Skip to main content
Erschienen in: Inflammation 3/2018

12.03.2018 | ORIGINAL ARTICLE

Propofol Attenuates Airway Inflammation in a Mast Cell-Dependent Mouse Model of Allergic Asthma by Inhibiting the Toll-like Receptor 4/Reactive Oxygen Species/Nuclear Factor κB Signaling Pathway

verfasst von: Hong-Yi Li, Jing-Xia Meng, Zhen Liu, Xiao-Wen Liu, Yu-Guang Huang, Jing Zhao

Erschienen in: Inflammation | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Abstract

Propofol, an intravenous anesthetic agent widely used in clinical practice, is the preferred anesthetic for asthmatic patients. This study was designed to determine the protective effect and underlying mechanisms of propofol on airway inflammation in a mast cell-dependent mouse model of allergic asthma. Mice were sensitized by ovalbumin (OVA) without alum and challenged with OVA three times. Propofol was given intraperitoneally 0.5 h prior to OVA challenge. The inflammatory cell count and production of cytokines in the bronchoalveolar lavage fluid (BALF) were detected. The changes of lung histology and key molecules of the toll-like receptor 4 (TLR4)/reactive oxygen species (ROS)/NF-κB signaling pathway were also measured. The results showed that propofol significantly decreased the number of eosinophils and the levels of IL-4, IL-5, IL-6, IL-13, and TNF-α in BALF. Furthermore, propofol significantly attenuated airway inflammation, as characterized by fewer infiltrating inflammatory cells and decreased mucus production and goblet cell hyperplasia. Meanwhile, the expression of TLR4, and its downstream signaling adaptor molecules—–myeloid differentiation factor 88 (MyD88) and NF-κB, were inhibited by propofol. The hydrogen peroxide and methane dicarboxylic aldehyde levels were decreased by propofol, and the superoxide dismutase activity was increased in propofol treatment group. These findings indicate that propofol may attenuate airway inflammation by inhibiting the TLR4/MyD88/ROS/NF-κB signaling pathway in a mast cell-dependent mouse model of allergic asthma.
Literatur
1.
Zurück zum Zitat Kim, H.Y., R.H. DeKruyff, and D.T. Umetsu. 2010. The many paths to asthma: Phenotype shaped by innate and adaptive immunity. Nature Immunology 11: 577–584.CrossRefPubMedPubMedCentral Kim, H.Y., R.H. DeKruyff, and D.T. Umetsu. 2010. The many paths to asthma: Phenotype shaped by innate and adaptive immunity. Nature Immunology 11: 577–584.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Hamid, Q., and M. Tulic. 2009. Immunobiology of asthma. Annual Review of Physiology 71: 489–507.CrossRefPubMed Hamid, Q., and M. Tulic. 2009. Immunobiology of asthma. Annual Review of Physiology 71: 489–507.CrossRefPubMed
3.
Zurück zum Zitat Anandan, C., U. Nurmatov, O.C. van Schayck, and A. Sheikh. 2010. Is the prevalence of asthma declining? Systematic review of epidemiological studies. Allergy 65: 152–167.CrossRefPubMed Anandan, C., U. Nurmatov, O.C. van Schayck, and A. Sheikh. 2010. Is the prevalence of asthma declining? Systematic review of epidemiological studies. Allergy 65: 152–167.CrossRefPubMed
4.
Zurück zum Zitat Ie, K., A. Yoshizawa, S. Hirano, S. Izumi, M. Hojo, H. Sugiyama, N. Kobayasi, et al. 2010. A survey of perioperative asthmatic attack among patients with bronchial asthma underwent general anesthesia. Arerugī 59: 831–838. Ie, K., A. Yoshizawa, S. Hirano, S. Izumi, M. Hojo, H. Sugiyama, N. Kobayasi, et al. 2010. A survey of perioperative asthmatic attack among patients with bronchial asthma underwent general anesthesia. Arerugī 59: 831–838.
5.
Zurück zum Zitat Woods, B.D., and R.N. Sladen. 2009. Perioperative considerations for the patient with asthma and bronchospasm. British Journal of Anaesthesia 103: i57–i65.CrossRefPubMed Woods, B.D., and R.N. Sladen. 2009. Perioperative considerations for the patient with asthma and bronchospasm. British Journal of Anaesthesia 103: i57–i65.CrossRefPubMed
6.
