Skip to main content
Erschienen in: Heart Failure Reviews 5/2020

18.11.2019 | Pulmonary Hypertension

Long noncoding RNAs: emerging roles in pulmonary hypertension

verfasst von: Qi Jin, Zhihui Zhao, Qing Zhao, Xue Yu, Lu Yan, Yi Zhang, Qin Luo, Zhihong Liu

Erschienen in: Heart Failure Reviews | Ausgabe 5/2020

Einloggen, um Zugang zu erhalten

Abstract

Pulmonary hypertension (PH) is a complex and progressive disease characterized by increased pulmonary vascular resistance and pulmonary artery pressure, leading to pulmonary vascular remodeling, right heart failure, and ultimately death. Although several molecular pathways related to vascular remodeling have been reported, the mechanism behind this fatal disease with poor prognosis remains largely unclear. Long noncoding RNAs (lncRNAs) have been proven to be playing crucial roles in various biological processes, and emerging studies demonstrated lncRNAs as essential epigenetic modifiers involved in the onset and development of PH. The present review summarizes the types and biogenesis of lncRNAs, focuses on the biological function of lncRNAs in vascular diseases, and highlights all proven lncRNAs as well as highly potential lncRNA candidates involved in PH. Moreover, the interaction between lncRNA and corresponding miRNA in PH is also emphasized. Finally, we discuss current challenges and future prospects of lncRNAs as potential biomarkers and therapeutic targets for PH. Current data indicate lncRNAs are vital regulators of PH and may act as promising diagnostic and therapeutic targets for PH.
Literatur
1.
Zurück zum Zitat Galie N, Humbert M, Vachiery JL et al (2016) 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 37(1):67–119PubMed Galie N, Humbert M, Vachiery JL et al (2016) 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 37(1):67–119PubMed
2.
Zurück zum Zitat Sitbon O, Morrell N (2012) Pathways in pulmonary arterial hypertension: the future is here. Eur Respir Rev 21(126):321–327PubMed Sitbon O, Morrell N (2012) Pathways in pulmonary arterial hypertension: the future is here. Eur Respir Rev 21(126):321–327PubMed
3.
Zurück zum Zitat Simonneau G, Montani D, Celermajer DS et al (2019) Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J 53(1):1801913 Simonneau G, Montani D, Celermajer DS et al (2019) Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J 53(1):1801913
4.
Zurück zum Zitat Humbert M, Guignabert C, Bonnet S et al (2019) Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. Eur Respir J 53(1):1801887 Humbert M, Guignabert C, Bonnet S et al (2019) Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. Eur Respir J 53(1):1801887
5.
Zurück zum Zitat Huang Z, Liu Z, Luo Q et al (2016) Glycoprotein 130 inhibitor ameliorates monocrotaline-induced pulmonary hypertension in rats. Can J Cardiol 32(11):1356 e1–1356e10 Huang Z, Liu Z, Luo Q et al (2016) Glycoprotein 130 inhibitor ameliorates monocrotaline-induced pulmonary hypertension in rats. Can J Cardiol 32(11):1356 e1–1356e10
6.
Zurück zum Zitat Morrell NW, Aldred MA, Chung WK et al (2019) Genetics and genomics of pulmonary arterial hypertension. Eur Respir J 53(1):1801899 Morrell NW, Aldred MA, Chung WK et al (2019) Genetics and genomics of pulmonary arterial hypertension. Eur Respir J 53(1):1801899
7.
Zurück zum Zitat Xiao JH, Hao QY, Wang K, Paul J, Wang YX (2017) Emerging role of microRNAs and long noncoding RNAs in healthy and diseased lung. Adv Exp Med Biol 967:343–359PubMed Xiao JH, Hao QY, Wang K, Paul J, Wang YX (2017) Emerging role of microRNAs and long noncoding RNAs in healthy and diseased lung. Adv Exp Med Biol 967:343–359PubMed
8.
Zurück zum Zitat Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136(4):629–641PubMed Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136(4):629–641PubMed
