Skip to main content
Erschienen in: Inflammation 5/2019

22.07.2019 | Original Article

Pseudoginsenoside-F11 Attenuates Lipopolysaccharide-Induced Acute Lung Injury by Suppressing Neutrophil Infiltration and Accelerating Neutrophil Clearance

verfasst von: Pengwei Wang, Ying Hou, Wen Zhang, Haotian Zhang, Xiaohang Che, Yongfeng Gao, Yinglu Liu, Depeng Yang, Jingmin Wang, Rongwu Xiang, Mingyi Zhao, Jingyu Yang

Erschienen in: Inflammation | Ausgabe 5/2019

Einloggen, um Zugang zu erhalten

Abstract

Pseudoginsenoside-F11 (PF11), an ocotillol-type saponin, has been reported to have anti-inflammatory properties, but the effects of PF11 on acute lung inflammation were unknown. The present study aimed to investigate the protective effects and potential mechanisms of PF11 on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in male BALB/c mice. After being treated with PF11 (3, 10, and 30 mg/kg, intravenous) once a day for 3 consecutive days, the mice were challenged by intratracheal instillation of LPS, and then their lung tissues and bronchoalveolar lavage fluid (BALF) were collected for further analysis. The results showed that PF11 attenuated LPS-induced ALI, with alleviated histopathological damage, decreased lung wet/dry weight ratio, and reduced protein concentration and inflammatory cells number in BALF. Moreover, PF11 reversed the LPS-induced increases of mRNA expression and protein levels of interleukin-6, tumor necrosis factor-α, and interleukin-1β. Meanwhile, PF11 decreased LPS-induced myeloperoxidase activity and neutrophil infiltration in lung tissue by reducing the expression of macrophage inflammatory protein-2 and intercellular adhesion molecule-1, as well as enhanced neutrophil clearance by accelerating neutrophils apoptosis and their phagocytosis by alveolar macrophages. In conclusion, these results indicated that PF11 significantly attenuated LPS-induced ALI through suppressing neutrophil infiltration and accelerating neutrophil clearance, suggesting its potential in the treatment of ALI.
Literatur
1.
Zurück zum Zitat Grommes, J., and O. Soehnlein. 2011. Contribution of neutrophils to acute lung injury. Molecular Medicine 17 (3–4): 293–307.CrossRefPubMed Grommes, J., and O. Soehnlein. 2011. Contribution of neutrophils to acute lung injury. Molecular Medicine 17 (3–4): 293–307.CrossRefPubMed
2.
Zurück zum Zitat Lin, S., H. Wu, C. Wang, Z. Xiao, and F. Xu. 2018. Regulatory T cells and acute lung injury: cytokines, uncontrolled inflammation, and therapeutic implications. Frontiers in Immunology 9: 1545.CrossRefPubMedPubMedCentral Lin, S., H. Wu, C. Wang, Z. Xiao, and F. Xu. 2018. Regulatory T cells and acute lung injury: cytokines, uncontrolled inflammation, and therapeutic implications. Frontiers in Immunology 9: 1545.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Villar, J., D. Sulemanji, and R.M. Kacmarek. 2014. The acute respiratory distress syndrome: incidence and mortality, has it changed? Current Opinion in Critical Care 20 (1): 3–9.CrossRefPubMed Villar, J., D. Sulemanji, and R.M. Kacmarek. 2014. The acute respiratory distress syndrome: incidence and mortality, has it changed? Current Opinion in Critical Care 20 (1): 3–9.CrossRefPubMed
4.
Zurück zum Zitat Kumar, V., and A. Sharma. 2010. Neutrophils: Cinderella of innate immune system. International Immunopharmacology 10 (11): 1325–1334.CrossRefPubMed Kumar, V., and A. Sharma. 2010. Neutrophils: Cinderella of innate immune system. International Immunopharmacology 10 (11): 1325–1334.CrossRefPubMed
5.
Zurück zum Zitat Petri, B., and M.J. Sanz. 2018. Neutrophil chemotaxis. Cell and Tissue Research 371 (3): 425–436.CrossRefPubMed Petri, B., and M.J. Sanz. 2018. Neutrophil chemotaxis. Cell and Tissue Research 371 (3): 425–436.CrossRefPubMed
6.
Zurück zum Zitat Yuan, Q., Y.W. Jiang, T.T. Ma, Q.H. Fang, and L. Pan. 2014. Attenuating effect of Ginsenoside Rb1 on LPS-induced lung injury in rats. Journal of Inflammation 11 (1): 40.CrossRefPubMed Yuan, Q., Y.W. Jiang, T.T. Ma, Q.H. Fang, and L. Pan. 2014. Attenuating effect of Ginsenoside Rb1 on LPS-induced lung injury in rats. Journal of Inflammation 11 (1): 40.CrossRefPubMed
7.
Zurück zum Zitat Downey, G.P., Q. Dong, J. Kruger, S. Dedhar, and V. Cherapanov. 1999. Regulation of neutrophil activation in acute lung injury. Chest 116 (1 Suppl): 46s–54s.CrossRefPubMed Downey, G.P., Q. Dong, J. Kruger, S. Dedhar, and V. Cherapanov. 1999. Regulation of neutrophil activation in acute lung injury. Chest 116 (1 Suppl): 46s–54s.CrossRefPubMed
8.
