Skip to main content
Erschienen in: BMC Cancer 1/2019

Open Access 01.12.2019 | Research article

Prevalence of BRCA mutations among hereditary breast and/or ovarian cancer patients in Arab countries: systematic review and meta-analysis

verfasst von: Khadiga Abdulrashid, Nour AlHussaini, Wifag Ahmed, Lukman Thalib

Erschienen in: BMC Cancer | Ausgabe 1/2019

Abstract

Background

To systematically assess the prevalence of BRCA1 and BRCA2 gene mutations in women with Hereditary Breast and/or Ovarian Cancer (HBOC) in Arab countries and to describe the variability in the BRCA gene mutations in different regions of the Arab world.

Methods

Observational studies reporting prevalence of BRCA mutations from 22 Arab countries were systematically searched in databases including PUBMED, EMBASE, Web of Science, and Google Scholar. Two reviewers independently screened the studies and extracted data and assessed the risk of bias. Hoy’s risk of Bias tool was used to assess the biases in individual studies. Due to substantial heterogeneity, pooled weighted estimates were calculated using Quality Effect Models (QEM) that adjust for bias, while the Random Effect Models (REM) estimates served as the sensitivity estimates.

Results

Fourteen studies reporting prevalence of BRCA were included. The pooled estimate of BRCA among HBOC was 20% (95% CI: 7–36%). Subgroup analysis including only those with low risk of bias provided an estimate of 11% (95% CI: 1–27%). Levant region had higher prevalence 28% (95% CI: 11–49%) compared to Arabian Gulf region and North Africa but differences are not statistically significant, when tested using Z-test for proportions.

Conclusion

Given the pooled estimates vary widely with substantial heterogeneity, larger, well-designed studies are warranted to better understand the frequency and the impact of BRCA gene mutations among Arab women.

Trial registration

International Prospective Register of Systematic Reviews (PROSPERO) registration number: CRD42018095905.
Abkürzungen
ASR
Age- standardized mortality rate
BART
Comprehensive BRACAnalysis and BRACAnalysis rearrangement test
BC
Breast cancer
BRCA1
Breast cancer 1 gene
BRCA2
Breast cancer 2 gene
CIS
Carcinoma in situ
CS
Capture sequencing
CSS
Conventional individual exon-by-exon sanger sequencing
DHPLC
Denaturing high performance liquid chromatography
EOC
Epithelia ovarian cancer
HAC
Heteroduplex assay confirmation
HBC
Hereditary breast cancer
HBOC
Hereditary breast or/and ovarian cancer
HOC
Hereditary ovarian cancer
MLPA
Multiple ligation dependent probe amplification
NGS
Next generation sequencing
OV
Ovarian cancer
PCR
Polymerase chain reaction
SS
Sanger sequencing
SSCP
Single strand conformation polymorphism assay
TCS
Targeted capture sequencing
TS
Target screening for exon 10 in BRCA
YLL
Year of life lost

Background

Hereditary Breast and/or Ovarian cancer (HBOC) is an autosomal dominant cancer, that produce higher than normal levels of breast cancer and ovarian cancer in genetically related families [1]. About 5–10% of all breast cancer cases [2] and more than 23% of all ovarian cancers [3] are thought to be hereditary. BRCA genes have been identified to be the most commonly linked germ line mutations [4]. Harmful mutations in the BRCA1 and BRCA2 genes can produce very high rates of breast and ovarian cancer and increases the risk of developing breast cancer by up to 85% and the ovarian cancer by up to 54% [3].
However, BRCA frequencies are known to vary between populations. For instance, the prevalence of BRCA1 in Japan were reported to be as low as 2.6% while in the USA it can be as high as 11.1% [30]. Understanding population specific BRCA gene distributions can be helpful in developing appropriate risk assessment strategies that can help reduce the risk of developing cancers. It is also important in developing cost-effective strategies for genetic testing for BRCA mutations [5]. In terms of prognosis breast or/and ovarian cancer patients with family history of the disease with one or more of family members differs from sporadic cancers that occur without any hereditary link [6].
However, there is paucity of high quality data on the epidemiology of BRCA mutations in Arab populations, despite the fact that the breast cancer is the leading cause of all cancer deaths among Arab women [36]. The breast cancer also accounts for about 14 to 42% of all female cancers in the Arab world [37]. For instance, in Lebanon the breast cancer is leading in cancer incidences, with about 37.6% of all new female cancer cases diagnosed during the period of 2004–2010 [38]. A study in Yemen showed that breast cancer accounted 22% from all cancers cases [39]. Similar incidences were reported from Oman, where the breast cancer accounts for 25% of all cancer cases [40]. Given that breast cancer is the most commonly diagnosed cancer among Arab women [7], understanding the genetic role can help deal with the diseases better. Moreover, breast and ovarian cancer patients (BOC) are also diagnosed as early onset cases in the Arab countries. This led some to suggest that there exist variant mutations of BRCA genes among Arabs [8].
To the best of our knowledge, there is no aggregated data on BRCA gene distribution among Arab women. To this effect, we aimed to quantify the prevalence of BRCA1 and BRAC2 gene mutations and to explore the geographic variability of these gene mutations within the Arab world. Given the clinical implications in terms of diagnosis, risk stratifications, and management of breast or/and ovarian cancer, quantifying the extent to which these gene mutations prevail in the Arab populations can be highly valuable.

