Skip to main content
Erschienen in: Journal of Hematology & Oncology 1/2020

Open Access 01.12.2020 | Rapid communication

PTENP1 is a ceRNA for PTEN: it’s CRISPR clear

verfasst von: Marianna Vitiello, Monica Evangelista, Yang Zhang, Leonardo Salmena, Pier Paolo Pandolfi, Laura Poliseno

Erschienen in: Journal of Hematology & Oncology | Ausgabe 1/2020

Abstract

Here we apply state-of-the-art CRISPR technologies to study the impact that PTENP1 pseudogene transcript has on the expression levels of its parental gene PTEN, and hence on the output of AKT signaling in cancer. Our data expand the repertoire of approaches that can be used to dissect competing endogenous RNA (ceRNA)-based interactions, while providing further experimental evidence in support of the very first one that we discovered.

Main text

In our 2010 paper entitled “A coding independent function of gene and pseudogene mRNAs regulates tumor biology”, we provided the first evidence that RNA molecules, including non-coding RNAs (such as pseudogenes) and mRNAs, may be endowed with a biological function that specifically relies on their ability to compete for microRNA binding [1].
Our findings have contributed to an evolving microRNA-RNA interaction paradigm, where RNAs are not only “passive” targets of microRNAs, but also “active” regulators of microRNA availability, through a mechanism termed competing endogenous RNA (ceRNA) [2, 3]. Since our publication, a plethora of mRNAs and non-coding RNAs (lincRNAs, pseudogenes, circular RNAs) have been reported to function as ceRNAs in vitro and in animal models. Furthermore, ceRNA functions have been demonstrated to go beyond individual RNA-RNA interactions and extend into complex transcript interaction networks that can be severely dysregulated in cancer [4, 5].
Subsequent to our 2010 publication, many studies independently confirmed PTENP1 pseudogene as a ceRNA for PTEN in prostate cancer, in other cancer types (e.g., bladder cancer, breast cancer, clear cell renal cell carcinoma, endometrial carcinoma, gastric cancer, head and neck squamous cell carcinoma, hepatocellular carcinoma), and in other physio-pathological conditions (see Supplementary references for a list). Nonetheless, a number of articles published in prestigious journals have repeatedly raised concerns about this functional interaction. Herein, we wish to address those concerns raised regarding the techniques we used to modulate PTENP1 expression and show its impact on PTEN expression.
To rule out potential non-specific effects associated with (1) supra-physiological expression of a 3′UTR [69] and (2) congestion of RNA interference machinery caused by siRNA transfection [7], we have chosen to downregulate PTENP1 expression at the transcriptional or post-transcriptional level, taking advantage of CRISPR technology.
To begin, we successfully replicated results reported in our original paper, in spite of the fact that the source of DU145 cells and the batch of siRNAs against PTEN and PTENP1 were different, and that the experiments were performed in a different lab (Fig. 1).
Next, in order to downregulate PTENP1 post-transcriptionally, we used the recently reported CRISPR/CasRx system [10]. For this, we utilized 4 gRNAs designed on the same sequence of the 4 siRNAs composing the siPTENP1 mix (Fig. 2a, b) and we tested them for their ability to decrease the expression of a reporter construct in which PTENP1 3′UTR is cloned downstream of Luciferase coding sequence. As shown in Fig. 2c, the gRNAs work similarly to the corresponding siRNAs, with the mix of all 4 gRNAs working best. Therefore, we decided to use the combination of all 4, as we had done with siRNAs. In Fig. 2d–h, we show the results obtained upon the transient transfection of the gRNA mix in GFP-sorted DU145 prostate cancer cells that stably express CasRx-eGFP (Fig. 2d, e). Consistent with the RNA interference approach (Fig. 1), the gRNA mix caused a downregulation of the intended target PTENP1 RNA, as well as of PTEN mRNA (Fig. 2f). The decrease in mRNA level was mirrored by a decrease in PTEN protein level and accompanied by increases in pAKT levels (Fig. 2g) and cell proliferation (Fig. 2h).
We also adapted the CRISPR/Cas9-based gene replacement strategy [11] in order to achieve the downregulation of PTENP1 at the transcriptional level. Specifically, we engineered an sgRNA-mediated cut between the promoter and the transcribed region of PTENP1 gene. Then, by exploiting homology-mediated recombination, we “knocked-in” a GFP expression cassette in the reverse orientation, which interferes with PTENP1 transcription (Fig. 3a). Using this strategy, we identified 11 GFP-positive KI clones (Fig. 3b), of which 7 harbored correct recombination of both homology arms and 5 showed the expected drop in PTENP1 mRNA levels (clones #A, 2, 5, 8, and 13 reported in Fig. 3c, d). In these clones, we also observed a decrease in both PTEN mRNA and protein levels (Fig. 3d, e). In addition, clones #A, 2, and 13 had accompanying increases in pAKT levels (Fig. 3e) and cell proliferation (Fig. 3f). Crucially, in Fig. 3g, we show that endogenous PTEN mRNA levels are rescued in clone #13, if PTENP1 3′UTR is reintroduced by means of a plasmid that expresses it downstream of Luciferase coding sequence.
In summary, using 2 CRISPR-based technologies (Figs. 2 and 3), we confirmed our results achieved using RNA interference (ref. [1] and Fig. 1): knock-down of PTENP1 leads to the repression of PTEN expression, hence the hyperactivation of oncogenic AKT signaling. In addition, we confirmed that siRNA-mediated knock-down of PTENP1 antisense alpha + beta transcripts results in a downregulation of PTENP1 and PTEN transcripts (Fig. 1b), as previously reported in [12]. Conversely, we showed that the knock-down of PTEN plus PTENP1 transcripts by RNA interference (Fig. 1b) and of PTENP1 by CRISPR/CasRx technology (Fig. 2f) represses the expression of PTENP1 antisense transcripts, whereas the upregulation of PTENP1 transcript elicits the opposite effect (Fig. 3g). In sum, we provide evidence that uncovers a dynamic cross-talk between PTENP1 and PTEN sense transcripts on one side and antisense PTENP1 transcripts on the other.
In the decade since our discovery, numerous groups have independently validated the regulatory interaction between PTENP1 and PTEN. Altogether, these data provide a persuasive body of work to support the existence of a robust and reproducible functional interaction between this gene-pseudogene pair [13]. Finally, the new data presented herein further reinforces the PTENP1-PTEN paradigm and highlights the utility of CRISPR technologies for investigations of pseudogene-parental gene transcript relationships in cancer and other diseases.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13045-020-00894-2.