Zurück zum Zitat Takano, T., N. Azuma, M. Satoh, A. Toda, Y. Hashida, R. Satoh, and T. Hohdatsu. 2009. Neutrophil survival factors (TNF-alpha, GM-CSF, and G-CSF) produced by macrophages in cats infected with feline infectious peritonitis virus contribute to the pathogenesis of granulomatous lesions. Archives of Virology 154 (5): 775–781.CrossRefPubMed Takano, T., N. Azuma, M. Satoh, A. Toda, Y. Hashida, R. Satoh, and T. Hohdatsu. 2009. Neutrophil survival factors (TNF-alpha, GM-CSF, and G-CSF) produced by macrophages in cats infected with feline infectious peritonitis virus contribute to the pathogenesis of granulomatous lesions. Archives of Virology 154 (5): 775–781.CrossRefPubMed
9.
Zurück zum Zitat Lee, W.L., and G.P. Downey. 2001. Neutrophil activation and acute lung injury. Current Opinion in Critical Care 7 (1): 1–7.CrossRefPubMed Lee, W.L., and G.P. Downey. 2001. Neutrophil activation and acute lung injury. Current Opinion in Critical Care 7 (1): 1–7.CrossRefPubMed
10.
Zurück zum Zitat Fotouhi-Ardakani, N., D.E. Kebir, N. Pierre-Charles, L. Wang, S.P. Ahern, J.G. Filep, and E. Milot. 2010. Role for myeloid nuclear differentiation antigen in the regulation of neutrophil apoptosis during sepsis. American Journal of Respiratory and Critical Care Medicine 182 (3): 341–350.CrossRefPubMed Fotouhi-Ardakani, N., D.E. Kebir, N. Pierre-Charles, L. Wang, S.P. Ahern, J.G. Filep, and E. Milot. 2010. Role for myeloid nuclear differentiation antigen in the regulation of neutrophil apoptosis during sepsis. American Journal of Respiratory and Critical Care Medicine 182 (3): 341–350.CrossRefPubMed
11.
Zurück zum Zitat Kennedy, A.D., and F.R. DeLeo. 2009. Neutrophil apoptosis and the resolution of infection. Immunologic Research 43 (1–3): 25–61.CrossRefPubMed Kennedy, A.D., and F.R. DeLeo. 2009. Neutrophil apoptosis and the resolution of infection. Immunologic Research 43 (1–3): 25–61.CrossRefPubMed
12.
Zurück zum Zitat Voll, R.E., M. Herrmann, E.A. Roth, C. Stach, J.R. Kalden, and I. Girkontaite. 1997. Immunosuppressive effects of apoptotic cells. Nature 390 (6658): 350–351.CrossRefPubMed Voll, R.E., M. Herrmann, E.A. Roth, C. Stach, J.R. Kalden, and I. Girkontaite. 1997. Immunosuppressive effects of apoptotic cells. Nature 390 (6658): 350–351.CrossRefPubMed
13.
Zurück zum Zitat Wang, Z.J., L. Sun, W. Peng, S. Ma, C. Zhu, F. Fu, and T. Heinbockel. 2011. Ginseng derivative ocotillol enhances neuronal activity through increased glutamate release: a possible mechanism underlying increased spontaneous locomotor activity of mice. Neuroscience 195: 1–8.CrossRefPubMedPubMedCentral Wang, Z.J., L. Sun, W. Peng, S. Ma, C. Zhu, F. Fu, and T. Heinbockel. 2011. Ginseng derivative ocotillol enhances neuronal activity through increased glutamate release: a possible mechanism underlying increased spontaneous locomotor activity of mice. Neuroscience 195: 1–8.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Wang, C.M., M.Y. Liu, F. Wang, M.J. Wei, S. Wang, C.F. Wu, and J.Y. Yang. 2013. Anti-amnesic effect of pseudoginsenoside-F11 in two mouse models of Alzheimer’s disease. Pharmacology, Biochemistry and Behavior 106: 57–67.CrossRefPubMed Wang, C.M., M.Y. Liu, F. Wang, M.J. Wei, S. Wang, C.F. Wu, and J.Y. Yang. 2013. Anti-amnesic effect of pseudoginsenoside-F11 in two mouse models of Alzheimer’s disease. Pharmacology, Biochemistry and Behavior 106: 57–67.CrossRefPubMed
15.
Zurück zum Zitat Wang, J.Y., J.Y. Yang, F. Wang, S.Y. Fu, Y. Hou, B. Jiang, J. Ma, C. Song, and C.F. Wu. 2013. Neuroprotective effect of pseudoginsenoside-f11 on a rat model of Parkinson’s disease induced by 6-hydroxydopamine. Evidence-based Complementary and Alternative Medicine 2013: 152798.PubMedPubMedCentral Wang, J.Y., J.Y. Yang, F. Wang, S.Y. Fu, Y. Hou, B. Jiang, J. Ma, C. Song, and C.F. Wu. 2013. Neuroprotective effect of pseudoginsenoside-f11 on a rat model of Parkinson’s disease induced by 6-hydroxydopamine. Evidence-based Complementary and Alternative Medicine 2013: 152798.PubMedPubMedCentral
16.