Zurück zum Zitat Chan, A.L., M.M. Juarez, N. Gidwani, and T.E. Albertson. 2015. Management of critical asthma syndrome during pregnancy. Clinical Reviews in Allergy and Immunology 48: 45–53.CrossRefPubMed Chan, A.L., M.M. Juarez, N. Gidwani, and T.E. Albertson. 2015. Management of critical asthma syndrome during pregnancy. Clinical Reviews in Allergy and Immunology 48: 45–53.CrossRefPubMed
7.
Zurück zum Zitat Grim, K.J., A.J. Abcejo, A. Barnes, V. Sathish, D.F. Smelter, G.C. Ford, M.A. Thompson, Y.S. Prakash, and C.M. Pabelick. 2012. Caveolae and propofol effects on airway smooth muscle. British Journal of Anaesthesia 109: 444–453.CrossRefPubMedPubMedCentral Grim, K.J., A.J. Abcejo, A. Barnes, V. Sathish, D.F. Smelter, G.C. Ford, M.A. Thompson, Y.S. Prakash, and C.M. Pabelick. 2012. Caveolae and propofol effects on airway smooth muscle. British Journal of Anaesthesia 109: 444–453.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Meng, J., X. Xin, Z. Liu, H. Li, B. Huang, Y. Huang, and J. Zhao. 2016. Propofol inhibits T-helper cell type-2 differentiation by inducing apoptosis via activating gamma-aminobutyric acid receptor. The Journal of Surgical Research 206: 442–450.CrossRefPubMed Meng, J., X. Xin, Z. Liu, H. Li, B. Huang, Y. Huang, and J. Zhao. 2016. Propofol inhibits T-helper cell type-2 differentiation by inducing apoptosis via activating gamma-aminobutyric acid receptor. The Journal of Surgical Research 206: 442–450.CrossRefPubMed
9.
Zurück zum Zitat Andersson, C., E. Tufvesson, Z. Diamant, and L. Bjermer. 2016. Revisiting the role of the mast cell in asthma. Current Opinion in Pulmonary Medicine 22: 10–17.CrossRefPubMed Andersson, C., E. Tufvesson, Z. Diamant, and L. Bjermer. 2016. Revisiting the role of the mast cell in asthma. Current Opinion in Pulmonary Medicine 22: 10–17.CrossRefPubMed
10.
Zurück zum Zitat Zuo, L., K. Lucas, C.A. Fortuna, C.C. Chuang, and T.M. Best. 2015. Molecular regulation of toll-like receptors in asthma and COPD. Frontiers in Physiology 6: 312.PubMedPubMedCentral Zuo, L., K. Lucas, C.A. Fortuna, C.C. Chuang, and T.M. Best. 2015. Molecular regulation of toll-like receptors in asthma and COPD. Frontiers in Physiology 6: 312.PubMedPubMedCentral
11.
Zurück zum Zitat Kawai, T., and S. Akira. 2010. The role of pattern-recognition receptors in innate immunity: Update on toll-like receptors. Nature Immunology 11: 373–384.CrossRefPubMed Kawai, T., and S. Akira. 2010. The role of pattern-recognition receptors in innate immunity: Update on toll-like receptors. Nature Immunology 11: 373–384.CrossRefPubMed
12.
Zurück zum Zitat Yamashita, M., and T. Nakayama. 2008. Progress in allergy signal research on mast cells: Regulation of allergic airway inflammation through toll-like receptor 4-mediated modification of mast cell function. Journal of Pharmacological Sciences 106: 332–335.CrossRefPubMed Yamashita, M., and T. Nakayama. 2008. Progress in allergy signal research on mast cells: Regulation of allergic airway inflammation through toll-like receptor 4-mediated modification of mast cell function. Journal of Pharmacological Sciences 106: 332–335.CrossRefPubMed
13.
