M, et al. Folate-modified Annonaceous acetogenins nanosuspensions and their improved antitumor efficacy. Int J Nanomed. 2017;12:5053–67.CrossRef Hong J, Sun Z, Li Y, Guo Y, Liao Y, Liu M, et al. Folate-modified Annonaceous acetogenins nanosuspensions and their improved antitumor efficacy. Int J Nanomed. 2017;12:5053–67.CrossRef
34.
Zurück zum Zitat De BE, Rosing H, Michalakis J, Romanos J, Relakis K, Theodoropoulos PA, et al. Intraperitoneal chemotherapy with taxanes for ovarian cancer with peritoneal dissemination. Eur J Surg Oncol. 2006;32(6):666–70.CrossRef De BE, Rosing H, Michalakis J, Romanos J, Relakis K, Theodoropoulos PA, et al. Intraperitoneal chemotherapy with taxanes for ovarian cancer with peritoneal dissemination. Eur J Surg Oncol. 2006;32(6):666–70.CrossRef
35.
Zurück zum Zitat Elit L, Oliver TK, Covens A, Kwon J, Fung MF, Hirte HW, et al. Intraperitoneal chemotherapy in the first-line treatment of women with stage III epithelial ovarian cancer: a systematic review with metaanalyses. Cancer. 2010;109(4):692–702.CrossRef Elit L, Oliver TK, Covens A, Kwon J, Fung MF, Hirte HW, et al. Intraperitoneal chemotherapy in the first-line treatment of women with stage III epithelial ovarian cancer: a systematic review with metaanalyses. Cancer. 2010;109(4):692–702.CrossRef
36.
Zurück zum Zitat Jaaback K, Johnson N, Lawrie TA. Intraperitoneal chemotherapy for the initial management of primary epithelial ovarian cancer. Cochrane Database Syst Rev. 2006;129(1):CD005340. Jaaback K, Johnson N, Lawrie TA. Intraperitoneal chemotherapy for the initial management of primary epithelial ovarian cancer. Cochrane Database Syst Rev. 2006;129(1):CD005340.
Metadaten
Titel
Preparation of Folic Acid-Targeted Temperature-Sensitive Magnetoliposomes and their Antitumor Effects In Vitro and In Vivo
verfasst von
Xihui Wang
Rui Yang
Chunyan Yuan
Yanli An
Qiusha Tang
Daozhen Chen
Publikationsdatum
10.07.2018
Verlag
Springer International Publishing
Erschienen in
Targeted Oncology / Ausgabe 4/2018
Print ISSN: 1776-2596
Elektronische ISSN: 1776-260X
DOI
https://doi.org/10.1007/s11523-018-0577-y

Weitere Artikel der Ausgabe 4/2018

Targeted Oncology 4/2018 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.