Zurück zum Zitat Liu, Y.Y., T.Y. Zhang, X. Xue, D.M. Liu, H.T. Zhang, L.L. Yuan, Y.L. Liu, H.L. Yang, S.B. Sun, C. Zhang, H.S. Xu, C.F. Wu, and J.Y. Yang. 2017. Pseudoginsenoside-F11 attenuates cerebral ischemic injury by alleviating autophagic/lysosomal defects. CNS Neuroscience & Therapeutics 23 (7): 567–579.CrossRef Liu, Y.Y., T.Y. Zhang, X. Xue, D.M. Liu, H.T. Zhang, L.L. Yuan, Y.L. Liu, H.L. Yang, S.B. Sun, C. Zhang, H.S. Xu, C.F. Wu, and J.Y. Yang. 2017. Pseudoginsenoside-F11 attenuates cerebral ischemic injury by alleviating autophagic/lysosomal defects. CNS Neuroscience & Therapeutics 23 (7): 567–579.CrossRef
17.
Zurück zum Zitat Wu, C.F., Y.L. Liu, M. Song, W. Liu, J.H. Wang, X. Li, and J.Y. Yang. 2003. Protective effects of pseudoginsenoside-F11 on methamphetamine-induced neurotoxicity in mice. Pharmacology, Biochemistry and Behavior 76 (1): 103–109.CrossRefPubMed Wu, C.F., Y.L. Liu, M. Song, W. Liu, J.H. Wang, X. Li, and J.Y. Yang. 2003. Protective effects of pseudoginsenoside-F11 on methamphetamine-induced neurotoxicity in mice. Pharmacology, Biochemistry and Behavior 76 (1): 103–109.CrossRefPubMed
18.
Zurück zum Zitat Wang, X., C. Wang, J. Wang, S. Zhao, K. Zhang, J. Wang, W. Zhang, C. Wu, and J. Yang. 2014. Pseudoginsenoside-F11 (PF11) exerts anti-neuroinflammatory effects on LPS-activated microglial cells by inhibiting TLR4-mediated TAK1/IKK/NF-kappaB, MAPKs and Akt signaling pathways. Neuropharmacology 79: 642–656.CrossRefPubMed Wang, X., C. Wang, J. Wang, S. Zhao, K. Zhang, J. Wang, W. Zhang, C. Wu, and J. Yang. 2014. Pseudoginsenoside-F11 (PF11) exerts anti-neuroinflammatory effects on LPS-activated microglial cells by inhibiting TLR4-mediated TAK1/IKK/NF-kappaB, MAPKs and Akt signaling pathways. Neuropharmacology 79: 642–656.CrossRefPubMed
19.
Zurück zum Zitat Zhang, Z., H. Yang, J. Yang, J. Xie, J. Xu, C. Liu, and C. Wu. 2019. Pseudoginsenoside-F11 attenuates cognitive impairment by ameliorating oxidative stress and neuroinflammation in d-galactose-treated mice. International Immunopharmacology 67: 78–86.CrossRefPubMed Zhang, Z., H. Yang, J. Yang, J. Xie, J. Xu, C. Liu, and C. Wu. 2019. Pseudoginsenoside-F11 attenuates cognitive impairment by ameliorating oxidative stress and neuroinflammation in d-galactose-treated mice. International Immunopharmacology 67: 78–86.CrossRefPubMed
20.
Zurück zum Zitat Xu, Y.Y., Y.Y. Zhang, Y.Y. Ou, X.X. Lu, L.Y. Pan, H. Li, Y. Lu, and D.F. Chen. 2015. Houttuyniacordata Thunb. polysaccharides ameliorates lipopolysaccharide-induced acute lung injury in mice. Journal of Ethnopharmacology 173: 81–90.CrossRefPubMed Xu, Y.Y., Y.Y. Zhang, Y.Y. Ou, X.X. Lu, L.Y. Pan, H. Li, Y. Lu, and D.F. Chen. 2015. Houttuyniacordata Thunb. polysaccharides ameliorates lipopolysaccharide-induced acute lung injury in mice. Journal of Ethnopharmacology 173: 81–90.CrossRefPubMed
21.
Zurück zum Zitat Barreto, T.R., C. Costola-de-Souza, R.O. Margatho, N. Queiroz-Hazarbassanov, S.C. Rodrigues, L.F. Felicio, J. Palermo-Neto, and A. Zager. 2018. Repeated Domperidone treatment modulates pulmonary cytokines in LPS-induced acute lung injury in mice. International Immunopharmacology 56: 43–50.CrossRefPubMed Barreto, T.R., C. Costola-de-Souza, R.O. Margatho, N. Queiroz-Hazarbassanov, S.C. Rodrigues, L.F. Felicio, J. Palermo-Neto, and A. Zager. 2018. Repeated Domperidone treatment modulates pulmonary cytokines in LPS-induced acute lung injury in mice. International Immunopharmacology 56: 43–50.CrossRefPubMed
22.
Zurück zum Zitat Wu, F., W. Shi, G. Zhou, H. Yao, C. Xu, W. Xiao, J. Wu, and X. Wu. 2016. Ginkgolide B functions as a determinant constituent of Ginkgolides in alleviating lipopolysaccharide-induced lung injury. Biomedicine and Pharmacotherapy 81: 71–78.CrossRefPubMed Wu, F., W. Shi, G. Zhou, H. Yao, C. Xu, W. Xiao, J. Wu, and X. Wu. 2016. Ginkgolide B functions as a determinant constituent of Ginkgolides in alleviating lipopolysaccharide-induced lung injury. Biomedicine and Pharmacotherapy 81: 71–78.CrossRefPubMed
23.