Zurück zum Zitat Nigo, Y.I., M. Yamashita, K. Hirahara, R. Shinnakasu, M. Inami, M. Kimura, A. Hasegawa, Y. Kohno, and T. Nakayama. 2006. Regulation of allergic airway inflammation through toll-like receptor 4-mediated modification of mast cell function. Proceedings of the National Academy of Sciences of the United States of America 103: 2286–2291.CrossRefPubMedPubMedCentral Nigo, Y.I., M. Yamashita, K. Hirahara, R. Shinnakasu, M. Inami, M. Kimura, A. Hasegawa, Y. Kohno, and T. Nakayama. 2006. Regulation of allergic airway inflammation through toll-like receptor 4-mediated modification of mast cell function. Proceedings of the National Academy of Sciences of the United States of America 103: 2286–2291.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Lee, A.J., M. Ro, K.J. Cho, and J.H. Kim. 2017. Lipopolysaccharide/TLR4 stimulates IL-13 production through a MyD88-BLT2-linked cascade in mast cells, potentially contributing to the allergic response. Vol. 199, 409–417. Lee, A.J., M. Ro, K.J. Cho, and J.H. Kim. 2017. Lipopolysaccharide/TLR4 stimulates IL-13 production through a MyD88-BLT2-linked cascade in mast cells, potentially contributing to the allergic response. Vol. 199, 409–417.
15.
Zurück zum Zitat Schnare, M., G.M. Barton, A.C. Holt, K. Takeda, S. Akira, and R. Medzhitov. 2001. Toll-like receptors control activation of adaptive immune responses. Nature Immunology 2: 947–950.CrossRefPubMed Schnare, M., G.M. Barton, A.C. Holt, K. Takeda, S. Akira, and R. Medzhitov. 2001. Toll-like receptors control activation of adaptive immune responses. Nature Immunology 2: 947–950.CrossRefPubMed
16.
Zurück zum Zitat Comhair, S.A., and S.C. Erzurum. 2010. Redox control of asthma: Molecular mechanisms and therapeutic opportunities. Antioxidants & Redox Signaling 12: 93–124.CrossRef Comhair, S.A., and S.C. Erzurum. 2010. Redox control of asthma: Molecular mechanisms and therapeutic opportunities. Antioxidants & Redox Signaling 12: 93–124.CrossRef
17.
Zurück zum Zitat Nadeem, A., N. Siddiqui, N.O. Alharbi, and M.M. Alharbi. 2014. Airway and systemic oxidant-antioxidant dysregulation in asthma: A possible scenario of oxidants spill over from lung into blood. Pulmonary Pharmacology & Therapeutics 29: 31–40.CrossRef Nadeem, A., N. Siddiqui, N.O. Alharbi, and M.M. Alharbi. 2014. Airway and systemic oxidant-antioxidant dysregulation in asthma: A possible scenario of oxidants spill over from lung into blood. Pulmonary Pharmacology & Therapeutics 29: 31–40.CrossRef
18.
Zurück zum Zitat Edwards, M.R., N.W. Bartlett, D. Clarke, M. Birrell, M. Belvisi, and S.L. Johnston. 2009. Targeting the NF-kappaB pathway in asthma and chronic obstructive pulmonary disease. Pharmacology & Therapeutics 121: 1–13.CrossRef Edwards, M.R., N.W. Bartlett, D. Clarke, M. Birrell, M. Belvisi, and S.L. Johnston. 2009. Targeting the NF-kappaB pathway in asthma and chronic obstructive pulmonary disease. Pharmacology & Therapeutics 121: 1–13.CrossRef
20.
Zurück zum Zitat Zhou, C.H., Y.Z. Zhu, P.P. Zhao, C.M. Xu, M.X. Zhang, H. Huang, J. Li, L. Liu, and Y.Q. Wu. 2015. Propofol inhibits lipopolysaccharide-induced inflammatory responses in spinal astrocytes via the toll-like receptor 4/MyD88-dependent nuclear factor-kappaB, extracellular signal-regulated protein kinases1/2, and p38 mitogen-activated protein kinase pathways. Anesthesia and Analgesia 120: 1361–1368.CrossRefPubMed Zhou, C.H., Y.Z. Zhu, P.P. Zhao, C.M. Xu, M.X. Zhang, H. Huang, J. Li, L. Liu, and Y.Q. Wu. 2015. Propofol inhibits lipopolysaccharide-induced inflammatory responses in spinal astrocytes via the toll-like receptor 4/MyD88-dependent nuclear factor-kappaB, extracellular signal-regulated protein kinases1/2, and p38 mitogen-activated protein kinase pathways. Anesthesia and Analgesia 120: 1361–1368.CrossRefPubMed
21.