Methods

Protocol and registration

This present study was conducted following the recommendations provided by the PRISMA [9] and MOOSE guidelines [10]. This study was registered with the International Prospective Register of Systematic Reviews (PROSPERO) and the registration number is: CRD42018095905.

Inclusion and exclusion criteria

The following inclusion criteria were used to identify eligible studies: peer reviewed studies published in English or Arabic; cohort studies, cross-sectional, case-series or registry based studies, providing sufficient data to compute the prevalence of either BRCA1 or BRCA2 gene mutations in the breast and / or ovarian cancer patients in the Arab world.
Studies were excluded if they were confined mainly to the carriers of BRCA mutations without including other cancer patients. Those studies that has no information on family history of disease were also excluded as there is no way of quantifying HBOC. Likewise, experimental studies that were evaluating the effect of an intervention on HBOC patients were also excluded as computing prevalence in these studies were not possible. Additionally, studies reporting on BRCA1/2 genes mutations in cancers other than breast or ovarian cancers were also excluded.

Information sources and databases

The electronic databases Web of Science, PubMed/Medline and EMBASE were searched to identify the primary studies up to April 11, 2018. Further search included Google Scholar search to identify any relevant studies as well hand search of the reference lists of the relevant articles. Although, there were no systematic reviews or meta-analyses from this region, we searched for all review articles reporting on the BRCA mutations form other parts of the world to identify any relevant studies from Arab countries. Only those published in English and Arabic were included, and the duplicates studies were removed using EndNote software.

Search strategy

Studies from all 22 Arab member states of the Arab league [11] were included. We used the following terms to be in the “Titles” or “Abstracts: [BRCA],” and [“Arabs,” or “Qatar,” or “Kuwait,” “Oman,” or “Iraq,” or “Saudi Arabia,” or “Bahrain,” or “United Arab Emirates,” or “Yamen,” “Syria,” or “Lebanon,” or “Jordan,” or “Palestine,” or “Jerusalem,” or “Gaza,” or “Egypt,” or “Libya,” or “Sudan,” or “Tunisia,” or “Morocco,” or “Algeria,” or “Somalia,” or “Comoros,” or “Djibouti,” or “Mauritania.”] and any other variant names for any of these countries.

Study selection

Two review authors independently assessed titles and abstracts of all citations retrieved by the search for relevance against the inclusion criteria. Then the full-text versions of studies considered potentially eligible were retrieved. The same two authors independently assessed the full papers for eligibility, with disagreements resolved through input by a third author [12]. When the eligibility of a study was unclear, we attempted to contact study authors.

