Skip to main content
Erschienen in: Brain Structure and Function 8/2017

10.04.2017 | Original Article

Prevalence and function of Heschl’s gyrus morphotypes in musicians

verfasst von: Jan Benner, Martina Wengenroth, Julia Reinhardt, Christoph Stippich, Peter Schneider, Maria Blatow

Erschienen in: Brain Structure and Function | Ausgabe 8/2017

Einloggen, um Zugang zu erhalten

Abstract

Morphological variations of the first transverse Heschl’s gyrus (HG) in the human auditory cortex (AC) are common, yet little is known about their functional implication. We investigated individual morphology and function of HG variations in the AC of 41 musicians, using structural and functional magnetic resonance imaging (fMRI) as well as magnetoencephalography (MEG). Four main morphotypes of HG were (i) single HG, (ii) common stem duplication (CSD), (iii) complete posterior duplication (CPD), and (iv) multiple duplications (MD). The vast majority of musicians (90%) exhibited HG multiplications (type ii–iv) in either one (39%) or both (51%) hemispheres. In 27% of musicians, MD with up to four gyri were found. To probe the functional contribution of HG multiplications to auditory processing we performed fMRI and MEG with auditory stimulation using analogous instrumental tone paradigms. Both methods pointed to the recruitment of all parts of HG during auditory stimulation, including multiplications if present. FMRI activations extended with the degree of HG gyrification. MEG source waveform patterns were distinct for the different types of HG: (i) hemispheres with single HG and (ii) CSD exhibited dominant N1 responses, whereas hemispheres with (iii) CPD and (iv) MD exhibited dominant P1 responses. N1 dipole amplitudes correlated with the localization of the first complete Heschl’s sulcus (cHS), designating the most posterior anatomical border of HG. P2 amplitudes were significantly higher in professional as compared to amateur musicians. The results suggest that HG multiplications occur much more frequently in musicians than in the general population and constitute a functional unit with HG.
Literatur
Zurück zum Zitat Abdul-Kareem IA, Sluming V (2008) Heschl gyrus and its included primary auditory cortex: structural MRI studies in healthy and diseased subjects. J Magn Reson Imaging 28(2):287–299. doi:10.1002/jmri.21445 PubMedCrossRef Abdul-Kareem IA, Sluming V (2008) Heschl gyrus and its included primary auditory cortex: structural MRI studies in healthy and diseased subjects. J Magn Reson Imaging 28(2):287–299. doi:10.​1002/​jmri.​21445 PubMedCrossRef
Zurück zum Zitat Auerbach S (1906) Beitrag zur Lokalisation des musikalischen Talentes im Gehirn und am Schädel. Arch Anatom Physiol 1906:197–230 Auerbach S (1906) Beitrag zur Lokalisation des musikalischen Talentes im Gehirn und am Schädel. Arch Anatom Physiol 1906:197–230
Zurück zum Zitat Besson M, Faita F (1995) An event-related potential (ERP) study of musical expectancy: comparison of musicians with nonmusicians. J Exp Psychol Hum Percept Perform 21(6):1278CrossRef Besson M, Faita F (1995) An event-related potential (ERP) study of musical expectancy: comparison of musicians with nonmusicians. J Exp Psychol Hum Percept Perform 21(6):1278CrossRef
Zurück zum Zitat Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth. Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth.  