Acknowledgements

The authors thank C. Baldanzi, A. Prantera, and L. Maresca for technical support.
Not applicable
Not applicable

Competing interests

None to declare
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010;465:1033–8.CrossRef Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010;465:1033–8.CrossRef
2.
Zurück zum Zitat Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146:353–8.CrossRef Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146:353–8.CrossRef
3.
Zurück zum Zitat Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505:344–52.CrossRef Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505:344–52.CrossRef
4.
Zurück zum Zitat Chan JJ, Tay Y. Noncoding RNA:RNA Regulatory networks in cancer. Int J Mol Sci. 2018;19. Chan JJ, Tay Y. Noncoding RNA:RNA Regulatory networks in cancer. Int J Mol Sci. 2018;19.
5.
Zurück zum Zitat Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18:5–18.CrossRef Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18:5–18.CrossRef
6.
Zurück zum Zitat Ebert MS, Sharp PA. Roles for microRNAs in conferring robustness to biological processes. Cell. 2012;149:515–24.CrossRef Ebert MS, Sharp PA. Roles for microRNAs in conferring robustness to biological processes. Cell. 2012;149:515–24.CrossRef
7.
Zurück zum Zitat Jens M, Rajewsky N. Competition between target sites of regulators shapes post-transcriptional gene regulation. Nat Rev Genet. 2015;16:113–26.CrossRef Jens M, Rajewsky N. Competition between target sites of regulators shapes post-transcriptional gene regulation. Nat Rev Genet. 2015;16:113–26.CrossRef
8.
Zurück zum Zitat Denzler R, Agarwal V, Stefano J, Bartel DP, Stoffel M. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol Cell. 2014;54:766–76.CrossRef Denzler R, Agarwal V, Stefano J, Bartel DP, Stoffel M. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol Cell. 2014;54:766–76.CrossRef
9.
Zurück zum Zitat Broderick JA, Zamore PD. Competitive endogenous RNAs cannot alter microRNA function in vivo. Mol Cell. 2014;54:711–3.CrossRef Broderick JA, Zamore PD. Competitive endogenous RNAs cannot alter microRNA function in vivo. Mol Cell. 2014;54:711–3.CrossRef
10.
Zurück zum Zitat Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN, Hsu PD. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell. 2018;173:665–76 e614.CrossRef Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN, Hsu PD. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell. 2018;173:665–76 e614.CrossRef
11.
Zurück zum Zitat Zheng Q, Cai X, Tan MH, Schaffert S, Arnold CP, Gong X, Chen CZ, Huang S. Precise gene deletion and replacement using the CRISPR/Cas9 system in human cells. Biotechniques. 2014;57:115–24.CrossRef Zheng Q, Cai X, Tan MH, Schaffert S, Arnold CP, Gong X, Chen CZ, Huang S. Precise gene deletion and replacement using the CRISPR/Cas9 system in human cells. Biotechniques. 2014;57:115–24.CrossRef
12.
Zurück zum Zitat Johnsson P, Ackley A, Vidarsdottir L, Lui WO, Corcoran M, Grander D, Morris KV. A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol. 2013;20:440–6.CrossRef Johnsson P, Ackley A, Vidarsdottir L, Lui WO, Corcoran M, Grander D, Morris KV. A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol. 2013;20:440–6.CrossRef
13.
Zurück zum Zitat Kerwin J, Khan I. Reproducibility Project: Cancer B, Iorns E, Tsui R, Denis A, Perfito N, Errington TM: Replication study: a coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Elife. 2020;9. Kerwin J, Khan I. Reproducibility Project: Cancer B, Iorns E, Tsui R, Denis A, Perfito N, Errington TM: Replication study: a coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Elife. 2020;9.
Metadaten
Titel
PTENP1 is a ceRNA for PTEN: it’s CRISPR clear
verfasst von
Marianna Vitiello
Monica Evangelista
Yang Zhang
Leonardo Salmena
Pier Paolo Pandolfi
Laura Poliseno
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Journal of Hematology & Oncology / Ausgabe 1/2020
Elektronische ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-020-00894-2

Weitere Artikel der Ausgabe 1/2020

Journal of Hematology & Oncology 1/2020 Zur Ausgabe

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

CUP-Syndrom: Künstliche Intelligenz kann Primärtumor finden

30.04.2024 Künstliche Intelligenz Nachrichten

Krebserkrankungen unbekannten Ursprungs (CUP) sind eine diagnostische Herausforderung. KI-Systeme können Pathologen dabei unterstützen, zytologische Bilder zu interpretieren, um den Primärtumor zu lokalisieren.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.