Zurück zum Zitat Gong, J., H. Liu, J. Wu, H. Qi, Z.Y. Wu, H.Q. Shu, H.B. Li, L. Chen, Y.X. Wang, B. Li, M. Tang, Y.D. Ji, S.Y. Yuan, S.L. Yao, and Y. Shang. 2015. Maresin 1 prevents lipopolysaccharide-induced neutrophil survival and accelerates resolution of acute lung injury. Shock 44 (4): 371–380.CrossRefPubMed Gong, J., H. Liu, J. Wu, H. Qi, Z.Y. Wu, H.Q. Shu, H.B. Li, L. Chen, Y.X. Wang, B. Li, M. Tang, Y.D. Ji, S.Y. Yuan, S.L. Yao, and Y. Shang. 2015. Maresin 1 prevents lipopolysaccharide-induced neutrophil survival and accelerates resolution of acute lung injury. Shock 44 (4): 371–380.CrossRefPubMed
24.
Zurück zum Zitat Xu, Y.N., Z. Zhang, P. Ma, and S.H. Zhang. 2011. Adenovirus-delivered angiopoietin 1 accelerates the resolution of inflammation of acute endotoxic lung injury in mice. Anesthesia and Analgesia 112 (6): 1403–1410.CrossRefPubMed Xu, Y.N., Z. Zhang, P. Ma, and S.H. Zhang. 2011. Adenovirus-delivered angiopoietin 1 accelerates the resolution of inflammation of acute endotoxic lung injury in mice. Anesthesia and Analgesia 112 (6): 1403–1410.CrossRefPubMed
25.
Zurück zum Zitat Schwab, J.M., N. Chiang, M. Arita, and C.N. Serhan. 2007. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 447 (7146): 869–874.CrossRefPubMedPubMedCentral Schwab, J.M., N. Chiang, M. Arita, and C.N. Serhan. 2007. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 447 (7146): 869–874.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Miller, S.I., R.K. Ernst, and M.W. Bader. 2005. LPS, TLR4 and infectious disease diversity. Nature Reviews Microbiology 3 (1): 36–46.CrossRefPubMed Miller, S.I., R.K. Ernst, and M.W. Bader. 2005. LPS, TLR4 and infectious disease diversity. Nature Reviews Microbiology 3 (1): 36–46.CrossRefPubMed
27.
Zurück zum Zitat D’Alessio, F.R. 2018. Mouse models of acute lung injury and ARDS. Methods in Molecular Biology 1809: 341–350.CrossRefPubMed D’Alessio, F.R. 2018. Mouse models of acute lung injury and ARDS. Methods in Molecular Biology 1809: 341–350.CrossRefPubMed
28.
Zurück zum Zitat Chen, H., C. Bai, and X. Wang. 2010. The value of the lipopolysaccharide-induced acute lung injury model in respiratory medicine. Expert Review of Respiratory Medicine 4 (6): 773–783.CrossRefPubMed Chen, H., C. Bai, and X. Wang. 2010. The value of the lipopolysaccharide-induced acute lung injury model in respiratory medicine. Expert Review of Respiratory Medicine 4 (6): 773–783.CrossRefPubMed
29.
Zurück zum Zitat Zhao, D., J. Zhang, G. Xu, and Q. Wang. 2017. Artesunate protects LPS-induced acute lung injury by inhibiting TLR4 expression and inducing Nrf2 activation. Inflammation 40 (3): 798–805.CrossRefPubMed Zhao, D., J. Zhang, G. Xu, and Q. Wang. 2017. Artesunate protects LPS-induced acute lung injury by inhibiting TLR4 expression and inducing Nrf2 activation. Inflammation 40 (3): 798–805.CrossRefPubMed
30.
Zurück zum Zitat Huang, X., H. Xiu, S. Zhang, and G. Zhang. 2018. The role of macrophages in the pathogenesis of ALI/ARDS. Mediators of Inflammation 2018: 1264913.PubMedPubMedCentral Huang, X., H. Xiu, S. Zhang, and G. Zhang. 2018. The role of macrophages in the pathogenesis of ALI/ARDS. Mediators of Inflammation 2018: 1264913.PubMedPubMedCentral
31.
Zurück zum Zitat Madjdpour, C., B. Oertli, U. Ziegler, J.M. Bonvini, T. Pasch, and B. Beck-Schimmer. 2000. Lipopolysaccharide induces functional ICAM-1 expression in rat alveolar epithelial cells in vitro. American Journal of Physiology. Lung Cellular and Molecular Physiology 278 (3): L572–L579.CrossRefPubMed Madjdpour, C., B. Oertli, U. Ziegler, J.M. Bonvini, T. Pasch, and B. Beck-Schimmer. 2000. Lipopolysaccharide induces functional ICAM-1 expression in rat alveolar epithelial cells in vitro. American Journal of Physiology. Lung Cellular and Molecular Physiology 278 (3): L572–L579.CrossRefPubMed
32.