Zurück zum Zitat Campain R, Minckler J (1976) A note on the gross configurations of the human auditory cortex. Brain Lang 3(2):318–323PubMedCrossRef Campain R, Minckler J (1976) A note on the gross configurations of the human auditory cortex. Brain Lang 3(2):318–323PubMedCrossRef
Zurück zum Zitat De Martino F, Moerel M, Xu J, van de Moortele PF, Ugurbil K, Goebel R, Yacoub E, Formisano E (2015) High-resolution mapping of myeloarchitecture in vivo: localization of auditory areas in the human brain. Cereb Cortex 25(10):3394–3405. doi:10.1093/cercor/bhu150 PubMedCrossRef De Martino F, Moerel M, Xu J, van de Moortele PF, Ugurbil K, Goebel R, Yacoub E, Formisano E (2015) High-resolution mapping of myeloarchitecture in vivo: localization of auditory areas in the human brain. Cereb Cortex 25(10):3394–3405. doi:10.​1093/​cercor/​bhu150 PubMedCrossRef
Zurück zum Zitat Formisano E, Kim DS, Di Salle F, van de Moortele PF, Ugurbil K, Goebel R (2003) Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40(4):859–869PubMedCrossRef Formisano E, Kim DS, Di Salle F, van de Moortele PF, Ugurbil K, Goebel R (2003) Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40(4):859–869PubMedCrossRef
Zurück zum Zitat Galaburda AM, LeMay M, Kemper TL, Geschwind N (1978) Right–left asymmetrics in the brain. Science 199(4331):852–856PubMedCrossRef Galaburda AM, LeMay M, Kemper TL, Geschwind N (1978) Right–left asymmetrics in the brain. Science 199(4331):852–856PubMedCrossRef
Zurück zum Zitat Gaser C, Schlaug G (2003) Brain structures differ between musicians and non-musicians. J Neurosci 23(27):9240–9245PubMed Gaser C, Schlaug G (2003) Brain structures differ between musicians and non-musicians. J Neurosci 23(27):9240–9245PubMed
Zurück zum Zitat Geschwind N, Levitsky W (1968) Human brain: left–right asymmetries in temporal speech region. Science 161(3837):186–187PubMedCrossRef Geschwind N, Levitsky W (1968) Human brain: left–right asymmetries in temporal speech region. Science 161(3837):186–187PubMedCrossRef
Zurück zum Zitat Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC (2016) A multi-modal parcellation of human cerebral cortex. Nature. doi:10.1038/nature18933 PubMedCentral Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC (2016) A multi-modal parcellation of human cerebral cortex. Nature. doi:10.​1038/​nature18933 PubMedCentral
Zurück zum Zitat Gordon E (1998) Introduction to research and the psychology of music. Boydell & Brewer Ltd, Woodbridge Gordon E (1998) Introduction to research and the psychology of music. Boydell & Brewer Ltd, Woodbridge
Zurück zum Zitat Hackett TA, Preuss TM, Kaas JH (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J Comp Neurol 441(3):197–222PubMedCrossRef Hackett TA, Preuss TM, Kaas JH (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J Comp Neurol 441(3):197–222PubMedCrossRef
Zurück zum Zitat Hall DA, Johnsrude IS, Haggard MP, Palmer AR, Akeroyd MA, Summerfield AQ (2002) Spectral and temporal processing in human auditory cortex. Cereb Cortex 12(2):140–149PubMedCrossRef Hall DA, Johnsrude IS, Haggard MP, Palmer AR, Akeroyd MA, Summerfield AQ (2002) Spectral and temporal processing in human auditory cortex. Cereb Cortex 12(2):140–149PubMedCrossRef
Zurück zum Zitat Hämäläinen MS, Sarvas J (1987) Feasibility of the homogeneous head model in the interpretation of neuromagnetic fields. Phys Med Biol 32(1):91–97PubMedCrossRef Hämäläinen MS, Sarvas J (1987) Feasibility of the homogeneous head model in the interpretation of neuromagnetic fields. Phys Med Biol 32(1):91–97PubMedCrossRef
Zurück zum Zitat Heschl RL (1878) Über die vordere quere Schläfenwindung des menschlichen Grosshirns. Braumüller, Wien Heschl RL (1878) Über die vordere quere Schläfenwindung des menschlichen Grosshirns. Braumüller, Wien