Zurück zum Zitat Ulbrich, F., L. Eisert, H. Buerkle, U. Goebel, and N. Schallner. 2016. Propofol, but not ketamine or midazolam, exerts neuroprotection after ischaemic injury by inhibition of toll-like receptor 4 and nuclear factor kappa-light-chain-enhancer of activated B-cell signalling: A combined in vitro and animal study. European Journal of Anaesthesiology 33: 670–680.CrossRefPubMed Ulbrich, F., L. Eisert, H. Buerkle, U. Goebel, and N. Schallner. 2016. Propofol, but not ketamine or midazolam, exerts neuroprotection after ischaemic injury by inhibition of toll-like receptor 4 and nuclear factor kappa-light-chain-enhancer of activated B-cell signalling: A combined in vitro and animal study. European Journal of Anaesthesiology 33: 670–680.CrossRefPubMed
22.
Zurück zum Zitat Price, M.M., C.A. Oskeritzian, Y.T. Falanga, K.B. Harikumar, J.C. Allegood, S.E. Alvarez, D. Conrad, J.J. Ryan, S. Milstien, and S. Spiegel. 2013. A specific sphingosine kinase 1 inhibitor attenuates airway hyperresponsiveness and inflammation in a mast cell-dependent murine model of allergic asthma. J Allergy Clin Immunol 131 (e501): 501–511.CrossRefPubMed Price, M.M., C.A. Oskeritzian, Y.T. Falanga, K.B. Harikumar, J.C. Allegood, S.E. Alvarez, D. Conrad, J.J. Ryan, S. Milstien, and S. Spiegel. 2013. A specific sphingosine kinase 1 inhibitor attenuates airway hyperresponsiveness and inflammation in a mast cell-dependent murine model of allergic asthma. J Allergy Clin Immunol 131 (e501): 501–511.CrossRefPubMed
23.
Zurück zum Zitat Nakae, S., C. Lunderius, L.H. Ho, B. Schafer, M. Tsai, and S.J. Galli. 2007. TNF can contribute to multiple features of ovalbumin-induced allergic inflammation of the airways in mice. The Journal of Allergy and Clinical Immunology 119: 680–686.CrossRefPubMed Nakae, S., C. Lunderius, L.H. Ho, B. Schafer, M. Tsai, and S.J. Galli. 2007. TNF can contribute to multiple features of ovalbumin-induced allergic inflammation of the airways in mice. The Journal of Allergy and Clinical Immunology 119: 680–686.CrossRefPubMed
24.
Zurück zum Zitat Williams, C.M., and S.J. Galli. 2000. Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice. The Journal of Experimental Medicine 192: 455–462.CrossRefPubMedPubMedCentral Williams, C.M., and S.J. Galli. 2000. Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice. The Journal of Experimental Medicine 192: 455–462.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Myou, S., A.R. Leff, S. Myo, E. Boetticher, J. Tong, A.Y. Meliton, J. Liu, N.M. Munoz, and X. Zhu. 2003. Blockade of inflammation and airway hyperresponsiveness in immune-sensitized mice by dominant-negative phosphoinositide 3-kinase-TAT. The Journal of Experimental Medicine 198: 1573–1582.CrossRefPubMedPubMedCentral Myou, S., A.R. Leff, S. Myo, E. Boetticher, J. Tong, A.Y. Meliton, J. Liu, N.M. Munoz, and X. Zhu. 2003. Blockade of inflammation and airway hyperresponsiveness in immune-sensitized mice by dominant-negative phosphoinositide 3-kinase-TAT. The Journal of Experimental Medicine 198: 1573–1582.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Padrid, P., S. Snook, T. Finucane, P. Shiue, P. Cozzi, J. Solway, and A.R. Leff. 1995. Persistent airway hyperresponsiveness and histologic alterations after chronic antigen challenge in cats. American Journal of Respiratory and Critical Care Medicine 151: 184–193.CrossRefPubMed Padrid, P., S. Snook, T. Finucane, P. Shiue, P. Cozzi, J. Solway, and A.R. Leff. 1995. Persistent airway hyperresponsiveness and histologic alterations after chronic antigen challenge in cats. American Journal of Respiratory and Critical Care Medicine 151: 184–193.CrossRefPubMed
27.