Zurück zum Zitat Yu, M.L., and A.H. Limper. 1997. Pneumocystis carinii induces ICAM-1 expression in lung epithelial cells through a TNF-alpha-mediated mechanism. American Journal of Physiology 273 (6): L1103–L1111.PubMed Yu, M.L., and A.H. Limper. 1997. Pneumocystis carinii induces ICAM-1 expression in lung epithelial cells through a TNF-alpha-mediated mechanism. American Journal of Physiology 273 (6): L1103–L1111.PubMed
33.
Zurück zum Zitat Pugin, J., B. Ricou, K.P. Steinberg, P.M. Suter, and T.R. Martin. 1996. Proinflammatory activity in bronchoalveolar lavage fluids from patients with ARDS, a prominent role for interleukin-1. American Journal of Respiratory and Critical Care Medicine 153 (6 Pt 1): 1850–1856.CrossRefPubMed Pugin, J., B. Ricou, K.P. Steinberg, P.M. Suter, and T.R. Martin. 1996. Proinflammatory activity in bronchoalveolar lavage fluids from patients with ARDS, a prominent role for interleukin-1. American Journal of Respiratory and Critical Care Medicine 153 (6 Pt 1): 1850–1856.CrossRefPubMed
34.
Zurück zum Zitat Zhou, X., Q. Dai, and X. Huang. 2012. Neutrophils in acute lung injury. Frontiers in Bioscience (Landmark Ed) 17: 2278–2283.CrossRef Zhou, X., Q. Dai, and X. Huang. 2012. Neutrophils in acute lung injury. Frontiers in Bioscience (Landmark Ed) 17: 2278–2283.CrossRef
35.
Zurück zum Zitat Butt, Y., A. Kurdowska, and T.C. Allen. 2016. Acute lung injury: a clinical and molecular review. Archives of Pathology and Laboratory Medicine 140 (4): 345–350.CrossRefPubMed Butt, Y., A. Kurdowska, and T.C. Allen. 2016. Acute lung injury: a clinical and molecular review. Archives of Pathology and Laboratory Medicine 140 (4): 345–350.CrossRefPubMed
36.
Zurück zum Zitat Laffey, J.G., and M.A. Matthay. 2017. Fifty years of research in ARDS. Cell-based therapy for acute respiratory distress syndrome. Biology and potential therapeutic value. American Journal of Respiratory and Critical Care Medicine 196 (3): 266–273.CrossRefPubMedPubMedCentral Laffey, J.G., and M.A. Matthay. 2017. Fifty years of research in ARDS. Cell-based therapy for acute respiratory distress syndrome. Biology and potential therapeutic value. American Journal of Respiratory and Critical Care Medicine 196 (3): 266–273.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Zhou, B., G. Weng, Z. Huang, T. Liu, and F. Dai. 2018. Arctiin prevents LPS-induced acute lung injury via inhibition of PI3K/AKT signaling pathway in mice. Inflammation 41 (6): 2129–2135.CrossRefPubMed Zhou, B., G. Weng, Z. Huang, T. Liu, and F. Dai. 2018. Arctiin prevents LPS-induced acute lung injury via inhibition of PI3K/AKT signaling pathway in mice. Inflammation 41 (6): 2129–2135.CrossRefPubMed
38.
Zurück zum Zitat Wan, L., D. Meng, H. Wang, S. Wan, S. Jiang, S. Huang, L. Wei, and P. Yu. 2018. Preventive and therapeutic effects of thymol in a lipopolysaccharide-induced acute lung injury mice model. Inflammation 41 (1): 183–192.CrossRefPubMed Wan, L., D. Meng, H. Wang, S. Wan, S. Jiang, S. Huang, L. Wei, and P. Yu. 2018. Preventive and therapeutic effects of thymol in a lipopolysaccharide-induced acute lung injury mice model. Inflammation 41 (1): 183–192.CrossRefPubMed
39.
Zurück zum Zitat Gonzalez-Lopez, A., and G.M. Albaiceta. 2012. Repair after acute lung injury: molecular mechanisms and therapeutic opportunities. Critical Care (London, England) 16 (2): 209.CrossRef Gonzalez-Lopez, A., and G.M. Albaiceta. 2012. Repair after acute lung injury: molecular mechanisms and therapeutic opportunities. Critical Care (London, England) 16 (2): 209.CrossRef
40.
Zurück zum Zitat Matthay, M.A., L.B. Ware, and G.A. Zimmerman. 2012. The acute respiratory distress syndrome. Journal of Clinical Investigation 122 (8): 2731–2740.CrossRefPubMed Matthay, M.A., L.B. Ware, and G.A. Zimmerman. 2012. The acute respiratory distress syndrome. Journal of Clinical Investigation 122 (8): 2731–2740.CrossRefPubMed
41.
Zurück zum Zitat Goodman, R.B., J. Pugin, J.S. Lee, and M.A. Matthay. 2003. Cytokine-mediated inflammation in acute lung injury. Cytokine and Growth Factor Reviews 14 (6): 523–535.CrossRefPubMed Goodman, R.B., J. Pugin, J.S. Lee, and M.A. Matthay. 2003. Cytokine-mediated inflammation in acute lung injury. Cytokine and Growth Factor Reviews 14 (6): 523–535.CrossRefPubMed
42.