Zurück zum Zitat Jäncke L, Mirzazade S, Shah NJ (1999) Attention modulates activity in the primary and the secondary auditory cortex: a functional magnetic resonance imaging study in human subjects. Neurosci Lett 266(2):125–128PubMedCrossRef Jäncke L, Mirzazade S, Shah NJ (1999) Attention modulates activity in the primary and the secondary auditory cortex: a functional magnetic resonance imaging study in human subjects. Neurosci Lett 266(2):125–128PubMedCrossRef
Zurück zum Zitat Leonard CM, Puranik C, Kuldau JM, Lombardino LJ (1998) Normal variation in the frequency and location of human auditory cortex landmarks. Heschl’s gyrus: where is it? Cereb Cortex 8(5):397–406PubMedCrossRef Leonard CM, Puranik C, Kuldau JM, Lombardino LJ (1998) Normal variation in the frequency and location of human auditory cortex landmarks. Heschl’s gyrus: where is it? Cereb Cortex 8(5):397–406PubMedCrossRef
Zurück zum Zitat Liegeois-Chauvel C, Musolino A, Badier JM, Marquis P, Chauvel P (1994) Evoked potentials recorded from the auditory cortex in man: evaluation and topography of the middle latency components. Electroencephalogr Clin Neurophysiol 92(3):204–214PubMedCrossRef Liegeois-Chauvel C, Musolino A, Badier JM, Marquis P, Chauvel P (1994) Evoked potentials recorded from the auditory cortex in man: evaluation and topography of the middle latency components. Electroencephalogr Clin Neurophysiol 92(3):204–214PubMedCrossRef
Zurück zum Zitat Marie D, Jobard G, Crivello F, Perchey G, Petit L, Mellet E, Joliot M, Zago L, Mazoyer B, Tzourio-Mazoyer N (2015) Descriptive anatomy of Heschl’s gyri in 430 healthy volunteers, including 198 left-handers. Brain Struct Funct 220(2):729–743. doi:10.1007/s00429-013-0680-x PubMedCrossRef Marie D, Jobard G, Crivello F, Perchey G, Petit L, Mellet E, Joliot M, Zago L, Mazoyer B, Tzourio-Mazoyer N (2015) Descriptive anatomy of Heschl’s gyri in 430 healthy volunteers, including 198 left-handers. Brain Struct Funct 220(2):729–743. doi:10.​1007/​s00429-013-0680-x PubMedCrossRef
Zurück zum Zitat Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K (2001) Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. Neuroimage 13(4):684–701. doi:10.1006/nimg.2000.0715 PubMedCrossRef Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K (2001) Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. Neuroimage 13(4):684–701. doi:10.​1006/​nimg.​2000.​0715 PubMedCrossRef
Zurück zum Zitat Musiek FE, Reeves AG (1990) Asymmetries of the auditory areas of the cerebrum. J Am Acad Audiol 1(4):240–245PubMed Musiek FE, Reeves AG (1990) Asymmetries of the auditory areas of the cerebrum. J Am Acad Audiol 1(4):240–245PubMed
Zurück zum Zitat Näätänen R (1990) The role of attention in auditory information-processing as revealed by event-related potentials and other brain measures of cognitive function. Behav Brain Sci 13(2):201–232CrossRef Näätänen R (1990) The role of attention in auditory information-processing as revealed by event-related potentials and other brain measures of cognitive function. Behav Brain Sci 13(2):201–232CrossRef
Zurück zum Zitat Näätänen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24(4):375–425PubMedCrossRef Näätänen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24(4):375–425PubMedCrossRef
Zurück zum Zitat Pantev C, Hoke M, Lutkenhoner B, Lehnertz K (1989) Tonotopic organization of the auditory cortex: pitch versus frequency representation. Science 246(4929):486–488PubMedCrossRef Pantev C, Hoke M, Lutkenhoner B, Lehnertz K (1989) Tonotopic organization of the auditory cortex: pitch versus frequency representation. Science 246(4929):486–488PubMedCrossRef