9.
Zurück zum Zitat Leeper NJ, Maegdefessel L (2018) Non-coding RNAs: key regulators of smooth muscle cell fate in vascular disease. Cardiovasc Res 114(4):611–621PubMed Leeper NJ, Maegdefessel L (2018) Non-coding RNAs: key regulators of smooth muscle cell fate in vascular disease. Cardiovasc Res 114(4):611–621PubMed
10.
11.
12.
Zurück zum Zitat Yu B, Wang S (2018) Angio-lncRs: lncRNAs that regulate angiogenesis and vascular disease. Theranostics 8(13):3654–3675PubMedPubMedCentral Yu B, Wang S (2018) Angio-lncRs: lncRNAs that regulate angiogenesis and vascular disease. Theranostics 8(13):3654–3675PubMedPubMedCentral
13.
Zurück zum Zitat Zheng Q, Lin Z, Xu J et al (2018) Long noncoding RNA MEG3 suppresses liver cancer cells growth through inhibiting beta-catenin by activating PKM2 and inactivating PTEN. Cell Death Dis 9(3):253PubMedPubMedCentral Zheng Q, Lin Z, Xu J et al (2018) Long noncoding RNA MEG3 suppresses liver cancer cells growth through inhibiting beta-catenin by activating PKM2 and inactivating PTEN. Cell Death Dis 9(3):253PubMedPubMedCentral
14.
Zurück zum Zitat Gutschner T, Hammerle M, Eissmann M et al (2013) The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res 73(3):1180–1189PubMed Gutschner T, Hammerle M, Eissmann M et al (2013) The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res 73(3):1180–1189PubMed
15.
Zurück zum Zitat Shen S, Jiang H, Bei Y, Xiao J, Li X (2017) Long non-coding RNAs in cardiac remodeling. Cell Physiol Biochem 41(5):1830–1837PubMed Shen S, Jiang H, Bei Y, Xiao J, Li X (2017) Long non-coding RNAs in cardiac remodeling. Cell Physiol Biochem 41(5):1830–1837PubMed
16.
Zurück zum Zitat Lorenzen JM, Thum T (2016) Long noncoding RNAs in kidney and cardiovascular diseases. Nat Rev Nephrol 12(6):360–373PubMed Lorenzen JM, Thum T (2016) Long noncoding RNAs in kidney and cardiovascular diseases. Nat Rev Nephrol 12(6):360–373PubMed
17.
Zurück zum Zitat Liu Y, Zhang R, Ying K (2015) Long non-coding RNAs: novel links in respiratory diseases (review). Mol Med Rep 11(6):4025–4031PubMed Liu Y, Zhang R, Ying K (2015) Long non-coding RNAs: novel links in respiratory diseases (review). Mol Med Rep 11(6):4025–4031PubMed
18.
Zurück zum Zitat Hermans-Beijnsberger S, van Bilsen M, Schroen B (2018) Long non-coding RNAs in the failing heart and vasculature. Noncoding RNA Res 3(3):118–130PubMedPubMedCentral Hermans-Beijnsberger S, van Bilsen M, Schroen B (2018) Long non-coding RNAs in the failing heart and vasculature. Noncoding RNA Res 3(3):118–130PubMedPubMedCentral
19.
Zurück zum Zitat Ballantyne MD, McDonald RA, Baker AH (2016) lncRNA/microRNA interactions in the vasculature. Clin Pharmacol Ther 99(5):494–501PubMedPubMedCentral Ballantyne MD, McDonald RA, Baker AH (2016) lncRNA/microRNA interactions in the vasculature. Clin Pharmacol Ther 99(5):494–501PubMedPubMedCentral
20.
Zurück zum Zitat Deng L, Bradshaw AC, Baker AH (2016) Role of noncoding RNA in vascular remodelling. Curr Opin Lipidol 27(5):439–448PubMed Deng L, Bradshaw AC, Baker AH (2016) Role of noncoding RNA in vascular remodelling. Curr Opin Lipidol 27(5):439–448PubMed
21.
Zurück zum Zitat Quinn JJ, Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17(1):47–62PubMed Quinn JJ, Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17(1):47–62PubMed
22.
Zurück zum Zitat Derrien T, Johnson R, Bussotti G et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789PubMedPubMedCentral Derrien T, Johnson R, Bussotti G et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789PubMedPubMedCentral
23.
Zurück zum Zitat Xiang Y, Zhang Y, Tang Y, Li Q (2017) MALAT1 modulates TGF-beta1-induced endothelial-to-mesenchymal transition through downregulation of miR-145. Cell Physiol Biochem 42(1):357–372PubMed Xiang Y, Zhang Y, Tang Y, Li Q (2017) MALAT1 modulates TGF-beta1-induced endothelial-to-mesenchymal transition through downregulation of miR-145. Cell Physiol Biochem 42(1):357–372PubMed