Zurück zum Zitat Chollet-Martin, S., B. Jourdain, C. Gibert, C. Elbim, J. Chastre, and M.A. Gougerot-Pocidalo. 1996. Interactions between neutrophils and cytokines in blood and alveolar spaces during ARDS. American Journal of Respiratory and Critical Care Medicine 154 (3 Pt 1): 594–601.CrossRefPubMed Chollet-Martin, S., B. Jourdain, C. Gibert, C. Elbim, J. Chastre, and M.A. Gougerot-Pocidalo. 1996. Interactions between neutrophils and cytokines in blood and alveolar spaces during ARDS. American Journal of Respiratory and Critical Care Medicine 154 (3 Pt 1): 594–601.CrossRefPubMed
43.
Zurück zum Zitat Prince, L.R., L. Allen, E.C. Jones, P.G. Hellewell, S.K. Dower, M.K. Whyte, and I. Sabroe. 2004. The role of interleukin-1beta in direct and toll-like receptor 4-mediated neutrophil activation and survival. American Journal of Pathology 165 (5): 1819–1826.CrossRefPubMed Prince, L.R., L. Allen, E.C. Jones, P.G. Hellewell, S.K. Dower, M.K. Whyte, and I. Sabroe. 2004. The role of interleukin-1beta in direct and toll-like receptor 4-mediated neutrophil activation and survival. American Journal of Pathology 165 (5): 1819–1826.CrossRefPubMed
44.
Zurück zum Zitat Park, W.Y., R.B. Goodman, K.P. Steinberg, J.T. Ruzinski, F. Radella 2nd, D.R. Park, J. Pugin, S.J. Skerrett, L.D. Hudson, and T.R. Martin. 2001. Cytokine balance in the lungs of patients with acute respiratory distress syndrome. American Journal of Respiratory and Critical Care Medicine 164 (10 Pt 1): 1896–1903.CrossRefPubMed Park, W.Y., R.B. Goodman, K.P. Steinberg, J.T. Ruzinski, F. Radella 2nd, D.R. Park, J. Pugin, S.J. Skerrett, L.D. Hudson, and T.R. Martin. 2001. Cytokine balance in the lungs of patients with acute respiratory distress syndrome. American Journal of Respiratory and Critical Care Medicine 164 (10 Pt 1): 1896–1903.CrossRefPubMed
45.
Zurück zum Zitat Sharp, C., A.B. Millar, and A.R. Medford. 2015. Advances in understanding of the pathogenesis of acute respiratory distress syndrome. Respiration 89 (5): 420–434.CrossRefPubMed Sharp, C., A.B. Millar, and A.R. Medford. 2015. Advances in understanding of the pathogenesis of acute respiratory distress syndrome. Respiration 89 (5): 420–434.CrossRefPubMed
46.
Zurück zum Zitat Geerts, L., P.G. Jorens, J. Willems, M. De Ley, and H. Slegers. 2001. Natural inhibitors of neutrophil function in acute respiratory distress syndrome. Critical Care Medicine 29 (10): 1920–1924.CrossRefPubMed Geerts, L., P.G. Jorens, J. Willems, M. De Ley, and H. Slegers. 2001. Natural inhibitors of neutrophil function in acute respiratory distress syndrome. Critical Care Medicine 29 (10): 1920–1924.CrossRefPubMed
47.
Zurück zum Zitat Cheng, Z., and L. Li. 2016. Ginsenoside Rg3 ameliorates lipopolysaccharide-induced acute lung injury in mice through inactivating the nuclear factor-kappaB (NF-kappaB) signaling pathway. International Immunopharmacology 34: 53–59.CrossRefPubMed Cheng, Z., and L. Li. 2016. Ginsenoside Rg3 ameliorates lipopolysaccharide-induced acute lung injury in mice through inactivating the nuclear factor-kappaB (NF-kappaB) signaling pathway. International Immunopharmacology 34: 53–59.CrossRefPubMed
48.
Zurück zum Zitat Zhu, T., D.X. Wang, W. Zhang, X.Q. Liao, X. Guan, H. Bo, J.Y. Sun, N.W. Huang, J. He, Y.K. Zhang, J. Tong, and C.Y. Li. 2013. Andrographolide protects against LPS-induced acute lung injury by inactivation of NF-kappaB. PLoS One 8 (2): e56407.CrossRefPubMedPubMedCentral Zhu, T., D.X. Wang, W. Zhang, X.Q. Liao, X. Guan, H. Bo, J.Y. Sun, N.W. Huang, J. He, Y.K. Zhang, J. Tong, and C.Y. Li. 2013. Andrographolide protects against LPS-induced acute lung injury by inactivation of NF-kappaB. PLoS One 8 (2): e56407.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Williams, A.E., and R.C. Chambers. 2014. The mercurial nature of neutrophils: still an enigma in ARDS? American Journal of Physiology. Lung Cellular and Molecular Physiology 306 (3): L217–L230.CrossRefPubMed Williams, A.E., and R.C. Chambers. 2014. The mercurial nature of neutrophils: still an enigma in ARDS? American Journal of Physiology. Lung Cellular and Molecular Physiology 306 (3): L217–L230.CrossRefPubMed
50.