Zurück zum Zitat Pantev C, Oostenveld R, Engelien A, Ross B, Roberts LE, Hoke M (1998) Increased auditory cortical representation in musicians. Nature 392(6678):811–814. doi:10.1038/33918 PubMedCrossRef Pantev C, Oostenveld R, Engelien A, Ross B, Roberts LE, Hoke M (1998) Increased auditory cortical representation in musicians. Nature 392(6678):811–814. doi:10.​1038/​33918 PubMedCrossRef
Zurück zum Zitat Patterson RD, Uppenkamp S, Johnsrude IS, Griffiths TD (2002) The processing of temporal pitch and melody information in auditory cortex. Neuron 36(4):767–776PubMedCrossRef Patterson RD, Uppenkamp S, Johnsrude IS, Griffiths TD (2002) The processing of temporal pitch and melody information in auditory cortex. Neuron 36(4):767–776PubMedCrossRef
Zurück zum Zitat Penhune VB, Zatorre RJ, MacDonald JD, Evans AC (1996) Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb Cortex 6(5):661–672PubMedCrossRef Penhune VB, Zatorre RJ, MacDonald JD, Evans AC (1996) Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb Cortex 6(5):661–672PubMedCrossRef
Zurück zum Zitat Pfeifer RA (1920) Myelogenetisch-anatomische Untersuchungen über das kortikale Ende der Hörleitung. Abhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig. In: Mathematisch-naturwissenschaftliche Klasse, vol Bd 37, No. 2 Pfeifer RA (1920) Myelogenetisch-anatomische Untersuchungen über das kortikale Ende der Hörleitung. Abhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig. In: Mathematisch-naturwissenschaftliche Klasse, vol Bd 37, No. 2
Zurück zum Zitat Ponton C, Eggermont JJ, Khosla D, Kwong B, Don M (2002) Maturation of human central auditory system activity: separating auditory evoked potentials by dipole source modeling. Clin Neurophysiol 113(3):407–420PubMedCrossRef Ponton C, Eggermont JJ, Khosla D, Kwong B, Don M (2002) Maturation of human central auditory system activity: separating auditory evoked potentials by dipole source modeling. Clin Neurophysiol 113(3):407–420PubMedCrossRef
Zurück zum Zitat Rademacher J, Caviness VS Jr, Steinmetz H, Galaburda AM (1993) Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex 3(4):313–329PubMedCrossRef Rademacher J, Caviness VS Jr, Steinmetz H, Galaburda AM (1993) Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex 3(4):313–329PubMedCrossRef
Zurück zum Zitat Rojas DC, Teale P, Sheeder J, Simon J, Reite M (1997) Sex-specific expression of Heschl’s gyrus functional and structural abnormalities in paranoid schizophrenia. Am J Psychiatry 154(12):1655–1662. doi:10.1176/ajp.154.12.1655 PubMed Rojas DC, Teale P, Sheeder J, Simon J, Reite M (1997) Sex-specific expression of Heschl’s gyrus functional and structural abnormalities in paranoid schizophrenia. Am J Psychiatry 154(12):1655–1662. doi:10.​1176/​ajp.​154.​12.​1655 PubMed
Zurück zum Zitat Schlaug G, Jancke L, Huang Y, Steinmetz H (1995) In vivo evidence of structural brain asymmetry in musicians. Science 267(5198):699–701PubMedCrossRef Schlaug G, Jancke L, Huang Y, Steinmetz H (1995) In vivo evidence of structural brain asymmetry in musicians. Science 267(5198):699–701PubMedCrossRef
Zurück zum Zitat Schneider P, Scherg M, Dosch HG, Specht HJ, Gutschalk A, Rupp A (2002) Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nat Neurosci 5(7):688–694. doi:10.1038/nn871 PubMedCrossRef Schneider P, Scherg M, Dosch HG, Specht HJ, Gutschalk A, Rupp A (2002) Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nat Neurosci 5(7):688–694. doi:10.​1038/​nn871 PubMedCrossRef