24.
Zurück zum Zitat Neumann P, Jae N, Knau A et al (2018) The lncRNA GATA6-AS epigenetically regulates endothelial gene expression via interaction with LOXL2. Nat Commun 9(1):237PubMedPubMedCentral Neumann P, Jae N, Knau A et al (2018) The lncRNA GATA6-AS epigenetically regulates endothelial gene expression via interaction with LOXL2. Nat Commun 9(1):237PubMedPubMedCentral
25.
Zurück zum Zitat Thomas AA, Biswas S, Feng B, Chen S, Gonder J, Chakrabarti S (2019) lncRNA H19 prevents endothelial-mesenchymal transition in diabetic retinopathy. Diabetologia 62(3):517–530PubMed Thomas AA, Biswas S, Feng B, Chen S, Gonder J, Chakrabarti S (2019) lncRNA H19 prevents endothelial-mesenchymal transition in diabetic retinopathy. Diabetologia 62(3):517–530PubMed
26.
Zurück zum Zitat Bell RD, Long X, Lin M et al (2014) Identification and initial functional characterization of a human vascular cell-enriched long noncoding RNA. Arterioscler Thromb Vasc Biol 34(6):1249–1259PubMedPubMedCentral Bell RD, Long X, Lin M et al (2014) Identification and initial functional characterization of a human vascular cell-enriched long noncoding RNA. Arterioscler Thromb Vasc Biol 34(6):1249–1259PubMedPubMedCentral
27.
Zurück zum Zitat Wang YN, Shan K, Yao MD et al (2016) Long noncoding RNA-GAS5: a novel regulator of hypertension-induced vascular remodeling. Hypertension (Dallas, Tex : 1979) 68(3):736–748PubMed Wang YN, Shan K, Yao MD et al (2016) Long noncoding RNA-GAS5: a novel regulator of hypertension-induced vascular remodeling. Hypertension (Dallas, Tex : 1979) 68(3):736–748PubMed
28.
Zurück zum Zitat Zhao J, Zhang W, Lin M et al (2016) MYOSLID is a novel serum response factor-dependent long noncoding RNA that amplifies the vascular smooth muscle differentiation program. Arterioscler Thromb Vasc Biol 36(10):2088–2099PubMedPubMedCentral Zhao J, Zhang W, Lin M et al (2016) MYOSLID is a novel serum response factor-dependent long noncoding RNA that amplifies the vascular smooth muscle differentiation program. Arterioscler Thromb Vasc Biol 36(10):2088–2099PubMedPubMedCentral
29.
Zurück zum Zitat Song TF, Huang LW, Yuan Y et al (2018) LncRNA MALAT1 regulates smooth muscle cell phenotype switch via activation of autophagy. Oncotarget 9(4):4411–4426PubMed Song TF, Huang LW, Yuan Y et al (2018) LncRNA MALAT1 regulates smooth muscle cell phenotype switch via activation of autophagy. Oncotarget 9(4):4411–4426PubMed
30.
Zurück zum Zitat Lino Cardenas CL, Kessinger CW, Cheng Y et al (2018) An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun 9(1):1009PubMedPubMedCentral Lino Cardenas CL, Kessinger CW, Cheng Y et al (2018) An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun 9(1):1009PubMedPubMedCentral
31.
Zurück zum Zitat Ahmed ASI, Dong K, Liu J et al (2018) Long noncoding RNA NEAT1 (nuclear paraspeckle assembly transcript 1) is critical for phenotypic switching of vascular smooth muscle cells. Proc Natl Acad Sci U S A 115(37):E8660–E86E7PubMedPubMedCentral Ahmed ASI, Dong K, Liu J et al (2018) Long noncoding RNA NEAT1 (nuclear paraspeckle assembly transcript 1) is critical for phenotypic switching of vascular smooth muscle cells. Proc Natl Acad Sci U S A 115(37):E8660–E86E7PubMedPubMedCentral
32.
Zurück zum Zitat Zhang DD, Wang WT, Xiong J et al (2017) Long noncoding RNA LINC00305 promotes inflammation by activating the AHRR-NF-kappaB pathway in human monocytes. Sci Rep 7:46204PubMedPubMedCentral Zhang DD, Wang WT, Xiong J et al (2017) Long noncoding RNA LINC00305 promotes inflammation by activating the AHRR-NF-kappaB pathway in human monocytes. Sci Rep 7:46204PubMedPubMedCentral