Data extraction

Two authors independently extracted data from eligible studies and cross-checked for accuracy and agreement by the third author. Data extraction using a standardized form included variables such as author, year of publication, country, city, study design, type of disease (BC/OC), age at diagnosis, mutation type, mutation test used, overall sample size and sample size of HBOC subset patients (Table 1).
Table 1
Characteristics of Studies Included
Author
Year
Country
City
Design
HBOC/HBC
Age at Diagnosis (range or mean)
Mutation type
Test type
Sample size
Sample size of HBOC
Abdel-Razeq
2018
Jordan
Pilot study
HBCb
22–75
Deleterious
Suspected-deleterious
BART1
100
84
Bu
2016
Saudi Arabia
Cross-sectional
HBC
41.9
Deleterious
PCR2, CS3/SS4, and TCS5
818
60
Bujassoum
2017
Qatar
Retroa
HBC
23–68
Deleterious
MLPA6
82
82
Cherbal
2015
Algeria
High Plains
Cross-sectional
HBOCc
< 50
Deleterious
VUS
PCR2
192
192
El Saghir
2015
Lebanon
Beirut
Cross-sectional
HBC
40.8
Deleterious
VUS
MLPA6
250
74
Ibrahim
2010
Egypt
Alexandria
Registry data
HBC
43.5
Deleterious
SSCP7
HAC8
60
39
Jalkh
2012
Lebanon
Cross-sectional
HBC
41
Deleterious
VUS
Polymorphisms
Fluorescent DS9
72
72
Kadouri
2007
Palestine
East Jerusalem
Cross-sectional
HBC
Deleterious
VUS
Polymorphisms
DHPLC10
31
10
Laarabi
2017
Morocco
North-East morocco (Rabat, Fes, Oujda)
Cross-sectional
HBOC
Deleterious
CSS11
NGS12
TS13
122
122
Laraqui
2013
Morocco
Rabat
Retro
HBC
Deleterious
DS14
121
19
Mahfoudh
2012
Tunisia
Sousse
Cross-sectional
HBC
29–65
Deleterious
VUS
Polymorphisms
DS15
24
24
Riahi
2016
Tunisia
Cross-sectional
HBC
Deleterious
Logistic regression model (studied three studies)
92
92
Tazzite
2012
Morocco
Casablanca
Case series
HBOC
25–60
Deleterious
DS15
40
34
Uhrhammer
2008
Algeria
Algiers
Pilot study
HBC
15–52
Deleterious
VUS
Polymorphisms
PCR2
64
13
aRetro: retrospective cohort study
bHBC: hereditary breast cancer
cHBOC: hereditary breast and/or ovarian cancer
1BART: Comprehensive BRACAnalysis and BRACAnalysis rearrangement test
2PCR: Polymerase chain reaction
3CS: Capture sequencing
4SS: Sanger sequencing
5TCS: Targeted capture sequencing
6MLPA: Multiple ligation dependent probe amplification
7SSCP: single strand conformation polymorphism assay
8HAC: Heteroduplex assay confirmation
9Fluorescent direct sequencing of the entire coding region and intronic sequence flanking each exon
10DHPLC: denaturing high performance liquid chromatography
11CSS: Conventional individual exon-by-exon Sanger sequencing
12NGS: Next generation sequencing
13TS: Target screening for exon 10 in BRCA2
14Direct sequencing of all coding exons and flanking intron sequences of the BRCA1 gene
15DS: Direct Sequencing
16Direct sequencing

Methodological quality assessment

We used the risk of bias assessment tool developed by Hoy et al. [13] to evaluate the quality of individual studies. The tool has 10 items: four items were related to external validity in terms of how well study sample represent the study population and remaining six items were related to internal validity of the studies. Total quality scores for each study was obtained by summing the binary response scores (Yes = 1 or No =0) that ranged from 0 to 10. As per Hoy et al. [13], scores above 7 indicated low risk of bias while a score between 6 to 7 indicated moderate risk of bias. Those studies scoring less than 6 were considered to have high risk of bias.

Syntheses of results

We pooled the quantitative data using Meta-XL version 5.3 [14]. We reported the pooled prevalence and 95% confidence intervals (CI) and explored the robustness of meta-analyses using appropriate meta-analytical models based on the level of heterogeneity. Statistical heterogeneity were assessed using Cochrane Q statistic and I-squared (I2) statistics [15].
In the absence of heterogeneity, the Fixed Effect Models (FEM) were used. When substantial heterogeneity is encountered, the Quality Effects Models (QEM) were used to pool the prevalence [16]. Significant heterogeneity is indicated by a significant P-value of the Cochrane-Q test or an I2 statistic value that is higher 50%. We used the quality scores computed by ROB assessment tool to fit the bias adjusted QEM. Additionally, Random Effect Models (REM) were used to obtain sensitivity estimates when substantial heterogeneity is encountered. We further investigated the sources of heterogeneity using subgroup analysis. We used a-priori defined test to compare the pooled prevalence in three different regions of the Arab world: Levant, North Africa and Arabian Gulf Co-operation Countries (GCC) using Z- tests for proportions.

Results

Selection of studies

The database search generated a total of 6315 records (Fig. 1). We excluded 6249 studies and reasons for exclusions are listed in the Fig. 1. We assessed the full text of 66 studies for their eligibility. Three authors independently read through the full texts and identified those eligible for the review based on a-priori inclusion criteria. Only 14 publications were found to be eligible and included in this study.