Zurück zum Zitat Schneider P, Sluming V, Roberts N, Scherg M, Goebel R, Specht HJ, Dosch HG, Bleeck S, Stippich C, Rupp A (2005) Structural and functional asymmetry of lateral Heschl’s gyrus reflects pitch perception preference. Nat Neurosci 8(9):1241–1247. doi:10.1038/nn1530 PubMedCrossRef Schneider P, Sluming V, Roberts N, Scherg M, Goebel R, Specht HJ, Dosch HG, Bleeck S, Stippich C, Rupp A (2005) Structural and functional asymmetry of lateral Heschl’s gyrus reflects pitch perception preference. Nat Neurosci 8(9):1241–1247. doi:10.​1038/​nn1530 PubMedCrossRef
Zurück zum Zitat Seifritz E, Esposito F, Hennel F, Mustovic H, Neuhoff JG, Bilecen D, Tedeschi G, Scheffler K, Di Salle F (2002) Spatiotemporal pattern of neural processing in the human auditory cortex. Science 297(5587):1706–1708. doi:10.1126/science.1074355 PubMedCrossRef Seifritz E, Esposito F, Hennel F, Mustovic H, Neuhoff JG, Bilecen D, Tedeschi G, Scheffler K, Di Salle F (2002) Spatiotemporal pattern of neural processing in the human auditory cortex. Science 297(5587):1706–1708. doi:10.​1126/​science.​1074355 PubMedCrossRef
Zurück zum Zitat Serrallach B, Gross C, Bernhofs V, Engelmann D, Benner J, Gundert N, Blatow M, Wengenroth M, Seitz A, Brunner M, Seither S, Parncutt R, Schneider P, Seither-Preisler A (2016) Neural biomarkers for dyslexia, ADHD, and ADD in the auditory cortex of children. Front Neurosci 10:324. doi:10.3389/fnins.2016.00324 PubMedPubMedCentralCrossRef Serrallach B, Gross C, Bernhofs V, Engelmann D, Benner J, Gundert N, Blatow M, Wengenroth M, Seitz A, Brunner M, Seither S, Parncutt R, Schneider P, Seither-Preisler A (2016) Neural biomarkers for dyslexia, ADHD, and ADD in the auditory cortex of children. Front Neurosci 10:324. doi:10.​3389/​fnins.​2016.​00324 PubMedPubMedCentralCrossRef
Zurück zum Zitat Shahin A, Roberts LE, Pantev C, Trainor LJ, Ross B (2005) Modulation of P2 auditory-evoked responses by the spectral complexity of musical sounds. NeuroReport 16(16):1781–1785PubMedCrossRef Shahin A, Roberts LE, Pantev C, Trainor LJ, Ross B (2005) Modulation of P2 auditory-evoked responses by the spectral complexity of musical sounds. NeuroReport 16(16):1781–1785PubMedCrossRef
Zurück zum Zitat Sharma A, Kraus N, McGee TJ, Nicol TG (1997) Developmental changes in P1 and N1 central auditory responses elicited by consonant-vowel syllables. Electroencephalogr Clin Neurophysiol 104(6):540–545PubMedCrossRef Sharma A, Kraus N, McGee TJ, Nicol TG (1997) Developmental changes in P1 and N1 central auditory responses elicited by consonant-vowel syllables. Electroencephalogr Clin Neurophysiol 104(6):540–545PubMedCrossRef
Zurück zum Zitat Smith KM, Mecoli MD, Altaye M, Komlos M, Maitra R, Eaton KP, Egelhoff JC, Holland SK (2011) Morphometric differences in the Heschl’s gyrus of hearing impaired and normal hearing infants. Cereb Cortex 21(5):991–998. doi:10.1093/cercor/bhq164 PubMedCrossRef Smith KM, Mecoli MD, Altaye M, Komlos M, Maitra R, Eaton KP, Egelhoff JC, Holland SK (2011) Morphometric differences in the Heschl’s gyrus of hearing impaired and normal hearing infants. Cereb Cortex 21(5):991–998. doi:10.​1093/​cercor/​bhq164 PubMedCrossRef
Zurück zum Zitat Steinmetz H, Rademacher J, Huang YX, Hefter H, Zilles K, Thron A, Freund HJ (1989) Cerebral asymmetry: MR planimetry of the human planum temporale. J Comput Assist Tomogr 13(6):996–1005PubMedCrossRef Steinmetz H, Rademacher J, Huang YX, Hefter H, Zilles K, Thron A, Freund HJ (1989) Cerebral asymmetry: MR planimetry of the human planum temporale. J Comput Assist Tomogr 13(6):996–1005PubMedCrossRef
Zurück zum Zitat Steinschneider M, Liegeois-Chauvel C, Brugge JF (2011) Auditory evoked potentials and their utility in the assessment of complex sound processing. Audit Cortex 535–559. doi:10.1007/978-1-4419-0074-6_25 Steinschneider M, Liegeois-Chauvel C, Brugge JF (2011) Auditory evoked potentials and their utility in the assessment of complex sound processing. Audit Cortex 535–559. doi:10.​1007/​978-1-4419-0074-6_​25