Zurück zum Zitat Burburan, S.M., D.G. Xisto, and P.R. Rocco. 2007. Anaesthetic management in asthma. Minerva Anestesiologica 73: 357–365.PubMed Burburan, S.M., D.G. Xisto, and P.R. Rocco. 2007. Anaesthetic management in asthma. Minerva Anestesiologica 73: 357–365.PubMed
28.
Zurück zum Zitat Kuperman, D.A., X. Huang, L.L. Koth, G.H. Chang, G.M. Dolganov, Z. Zhu, J.A. Elias, D. Sheppard, and D.J. Erle. 2002. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nature Medicine 8: 885–889.CrossRefPubMed Kuperman, D.A., X. Huang, L.L. Koth, G.H. Chang, G.M. Dolganov, Z. Zhu, J.A. Elias, D. Sheppard, and D.J. Erle. 2002. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nature Medicine 8: 885–889.CrossRefPubMed
29.
Zurück zum Zitat Luttmann, W., T. Matthiesen, H. Matthys, and J. C. Virchow, Jr. 1999. Synergistic effects of interleukin-4 or interleukin-13 and tumor necrosis factor-alpha on eosinophil activation in vitro. American Journal of Respiratory Cell and Molecular Biology 20:474–480. Luttmann, W., T. Matthiesen, H. Matthys, and J. C. Virchow, Jr. 1999. Synergistic effects of interleukin-4 or interleukin-13 and tumor necrosis factor-alpha on eosinophil activation in vitro. American Journal of Respiratory Cell and Molecular Biology 20:474–480.
30.
Zurück zum Zitat Shakoory, B., S.M. Fitzgerald, S.A. Lee, D.S. Chi, and G. Krishnaswamy. 2004. The role of human mast cell-derived cytokines in eosinophil biology. Journal of Interferon & Cytokine Research 24: 271–281.CrossRef Shakoory, B., S.M. Fitzgerald, S.A. Lee, D.S. Chi, and G. Krishnaswamy. 2004. The role of human mast cell-derived cytokines in eosinophil biology. Journal of Interferon & Cytokine Research 24: 271–281.CrossRef
31.
Zurück zum Zitat O’Neill, L.A. 2008. Primer: Toll-like receptor signaling pathways—what do rheumatologists need to know? Nature Clinical Practice. Rheumatology 4: 319–327.CrossRefPubMed O’Neill, L.A. 2008. Primer: Toll-like receptor signaling pathways—what do rheumatologists need to know? Nature Clinical Practice. Rheumatology 4: 319–327.CrossRefPubMed
32.
Zurück zum Zitat Ye, H.H., K.J. Wu, S.J. Fei, X.W. Zhang, H.X. Liu, J.L. Zhang, and Y.M. Zhang. 2013. Propofol participates in gastric mucosal protection through inhibiting the toll-like receptor-4/nuclear factor kappa-B signaling pathway. Clinics and Research in Hepatology and Gastroenterology 37: e3–15.CrossRefPubMed Ye, H.H., K.J. Wu, S.J. Fei, X.W. Zhang, H.X. Liu, J.L. Zhang, and Y.M. Zhang. 2013. Propofol participates in gastric mucosal protection through inhibiting the toll-like receptor-4/nuclear factor kappa-B signaling pathway. Clinics and Research in Hepatology and Gastroenterology 37: e3–15.CrossRefPubMed
33.
Zurück zum Zitat Dikmen, B., H. Yagmurdur, T. Akgul, M. Astarci, H. Ustun, and C. Germiyanoglu. 2010. Preventive effects of propofol and ketamine on renal injury in unilateral ureteral obstruction. Journal of Anesthesia 24: 73–80.CrossRefPubMed Dikmen, B., H. Yagmurdur, T. Akgul, M. Astarci, H. Ustun, and C. Germiyanoglu. 2010. Preventive effects of propofol and ketamine on renal injury in unilateral ureteral obstruction. Journal of Anesthesia 24: 73–80.CrossRefPubMed
34.