Study characteristics

The 14 studies selected were all peer reviewed full length publications form nine different Arab countries. All these 14 articles were published in English and published during the period of 2007 and 2018. They reported on the prevalence of BRCA1 and / or BRCA2 mutations among breast or/ and ovarian cancer patients. Of these, eight were conducted in North African countries, four from Levant, and two from GCC. There were three studies from Morocco: one each from North-east Morocco [27], Casablanca [22] and Rabat [4]. Two studies each from the following countries. Algeria [23, 25], Lebanon [7, 26], and Tunisia [20, 21]. Single studies from each of the following countries: Qatar [17], Saudi Arabia [5], Jordan [24], Palestine [19], and Egypt [18].
Sample sizes of the included studies ranged between10 to 192, and total number of patients pooled was 917. Of these, 11 studies included Hereditary Breast Cancer (HBC) patients, three had Hereditary Breast and/or Ovarian Cancer (HBOC) patients, and a single study included only Heredity Ovarian Cancer (HOC) patients. Seven studies investigated both BRCA1 and BRCA2 gene mutations, six studies had data on only BRCA1 gene mutation and one study was exclusively on BRCA2 mutations. There were variation in the methods used to detect BRCA mutations. Three studies used direct sequencing, while others used varying types of methods.

Risk of Bias

Of the 14 articles included in our study, eight studies were found to have moderate risk of bias [4, 1723], and six had lower risk of bias [5, 7, 2427]. In term of the external validity components, only three articles were considered to have a good external validity [5, 25, 27] (See Fig. 2).

Quantitative synthesis

From studies reported total BRCA mutation cases, the overall pooled prevalence of BRCA among breast and/or ovarian cancer based on QEM was 20% (95% CI: 7–36%) [4, 5, 7, 1727] (Fig. 3a). The pooled prevalence of BRCA1 mutation among hereditary breast and/ or ovarian cancer was 12% (95% CI: 4–21%) (Fig. 3b) [4, 5, 7, 17, 1925]. The estimated pooled prevalence of BRCA2 was 12% (95% CI: 4–25%) based on five studies reported such mutation in the HBOC population [7, 17, 21, 22, 27] (Fig. 3c). Further, six studies reported prevalence of BRCA mutation among non- hereditary sample [4, 5, 7, 18, 22, 23]. The pooled prevalence in this population was estimated to be 10% (95% CI: 0–28%).
Of all 14 studies included, 13 reported prevalence of BRCA among breast cancer patients and the pooled prevalence was 21% (95% CI: 6–40%) [4, 5, 7, 17, 1926]. Of this, the prevalence of BRCA1 mutation alone among breast cancer patients was 11% (95% CI: 4–21%) [4, 5, 7, 17, 1925]. Likewise, the prevalence of BRCA2 mutations among breast cancer patients was 17% (95% CI: 9–27%) [7, 17, 21, 22, 24]. Only one study reported the prevalence of BRCA1 mutations among ovarian cancer patients which was in Algeria [25] with a prevalence of 1% (95% CI: 0–2%).Three studies [17, 22, 27] out of 14 studies report a prevalence of BRCA1 or BRCA2 among both Breast and Ovarian Cancer patients, the pooled prevalence was 9% (95% CI: 0–25%).
All the estimates provided above are QEM based to adjust for bias in individual studies. However, the Random Effect Model (REM) is a commonly used and is recommended by Cochrane group as the choice of model when there is substantial heterogeneity between studies included in a meta-analysis [12]. We therefore used REM as a sensitivity method to compare the QEM estimates. Table 2 shows a comparison between QEM and REM estimates, which were not much different.
Table 2
Comparison between Quality Effect Model and the Random Effect Model results
 
Quality effect model
Random effect model
No. of studies (patients)
Prevalence (CI 95%)
I2%
No. of studies (patients)
Prevalence (CI 95%)
I2%
All eligible studies
 
14 (917)
20% (7–36%)
94.6%
14 (917)
63% (17–44%)
94.6%
Risk of Bias
 
Low ROB
6 (604)
11% (1–27%)
94.7%
6 (604)
66% (4–31%)
94.7%
Moderate ROB
8 (313)
40% (21–60%)
87.1%
2 (313)
63% (26–59%)
87.1%
Studies with good external validity
3 (374)
5% (0–14%)
85.5%
3 (374)
49% (1–16%)
85.5%
Gene mutations
 
Both BRCA1 and BRCA2
7 (477)
34% (18–52%)
93.2%
7 (477)
78% (22–56%)
93.2%
BRCA1
11 (684)
19% (7–36%)
92.8%
11 (684)
59% (15–42%)
92.8%
BRCA2
6 (488)
27% (16–40%)
87.4%
6 (488)
75% (18–42%)
87.4%
Target population
 
HBOC
3 (348)
7% (0–20%)
91.8%
3 (348)
55% (0–25%)
91.8%
HBC
11 (569)
32% (18–47%)
90.8%
10 (550)
65% (23–50%)
90.8%
HOC
1 (192)
2% (0–5%)
0
1 (192)
33% (0–5%)
0
Geographic Location
 