Zurück zum Zitat Sakamoto, S., T. Okanoue, Y. Itoh, K. Sakamoto, K. Nishioji, Y. Nakagawa, N. Yoshida, T. Yoshikawa, and K. Kashima. 1997. Intercellular adhesion molecule-1 and CD18 are involved in neutrophil adhesion and its cytotoxicity to cultured sinusoidal endothelial cells in rats. Hepatology 26 (3): 658–663.CrossRefPubMed Sakamoto, S., T. Okanoue, Y. Itoh, K. Sakamoto, K. Nishioji, Y. Nakagawa, N. Yoshida, T. Yoshikawa, and K. Kashima. 1997. Intercellular adhesion molecule-1 and CD18 are involved in neutrophil adhesion and its cytotoxicity to cultured sinusoidal endothelial cells in rats. Hepatology 26 (3): 658–663.CrossRefPubMed
51.
52.
Zurück zum Zitat Croasdell, A., P.F. Duffney, N. Kim, S.H. Lacy, P.J. Sime, and R.P. Phipps. 2015. PPARgamma and the innate immune system mediate the resolution of inflammation. PPAR Research 2015: 549691.CrossRefPubMedPubMedCentral Croasdell, A., P.F. Duffney, N. Kim, S.H. Lacy, P.J. Sime, and R.P. Phipps. 2015. PPARgamma and the innate immune system mediate the resolution of inflammation. PPAR Research 2015: 549691.CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Cox, G., J. Crossley, and Z. Xing. 1995. Macrophage engulfment of apoptotic neutrophils contributes to the resolution of acute pulmonary inflammation in vivo. American Journal of Respiratory Cell and Molecular Biology 12 (2): 232–237.CrossRefPubMed Cox, G., J. Crossley, and Z. Xing. 1995. Macrophage engulfment of apoptotic neutrophils contributes to the resolution of acute pulmonary inflammation in vivo. American Journal of Respiratory Cell and Molecular Biology 12 (2): 232–237.CrossRefPubMed
54.
Zurück zum Zitat Rydell-Tormanen, K., L. Uller, and J.S. Erjefalt. 2006. Direct evidence of secondary necrosis of neutrophils during intense lung inflammation. European Respiratory Journal 28 (2): 268–274.CrossRefPubMed Rydell-Tormanen, K., L. Uller, and J.S. Erjefalt. 2006. Direct evidence of secondary necrosis of neutrophils during intense lung inflammation. European Respiratory Journal 28 (2): 268–274.CrossRefPubMed
55.
Zurück zum Zitat Tian, B.P., L.X. Xia, Z.Q. Bao, H. Zhang, Z.W. Xu, Y.Y. Mao, C. Cao, L.Q. Che, J.K. Liu, W. Li, Z.H. Chen, S. Ying, and H.H. Shen. 2017. Bcl-2 inhibitors reduce steroid-insensitive airway inflammation. Journal of Allergy and Clinical Immunology 140 (2): 418–430.CrossRefPubMed Tian, B.P., L.X. Xia, Z.Q. Bao, H. Zhang, Z.W. Xu, Y.Y. Mao, C. Cao, L.Q. Che, J.K. Liu, W. Li, Z.H. Chen, S. Ying, and H.H. Shen. 2017. Bcl-2 inhibitors reduce steroid-insensitive airway inflammation. Journal of Allergy and Clinical Immunology 140 (2): 418–430.CrossRefPubMed
56.
Zurück zum Zitat Karin, M., and Y. Ben-Neriah. 2000. Phosphorylation meets ubiquitination: the control of NF-[kappa] B activity. Annual Review of Immunology 18: 621–663.CrossRefPubMed Karin, M., and Y. Ben-Neriah. 2000. Phosphorylation meets ubiquitination: the control of NF-[kappa] B activity. Annual Review of Immunology 18: 621–663.CrossRefPubMed
57.
Zurück zum Zitat Karin, M. 1999. The beginning of the end: IkappaB kinase (IKK) and NF-kappaB activation. Journal of Biological Chemistry 274 (39): 27339–27342.CrossRefPubMed Karin, M. 1999. The beginning of the end: IkappaB kinase (IKK) and NF-kappaB activation. Journal of Biological Chemistry 274 (39): 27339–27342.CrossRefPubMed
58.
Zurück zum Zitat Cai, L., Z. Wang, J.M. Meyer, A. Ji, and D.R. van der Westhuyzen. 2012. Macrophage SR-BI regulates LPS-induced pro-inflammatory signaling in mice and isolated macrophages. Journal of Lipid Research 53 (8): 1472–1481.CrossRefPubMedPubMedCentral Cai, L., Z. Wang, J.M. Meyer, A. Ji, and D.R. van der Westhuyzen. 2012. Macrophage SR-BI regulates LPS-induced pro-inflammatory signaling in mice and isolated macrophages. Journal of Lipid Research 53 (8): 1472–1481.CrossRefPubMedPubMedCentral
59.
Zurück zum Zitat Blackwell, T.S., and J.W. Christman. 1997. The role of nuclear factor-kappa B in cytokine gene regulation. American Journal of Respiratory Cell and Molecular Biology 17 (1): 3–9.CrossRefPubMed Blackwell, T.S., and J.W. Christman. 1997. The role of nuclear factor-kappa B in cytokine gene regulation. American Journal of Respiratory Cell and Molecular Biology 17 (1): 3–9.CrossRefPubMed
60.