Zurück zum Zitat Bandeiras, C., A.P. Serro, K. Luzyanin, A. Fernandes, and B. Saramago. 2013. Anesthetics interacting with lipid rafts. European Journal of Pharmaceutical Sciences 48: 153–165.CrossRefPubMed Bandeiras, C., A.P. Serro, K. Luzyanin, A. Fernandes, and B. Saramago. 2013. Anesthetics interacting with lipid rafts. European Journal of Pharmaceutical Sciences 48: 153–165.CrossRefPubMed
35.
Zurück zum Zitat Wu, G.J., T.L. Chen, C.C. Chang, and R.M. Chen. 2009. Propofol suppresses tumor necrosis factor-alpha biosynthesis in lipopolysaccharide-stimulated macrophages possibly through downregulation of nuclear factor-kappa B-mediated toll-like receptor 4 gene expression. Chemico-Biological Interactions 180: 465–471.CrossRefPubMed Wu, G.J., T.L. Chen, C.C. Chang, and R.M. Chen. 2009. Propofol suppresses tumor necrosis factor-alpha biosynthesis in lipopolysaccharide-stimulated macrophages possibly through downregulation of nuclear factor-kappa B-mediated toll-like receptor 4 gene expression. Chemico-Biological Interactions 180: 465–471.CrossRefPubMed
36.
Zurück zum Zitat Gan, X., D. Xing, G. Su, S. Li, C. Luo, M.G. Irwin, Z. Xia, H. Li, and Z. Hei. 2015. Propofol attenuates small intestinal ischemia reperfusion injury through inhibiting NADPH oxidase mediated mast cell activation. Oxidative Medicine and Cellular Longevity 2015: 167014.CrossRefPubMedPubMedCentral Gan, X., D. Xing, G. Su, S. Li, C. Luo, M.G. Irwin, Z. Xia, H. Li, and Z. Hei. 2015. Propofol attenuates small intestinal ischemia reperfusion injury through inhibiting NADPH oxidase mediated mast cell activation. Oxidative Medicine and Cellular Longevity 2015: 167014.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Zhao, W., S. Zhou, W. Yao, X. Gan, G. Su, D. Yuan, and Z. Hei. 2014. Propofol prevents lung injury after intestinal ischemia–reperfusion by inhibiting the interaction between mast cell activation and oxidative stress. Life Sciences 108: 80–87.CrossRefPubMed Zhao, W., S. Zhou, W. Yao, X. Gan, G. Su, D. Yuan, and Z. Hei. 2014. Propofol prevents lung injury after intestinal ischemia–reperfusion by inhibiting the interaction between mast cell activation and oxidative stress. Life Sciences 108: 80–87.CrossRefPubMed
38.
Zurück zum Zitat Inoue, T., Y. Suzuki, T. Yoshimaru, and C. Ra. 2008. Reactive oxygen species produced up- or downstream of calcium influx regulate proinflammatory mediator release from mast cells: Role of NADPH oxidase and mitochondria. Biochimica et Biophysica Acta 1783: 789–802.CrossRefPubMed Inoue, T., Y. Suzuki, T. Yoshimaru, and C. Ra. 2008. Reactive oxygen species produced up- or downstream of calcium influx regulate proinflammatory mediator release from mast cells: Role of NADPH oxidase and mitochondria. Biochimica et Biophysica Acta 1783: 789–802.CrossRefPubMed
39.
Zurück zum Zitat Kuehn, H.S., E.J. Swindle, M.S. Kim, M.A. Beaven, D.D. Metcalfe, and A.M. Gilfillan. 2008. The phosphoinositide 3-kinase-dependent activation of Btk is required for optimal eicosanoid production and generation of reactive oxygen species in antigen-stimulated mast cells. Journal of Immunology 181: 7706–7712.CrossRef Kuehn, H.S., E.J. Swindle, M.S. Kim, M.A. Beaven, D.D. Metcalfe, and A.M. Gilfillan. 2008. The phosphoinositide 3-kinase-dependent activation of Btk is required for optimal eicosanoid production and generation of reactive oxygen species in antigen-stimulated mast cells. Journal of Immunology 181: 7706–7712.CrossRef
40.