Levant
4 (240)
28% (11–49%)
87.9%
4 (240)
63% (13–49%)
87.9%
GCC
2 (142)
22% (0–58%)
93.9%
2 (142)
24% (0–56%)
93.9%
North Africa
8 (535)
16% (0–43%)
96.2%
8 (535)
64% (11–54%)
96.2%
Sample size
 
< 100
12 (603)
29% (16–44%)
89.9%
12 (603)
62% (21–48%)
89.9%
≥100
2 (314)
5% (0–16%)
91.4%
2 (314)
52% (0–17%)
91.4%
Year of recruitment
 
≤2011
10 (467)
25% (8–47%)
93.1%
10 (467)
60% (17–52%)
93.1%
2012–2018
5 (572)
13% (1–31%)
95.6%
5 (572)
71% (5–37%)
95.6%
Type of mutation
 
Deleterious
8 (532)
26% (11–44%)
93.6%
8 (532)
71% (17–49%)
93.6%
Deleterious and VUS
2 (266)
10% (0–100%)
98.8%
2 (266)
73% (0–85%)
98.8%
Deleterious, VUS, and Polymorphisims
4 (119)
20% (4–43%)
72.4%
4 (119)
46% (7–57%)
85.0%
We repeated the primary analysis of overall pooled prevalence of BRCA among hereditary breast or/and ovarian cancer by only including the low risk of bias studies to estimate the prevalence of high quality studies [5, 7, 2427]. The pooled prevalence of BRCA mutations among the high quality studies were estimated to be 11% (95CI: 1–27%). This compared to the overall pooled prevalence including all studies was lower and much more comparable with the global estimates.
Quality effect model (QEM) used for subgroup analysis from different geographical locations in GCC, Levant and North Africa to understand any geographic variations in the prevalence of BRCA mutations among hereditary breast or/and ovarian cancer patients. The highest pooled prevalence of BRCA mutations was estimated in Levant region the pooled prevalence was 28% (95% CI: 11–49%) followed by the Gulf region where the pooled prevalence was 22% (95% CI: 0–58%). Comparable prevalence in the North African region was lower than other regions, as it was estimated to be 16% (95%CI: 0–44%). These estimates did not differ statistically based on Z- test for proportions.

Heterogeneity assessment

Significant heterogeneity was encountered throughout the analysis as indicated by the p values of the Cochrane Q statistics and I2 statistics values. For instance, the studies [4, 5, 7, 1727] included to pool the prevalence for BRCA mutations had a Cochran Chi-square p value of < 0.001 and I2 of 95%. Likewise, there were significant heterogeneity across the studies used to obtain the pooled prevalence for BRCA1 among total HBOC (Chi-square = 69.2, p-value< 0.001, I2 = 86%) [4, 5, 7, 17, 1925]. For BRCA2 heterogeneity between the studies were also substantial (Chi-square = 23.5, p-value < 0.001, I2 = 79.7%) [7, 17, 21, 22, 27].
For total BRCA mutations among general population, there was a considerable heterogeneity across studies (Chi-square = 70, P value = 0.001, I- square = 94.3%) and the pooled prevalence was 35% (95% %CI: 16–55%). The pooled prevalence of BRCA1 mutation among Breast Cancer Patients was 11% (95% CI: 4–21%) [4, 5, 7, 17, 1925], and there was a substantial heterogeneity across the studies (Chi-square = 79.3, P value < 0.001, I-square = 87.38%). As for the prevalence of BRCA 2 mutation among Breast Cancer patients, data was reported from 5 studies [7, 17, 21, 22, 24]. Where the pooled prevalence was 17% (95% CI: 9–27%), and significant heterogeneity was found (Chi-square = 18.5, P value = 0.001, I square = 78.39%). Only one study [25] reported BRCA1 among ovarian cancer and no studies reported BRCA2 among ovarian cancer patients, so heterogeneity was not assessed. For BRCA1 or/and BRCA2 among patients with both Breast and Ovarian cancer, the pooled prevalence was 9% (95% CI: 0–25%) [17, 22, 27]. For heterogeneity, there was large heterogeneity detected (Chi-square = 19, P value < 0.001, I-square = 89.4%).

Publication Bias

Publication bias was investigated using classical funnel plot, where an asymmetry indicated potential publication bias (Fig. 4a, b and c). As for BRCA1 and BRCA2 mutations estimates in hereditary patients, funnel plots showed a potential publication bias. However, Hunter et al. [28] suggested that conventional funnel plots, that assess publication bias, are inaccurate for prevalence meta-analysis. We are unsure about the asymmetry observed in our study if it is true reflection of publication bias or simply an over-estimate as argued by Hunter et al. [28].