Zurück zum Zitat De Plaen, I.G., X.B. Han, X. Liu, W. Hsueh, S. Ghosh, and M.J. May. 2006. Lipopolysaccharide induces CXCL2/macrophage inflammatory protein-2 gene expression in enterocytes via NF-kappaB activation: independence from endogenous TNF-alpha and platelet-activating factor. Immunology 118 (2): 153–163.CrossRefPubMedPubMedCentral De Plaen, I.G., X.B. Han, X. Liu, W. Hsueh, S. Ghosh, and M.J. May. 2006. Lipopolysaccharide induces CXCL2/macrophage inflammatory protein-2 gene expression in enterocytes via NF-kappaB activation: independence from endogenous TNF-alpha and platelet-activating factor. Immunology 118 (2): 153–163.CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Doerschuk, C.M., J.P. Mizgerd, H. Kubo, L. Qin, and T. Kumasaka. 1999. Adhesion molecules and cellular biomechanical changes in acute lung injury: Giles F. Filley Lecture. Chest 116 (1 Suppl): 37s–43s.CrossRefPubMed Doerschuk, C.M., J.P. Mizgerd, H. Kubo, L. Qin, and T. Kumasaka. 1999. Adhesion molecules and cellular biomechanical changes in acute lung injury: Giles F. Filley Lecture. Chest 116 (1 Suppl): 37s–43s.CrossRefPubMed
62.
Zurück zum Zitat Manning, A.M., F.P. Bell, C.L. Rosenbloom, J.G. Chosay, C.A. Simmons, J.L. Northrup, R.J. Shebuski, C.J. Dunn, and D.C. Anderson. 1995. NF-kappa B is activated during acute inflammation in vivo in association with elevated endothelial cell adhesion molecule gene expression and leukocyte recruitment. Journal of Inflammation 45 (4): 283–296.PubMed Manning, A.M., F.P. Bell, C.L. Rosenbloom, J.G. Chosay, C.A. Simmons, J.L. Northrup, R.J. Shebuski, C.J. Dunn, and D.C. Anderson. 1995. NF-kappa B is activated during acute inflammation in vivo in association with elevated endothelial cell adhesion molecule gene expression and leukocyte recruitment. Journal of Inflammation 45 (4): 283–296.PubMed
63.
Zurück zum Zitat Sun, Z., S. Dragon, A. Becker, and A.S. Gounni. 2013. Leptin inhibits neutrophil apoptosis in children via ERK/NF-kappaB-dependent pathways. PLoS One 8 (1): e55249.CrossRefPubMedPubMedCentral Sun, Z., S. Dragon, A. Becker, and A.S. Gounni. 2013. Leptin inhibits neutrophil apoptosis in children via ERK/NF-kappaB-dependent pathways. PLoS One 8 (1): e55249.CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat Zhang, Z., N. Chen, J.B. Liu, J.B. Wu, J. Zhang, Y. Zhang, and X. Jiang. 2014. Protective effect of resveratrol against acute lung injury induced by lipopolysaccharide via inhibiting the myd88-dependent Toll-like receptor 4 signaling pathway. Molecular Medicine Reports 10 (1): 101–106.CrossRefPubMed Zhang, Z., N. Chen, J.B. Liu, J.B. Wu, J. Zhang, Y. Zhang, and X. Jiang. 2014. Protective effect of resveratrol against acute lung injury induced by lipopolysaccharide via inhibiting the myd88-dependent Toll-like receptor 4 signaling pathway. Molecular Medicine Reports 10 (1): 101–106.CrossRefPubMed
65.
Zurück zum Zitat Sabroe, I., E.C. Jones, L.R. Usher, M.K. Whyte, and S.K. Dower. 2002. Toll-like receptor (TLR)2 and TLR4 in human peripheral blood granulocytes: a critical role for monocytes in leukocyte lipopolysaccharide responses. Journal of Immunology 168 (9): 4701–4710.CrossRef Sabroe, I., E.C. Jones, L.R. Usher, M.K. Whyte, and S.K. Dower. 2002. Toll-like receptor (TLR)2 and TLR4 in human peripheral blood granulocytes: a critical role for monocytes in leukocyte lipopolysaccharide responses. Journal of Immunology 168 (9): 4701–4710.CrossRef
66.
Zurück zum Zitat Poon, I.K., C.D. Lucas, A.G. Rossi, and K.S. Ravichandran. 2014. Apoptotic cell clearance: basic biology and therapeutic potential. Nature Reviews. Immunology 14 (3): 166–180.CrossRefPubMedPubMedCentral Poon, I.K., C.D. Lucas, A.G. Rossi, and K.S. Ravichandran. 2014. Apoptotic cell clearance: basic biology and therapeutic potential. Nature Reviews. Immunology 14 (3): 166–180.CrossRefPubMedPubMedCentral
Metadaten
Titel
Pseudoginsenoside-F11 Attenuates Lipopolysaccharide-Induced Acute Lung Injury by Suppressing Neutrophil Infiltration and Accelerating Neutrophil Clearance
verfasst von
Pengwei Wang
Ying Hou
Wen Zhang
Haotian Zhang
Xiaohang Che
Yongfeng Gao
Yinglu Liu
Depeng Yang
Jingmin Wang
Rongwu Xiang
Mingyi Zhao
Jingyu Yang
Publikationsdatum
22.07.2019
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2019
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-01047-5

Weitere Artikel der Ausgabe 5/2019

Inflammation 5/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.