Zurück zum Zitat Cho, K.J., J.M. Seo, M.G. Lee, and J.H. Kim. 2010. BLT2 is upregulated in allergen-stimulated mast cells and mediates the synthesis of Th2 cytokines. Journal of Immunology 185: 6329–6337.CrossRef Cho, K.J., J.M. Seo, M.G. Lee, and J.H. Kim. 2010. BLT2 is upregulated in allergen-stimulated mast cells and mediates the synthesis of Th2 cytokines. Journal of Immunology 185: 6329–6337.CrossRef
41.
Zurück zum Zitat Tully, J.E., S.M. Hoffman, K.G. Lahue, J.D. Nolin, V. Anathy, L.K. Lundblad, N. Daphtary, et al. 2013. Epithelial NF-kappaB orchestrates house dust mite-induced airway inflammation, hyperresponsiveness, and fibrotic remodeling. Journal of Immunology 191: 5811–5821.CrossRef Tully, J.E., S.M. Hoffman, K.G. Lahue, J.D. Nolin, V. Anathy, L.K. Lundblad, N. Daphtary, et al. 2013. Epithelial NF-kappaB orchestrates house dust mite-induced airway inflammation, hyperresponsiveness, and fibrotic remodeling. Journal of Immunology 191: 5811–5821.CrossRef
42.
Zurück zum Zitat Mitchell, S., J. Vargas, and A. Hoffmann. 2016. Signaling via the NFkappaB system. Wiley Interdisciplinary Reviews. Systems Biology and Medicine 8: 227–241.CrossRefPubMed Mitchell, S., J. Vargas, and A. Hoffmann. 2016. Signaling via the NFkappaB system. Wiley Interdisciplinary Reviews. Systems Biology and Medicine 8: 227–241.CrossRefPubMed
43.
Zurück zum Zitat Shin, I.W., I.S. Jang, S.H. Lee, J.S. Baik, K.E. Park, J.T. Sohn, H.K. Lee, and Y.K. Chung. 2010. Propofol has delayed myocardial protective effects after a regional ischemia/reperfusion injury in an in vivo rat heart model. Korean J Anesthesiol 58: 378–382.CrossRefPubMedPubMedCentral Shin, I.W., I.S. Jang, S.H. Lee, J.S. Baik, K.E. Park, J.T. Sohn, H.K. Lee, and Y.K. Chung. 2010. Propofol has delayed myocardial protective effects after a regional ischemia/reperfusion injury in an in vivo rat heart model. Korean J Anesthesiol 58: 378–382.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Yuzbasioglu, M.F., A. Aykas, E.B. Kurutas, and T. Sahinkanat. 2010. Protective effects of propofol against ischemia/reperfusion injury in rat kidneys. Renal Failure 32: 578–583.CrossRefPubMed Yuzbasioglu, M.F., A. Aykas, E.B. Kurutas, and T. Sahinkanat. 2010. Protective effects of propofol against ischemia/reperfusion injury in rat kidneys. Renal Failure 32: 578–583.CrossRefPubMed
45.
Zurück zum Zitat Shibuya, K., T. Ishiyama, M. Ichikawa, H. Sato, K. Okuyama, D.I. Sessler, and T. Matsukawa. 2009. The direct effects of propofol on pial microvessels in rabbits. Journal of Neurosurgical Anesthesiology 21: 40–46.CrossRefPubMed Shibuya, K., T. Ishiyama, M. Ichikawa, H. Sato, K. Okuyama, D.I. Sessler, and T. Matsukawa. 2009. The direct effects of propofol on pial microvessels in rabbits. Journal of Neurosurgical Anesthesiology 21: 40–46.CrossRefPubMed
Metadaten
Titel
Propofol Attenuates Airway Inflammation in a Mast Cell-Dependent Mouse Model of Allergic Asthma by Inhibiting the Toll-like Receptor 4/Reactive Oxygen Species/Nuclear Factor κB Signaling Pathway
verfasst von
Hong-Yi Li
Jing-Xia Meng
Zhen Liu
Xiao-Wen Liu
Yu-Guang Huang
Jing Zhao
Publikationsdatum
12.03.2018
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2018
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0746-2

Weitere Artikel der Ausgabe 3/2018

Inflammation 3/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.