Discussion

This study included 14 eligible studies from nine Arab countries, to systematically review the prevalence of BRCA mutations. The study revealed that one in five hereditary breast or/and ovarian cancer patients in the Arab region are likely to have BRCA mutations. The prevalence BRCA2 were more common (17%) than BRCA1 mutations (11%) in the region. The prevalence of BRCA mutations were also noted to vary considerably from other populations [3135]. For instance, prevalence of BRCA gene mutations in India, Japan, Hispanics in USA, and Spain were substantially higher than that of the Arab populations, whilst Iran, Mexico, Sweden, Germany, Australia and Turkey reported significantly lower prevalence (Table 3).
Table 3
Comparison between the pooled prevalence in Arab countries with other regions around the world
Author (year)
Country
Sample size
BRCA mutation prevalence
z-score
P-value
Keshavarzi et al. (2011)
Iran
85
7%
15.429
<  0.0001
Vaca-Panigua et al. (2012)
Mexico
39
7.7%
13.97
<  0.0001
Loman et al. (2001)
Sweden
234
8.9%
11.81
<  0.0001
Hamann et al. (2003)
Germany
23
13%
6.30
<  0.0001
Alsop et al. (2012)
Australia
1001
14.1%
5.134
<  0.0001
Yazici et al. (2000)
Turkey
53
15.1%
4.144
<  0.0001
Sharma et al., (2014)
Kansas, USA
207
15.4%
3.86
0.0001
Han et al. (2013)
Korea
775
21.7%
1.25
0.2117
Hedau et al. (2004)
India
24
25%
3.497
= 0.0005
Sugano et al. (2008)
Japan
135
26.7%
4.59
<  0.0001
Weitzel et al. (2005)
Hispanics in USA
110
30.9%
7.14
<  0.0001
Hoya et al. (2001)
Spain
102
43%
14.07
<  0.0001
There were variability in the prevalence of BRCA mutations between different areas of the Arab region. Such differences might be explained by biological differences in the BRCA gene prevalence [23], varying age at onset in the study population with varying proportion of younger population in different parts of the Arab world. This was further amplified by the fact that the diagnosis at a young age is an indication for the referral for BRCA testing. Studies have also suggested that there is a variation of BRCA prevalence among different ethnicities [41], while others found that the prevalence of BRCA mutations is the same across different ethnicities [42]. Family history of breast or ovarian cancer could be a significantly strong predictor for being a carrier of BRCA gene mutations [43] as this could be another reason for having a variation in the prevalence of mutations.
Our findings have important clinical implications. Firstly, the previously held notion that Arab population has less frequent BRCA mutations compared to other regions of the world [7] may not be entirely true. It is also possible that the BRCA mutations may be linked to the increases in the breast and ovarian cancer cases in Arab countries [29] along with other reasons such as weaker screening programs [44]. Increasing incidences in the breast and ovarian cancer cases in the region could also be associated with having children at older age, increased use of oral contraceptives and reduced breastfeeding as well as increasing level of obesity and physical inactivity [45, 46]. Appropriate risk assessment strategies may help manage and control the risk of breast and ovarian cancer, targeted particularly in the region with higher BRCA mutations [5].
Our study has some limitations. There were paucity of data on BRCA mutations in most part of the Arab world. All of the 14 studies included in this paper came from nine countries and the rest of the 14 countries had no published reports on BRCA prevalence. As for the quality of studies included, most of them had moderate to lower risk of bias, but with higher risk of external validity. This indicates that the studies may not have been well representative of the respective study populations from where these reports originated. There were also substantial heterogeneity among the studies, that presented a major threat to the validity of the pooled estimates. High quality epidemiological studies in Arab populations are, thus warranted.

Conclusion

We conclude that one in five HBOC patients in the Arab world have BRCA mutations. The BRCA2 is the most prevalent type mutation among breast cancer patients in the Arab region, with an estimated prevalence was 17% with a higher pooled prevalence of BRCA mutations in the Levant Region 28%. When we compared with studies from different parts of the world the Arab world appear to have different profiles with varying BRCA frequencies. High quality epidemiologic studies are warranted to understand the impact of the BRCA gene mutations and their role in breast and ovarian cancer incidence, risk and prognosis in the Arab world that is experiencing a steady increase in the cancer incidence.

Acknowledgements

Not applicable.

Funding

The publication of this article was funded by the Qatar National Library.