Zurück zum Zitat Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging. Georg Thieme, Stuttgart Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging. Georg Thieme, Stuttgart
Zurück zum Zitat Tzourio-Mazoyer N, Marie D, Zago L, Jobard G, Perchey G, Leroux G, Mellet E, Joliot M, Crivello F, Petit L, Mazoyer B (2015) Heschl’s gyrification pattern is related to speech-listening hemispheric lateralization: FMRI investigation in 281 healthy volunteers. Brain Struct Funct 220(3):1585–1599. doi:10.1007/s00429-014-0746-4 PubMedCrossRef Tzourio-Mazoyer N, Marie D, Zago L, Jobard G, Perchey G, Leroux G, Mellet E, Joliot M, Crivello F, Petit L, Mazoyer B (2015) Heschl’s gyrification pattern is related to speech-listening hemispheric lateralization: FMRI investigation in 281 healthy volunteers. Brain Struct Funct 220(3):1585–1599. doi:10.​1007/​s00429-014-0746-4 PubMedCrossRef
Zurück zum Zitat v. Economo C, Horn L (1930) Über Windungsrelief, Maße und Rindenarchitektonik der Supratemporalfläche, ihre individuellen und ihre Seitenunterschiede. Z Gesamte Neurol Psychiatr 130(1):678–757CrossRef v. Economo C, Horn L (1930) Über Windungsrelief, Maße und Rindenarchitektonik der Supratemporalfläche, ihre individuellen und ihre Seitenunterschiede. Z Gesamte Neurol Psychiatr 130(1):678–757CrossRef
Zurück zum Zitat Varèse E, Wen-Chung C (1966) The liberation of sound. Perspect New Music 5(1):11–19CrossRef Varèse E, Wen-Chung C (1966) The liberation of sound. Perspect New Music 5(1):11–19CrossRef
Zurück zum Zitat Wengenroth M, Blatow M, Heinecke A, Reinhardt J, Stippich C, Hofmann E, Schneider P (2014) Increased volume and function of right auditory cortex as a marker for absolute pitch. Cereb Cortex 24(5):1127–1137. doi:10.1093/cercor/bhs391 PubMedCrossRef Wengenroth M, Blatow M, Heinecke A, Reinhardt J, Stippich C, Hofmann E, Schneider P (2014) Increased volume and function of right auditory cortex as a marker for absolute pitch. Cereb Cortex 24(5):1127–1137. doi:10.​1093/​cercor/​bhs391 PubMedCrossRef
Zurück zum Zitat Westbury CF, Zatorre RJ, Evans AC (1999) Quantifying variability in the planum temporale: a probability map. Cereb Cortex 9(4):392–405PubMedCrossRef Westbury CF, Zatorre RJ, Evans AC (1999) Quantifying variability in the planum temporale: a probability map. Cereb Cortex 9(4):392–405PubMedCrossRef
Zurück zum Zitat Woldorff MG, Hillyard SA (1991) Modulation of early auditory processing during selective listening to rapidly presented tones. Electroencephalogr Clin Neurophysiol 79(3):170–191PubMedCrossRef Woldorff MG, Hillyard SA (1991) Modulation of early auditory processing during selective listening to rapidly presented tones. Electroencephalogr Clin Neurophysiol 79(3):170–191PubMedCrossRef
Zurück zum Zitat Yousry TA, Fesl G, Buttner A, Noachtar S, Schmid UD (1997) Heschl’s gyrus—anatomic description and methods of identification on magnetic resonance imaging. Int J Neuroradiol 3(1):2–12 Yousry TA, Fesl G, Buttner A, Noachtar S, Schmid UD (1997) Heschl’s gyrus—anatomic description and methods of identification on magnetic resonance imaging. Int J Neuroradiol 3(1):2–12
Metadaten
Titel
Prevalence and function of Heschl’s gyrus morphotypes in musicians
verfasst von
Jan Benner
Martina Wengenroth
Julia Reinhardt
Christoph Stippich
Peter Schneider
Maria Blatow
Publikationsdatum
10.04.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 8/2017
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1419-x

Weitere Artikel der Ausgabe 8/2017

Brain Structure and Function 8/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.