Availability of data and materials

Input data for the analyses are available from the corresponding author on request.

Authors’ information

Khadiga, Noor and Wifag are recent graduates of Bachelors of Public Health program from Qatar University. Lukman Thalib is a Professor of Biostatistics at Qatar University.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
2.
Zurück zum Zitat Larsen MJ, Thomassen M, Gerdes A-M, Kruse TA. Hereditary breast Cancer: clinical, pathological and molecular characteristics. Breast Cancer. 2014;8:145–55.PubMed Larsen MJ, Thomassen M, Gerdes A-M, Kruse TA. Hereditary breast Cancer: clinical, pathological and molecular characteristics. Breast Cancer. 2014;8:145–55.PubMed
4.
Zurück zum Zitat Laraqui A, Uhrhammer N, Lahlou-Amine I, Rhaffouli HE, Baghdadi JE, Dehayni M, et al. Mutation screening of the BRCA1 gene in early onset and familial breast/ovarian Cancer in Moroccan population. Int J Med Sci [Internet]. 2013;10(1):60–7. https://doi.org/10.7150/ijms.5014.CrossRef Laraqui A, Uhrhammer N, Lahlou-Amine I, Rhaffouli HE, Baghdadi JE, Dehayni M, et al. Mutation screening of the BRCA1 gene in early onset and familial breast/ovarian Cancer in Moroccan population. Int J Med Sci [Internet]. 2013;10(1):60–7. https://​doi.​org/​10.​7150/​ijms.​5014.CrossRef
5.
Zurück zum Zitat Bu R, Siraj AK, Al-Obaisi KA, Beg S, Hazmi MA, Ajarim D, et al. Identification of novel BRCA founder mutations in middle eastern breast cancer patients using capture and sanger sequencing analysis. Int J Cancer [Internet]. 2016;139(5):1091–7. https://doi.org/10.1002/ijc.30143.CrossRef Bu R, Siraj AK, Al-Obaisi KA, Beg S, Hazmi MA, Ajarim D, et al. Identification of novel BRCA founder mutations in middle eastern breast cancer patients using capture and sanger sequencing analysis. Int J Cancer [Internet]. 2016;139(5):1091–7. https://​doi.​org/​10.​1002/​ijc.​30143.CrossRef
7.
Zurück zum Zitat El Saghir NS, Zgheib NK, Assi HA, Khoury KE, Bidet Y, Jaber SM, et al. BRCA1 and BRCA2 mutations in ethnic Lebanese Arab women with high hereditary risk breast Cancer. Oncologist [Internet]. 2015;20(4):357–64.CrossRef El Saghir NS, Zgheib NK, Assi HA, Khoury KE, Bidet Y, Jaber SM, et al. BRCA1 and BRCA2 mutations in ethnic Lebanese Arab women with high hereditary risk breast Cancer. Oncologist [Internet]. 2015;20(4):357–64.CrossRef
8.
9.
Zurück zum Zitat Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. Plos Medicine [Internet]. 2009;6(7). Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. Plos Medicine [Internet]. 2009;6(7).
11.
Zurück zum Zitat Sika NM. The League of Arab States. In: The Democratization of International Institutions. Routledge Taylor & Francis Group; 2014. p. 391–397. Sika NM. The League of Arab States. In: The Democratization of International Institutions. Routledge Taylor & Francis Group; 2014. p. 391–397.
12.
Zurück zum Zitat Deeks JJ, Higgins JP, Altman DG. Chapter 9: Analysing data and undertaking meta-analyses; 2011. Deeks JJ, Higgins JP, Altman DG. Chapter 9: Analysing data and undertaking meta-analyses; 2011.
20.
Zurück zum Zitat Mahfoudh W, Bouaouina N, Ahmed SB, Gabbouj S, Shan J, Mathew R, et al. Hereditary breast cancer in middle eastern and north African (MENA) populations: identification of novel, recurrent and founder BRCA1 mutations in the Tunisian population. Mol Biol Rep [Internet]. 2011;39(2):1037–46. https://doi.org/10.1007/s11033-011-0829-8.CrossRef Mahfoudh W, Bouaouina N, Ahmed SB, Gabbouj S, Shan J, Mathew R, et al. Hereditary breast cancer in middle eastern and north African (MENA) populations: identification of novel, recurrent and founder BRCA1 mutations in the Tunisian population. Mol Biol Rep [Internet]. 2011;39(2):1037–46. https://​doi.​org/​10.​1007/​s11033-011-0829-8.CrossRef
26.
27.
Zurück zum Zitat Laarabi F-Z, Ratbi I, Elalaoui SC, Mezzouar L, Doubaj Y, Bouguenouch L, et al. High frequency of the recurrent c.1310_1313delAAGA BRCA2 mutation in the North-East of Morocco and implication for hereditary breast–ovarian cancer prevention and control. BMC Res Notes [Internet]. 2017;10(1). doi:https://doi.org/10.1186/s13104-017-2511-2 Laarabi F-Z, Ratbi I, Elalaoui SC, Mezzouar L, Doubaj Y, Bouguenouch L, et al. High frequency of the recurrent c.1310_1313delAAGA BRCA2 mutation in the North-East of Morocco and implication for hereditary breast–ovarian cancer prevention and control. BMC Res Notes [Internet]. 2017;10(1). doi:https://​doi.​org/​10.​1186/​s13104-017-2511-2
34.
Zurück zum Zitat Sugano K, Nakamura S, Ando J, Takayama S, Kamata H, Sekiguchi I, Ubukata M, Kodama T, Arai M, Kasumi F, Hirai Y, Ikeda T, Jinno H, Kitajima M, Aoki D, Hirasawa A, Takeda Y, Yazaki K, Fukutomi T, Kinoshita T, Tsunematsu R, Yoshida T, Izumi M, Umezawa S, Yagata H, Komatsu H, Arimori N, Matoba N, Gondo N, Yokoyama S, Miki Y. Cross-sectional analysis of germline BRCA1 and BRCA2 mutations in Japanese patients suspected to have hereditary breast/ovarian cancer. Jpn Cancer Assoc. 2008;99(10):1967–76. https://doi.org/10.1111/j.1349-7006.2008.00944.x.CrossRef Sugano K, Nakamura S, Ando J, Takayama S, Kamata H, Sekiguchi I, Ubukata M, Kodama T, Arai M, Kasumi F, Hirai Y, Ikeda T, Jinno H, Kitajima M, Aoki D, Hirasawa A, Takeda Y, Yazaki K, Fukutomi T, Kinoshita T, Tsunematsu R, Yoshida T, Izumi M, Umezawa S, Yagata H, Komatsu H, Arimori N, Matoba N, Gondo N, Yokoyama S, Miki Y. Cross-sectional analysis of germline BRCA1 and BRCA2 mutations in Japanese patients suspected to have hereditary breast/ovarian cancer. Jpn Cancer Assoc. 2008;99(10):1967–76. https://​doi.​org/​10.​1111/​j.​1349-7006.​2008.​00944.​x.CrossRef
40.
Zurück zum Zitat Gupta I, Burney I, Al-Moundhri MS, Tamimi Y. Molecular genetics complexity impeding research progress in breast and ovarian cancers. Molecular and clinical oncology. 2017;7(1):3–14.CrossRef Gupta I, Burney I, Al-Moundhri MS, Tamimi Y. Molecular genetics complexity impeding research progress in breast and ovarian cancers. Molecular and clinical oncology. 2017;7(1):3–14.CrossRef
41.
Zurück zum Zitat Balmaña J, Diez O, Rubio I, Castiglione M. BRCA in breast cancer: ESMO clinical practice guidelines. Ann Oncol. 2010;24(5):v20–2.CrossRef Balmaña J, Diez O, Rubio I, Castiglione M. BRCA in breast cancer: ESMO clinical practice guidelines. Ann Oncol. 2010;24(5):v20–2.CrossRef
42.
Zurück zum Zitat Hall MJ, Reid JE, Burbidge LA, Pruss D, Deffenbaugh AM, Frye C, et al. BRCA1 and BRCA2 mutations in women of different ethnicities undergoing testing for hereditary breast-ovarian cancer. Cancer. 2009;115(10):2222–33.CrossRef Hall MJ, Reid JE, Burbidge LA, Pruss D, Deffenbaugh AM, Frye C, et al. BRCA1 and BRCA2 mutations in women of different ethnicities undergoing testing for hereditary breast-ovarian cancer. Cancer. 2009;115(10):2222–33.CrossRef
46.
Zurück zum Zitat Jemal A, Bray F, Center MM, Ferlay J, Ward E, Foreman D. Global Cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.CrossRef Jemal A, Bray F, Center MM, Ferlay J, Ward E, Foreman D. Global Cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.CrossRef
Metadaten
Titel
Prevalence of BRCA mutations among hereditary breast and/or ovarian cancer patients in Arab countries: systematic review and meta-analysis
verfasst von
Khadiga Abdulrashid
Nour AlHussaini
Wifag Ahmed
Lukman Thalib
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2019
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5463-1

Weitere Artikel der Ausgabe 1/2019

BMC Cancer 1/2019 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.