33.
Zurück zum Zitat Jin L, Lin X, Yang L et al (2018) AK098656, a novel vascular smooth muscle cell-dominant long noncoding RNA, promotes hypertension. Hypertension (Dallas, Tex : 1979) 71(2):262–272PubMed Jin L, Lin X, Yang L et al (2018) AK098656, a novel vascular smooth muscle cell-dominant long noncoding RNA, promotes hypertension. Hypertension (Dallas, Tex : 1979) 71(2):262–272PubMed
34.
Zurück zum Zitat Tian S, Yuan Y, Li Z, Gao M, Lu Y, Gao H (2018) LncRNA UCA1 sponges miR-26a to regulate the migration and proliferation of vascular smooth muscle cells. Gene 673:159–166PubMed Tian S, Yuan Y, Li Z, Gao M, Lu Y, Gao H (2018) LncRNA UCA1 sponges miR-26a to regulate the migration and proliferation of vascular smooth muscle cells. Gene 673:159–166PubMed
35.
Zurück zum Zitat Tang YY, Wo LK, Chai H (2013) Effects of noncoding RNA NRON gene regulation on human umbilical vein endothelial cells functions. Zhonghua xin xue guan bing za zhi 41(3):245–250PubMed Tang YY, Wo LK, Chai H (2013) Effects of noncoding RNA NRON gene regulation on human umbilical vein endothelial cells functions. Zhonghua xin xue guan bing za zhi 41(3):245–250PubMed
36.
Zurück zum Zitat Michalik KM, You X, Manavski Y et al (2014) Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res 114(9):1389–1397PubMed Michalik KM, You X, Manavski Y et al (2014) Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res 114(9):1389–1397PubMed
37.
Zurück zum Zitat Liu JY, Yao J, Li XM et al (2014) Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus. Cell Death Dis 5:e1506PubMedPubMedCentral Liu JY, Yao J, Li XM et al (2014) Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus. Cell Death Dis 5:e1506PubMedPubMedCentral
38.
Zurück zum Zitat Zhang X, Tang X, Hamblin MH, Yin KJ (2018) Long non-coding RNA Malat1 regulates angiogenesis in hindlimb ischemia. Int J Mol Sci 19(6):1723 Zhang X, Tang X, Hamblin MH, Yin KJ (2018) Long non-coding RNA Malat1 regulates angiogenesis in hindlimb ischemia. Int J Mol Sci 19(6):1723
39.
Zurück zum Zitat Yan B, Yao J, Liu JY et al (2015) lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ Res 116(7):1143–1156PubMed Yan B, Yao J, Liu JY et al (2015) lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ Res 116(7):1143–1156PubMed
40.
Zurück zum Zitat Fiedler J, Breckwoldt K, Remmele CW et al (2015) Development of long noncoding RNA-based strategies to modulate tissue vascularization. J Am Coll Cardiol 66(18):2005–2015PubMedPubMedCentral Fiedler J, Breckwoldt K, Remmele CW et al (2015) Development of long noncoding RNA-based strategies to modulate tissue vascularization. J Am Coll Cardiol 66(18):2005–2015PubMedPubMedCentral
41.
Zurück zum Zitat Kurian L, Aguirre A, Sancho-Martinez I et al (2015) Identification of novel long noncoding RNAs underlying vertebrate cardiovascular development. Circulation 131(14):1278–1290PubMedPubMedCentral Kurian L, Aguirre A, Sancho-Martinez I et al (2015) Identification of novel long noncoding RNAs underlying vertebrate cardiovascular development. Circulation 131(14):1278–1290PubMedPubMedCentral
42.
Zurück zum Zitat Boulberdaa M, Scott E, Ballantyne M et al (2016) A role for the long noncoding RNA SENCR in commitment and function of endothelial cells. Mol Ther 24(5):978–990PubMedPubMedCentral Boulberdaa M, Scott E, Ballantyne M et al (2016) A role for the long noncoding RNA SENCR in commitment and function of endothelial cells. Mol Ther 24(5):978–990PubMedPubMedCentral
43.
Zurück zum Zitat Sun H, Wang S, Song M (2018) Long noncoding RNA SENCR alleviates the inhibitory effects of rapamycin on human umbilical vein endothelial cells. Mol Med Rep 18(2):1405–1414PubMedPubMedCentral Sun H, Wang S, Song M (2018) Long noncoding RNA SENCR alleviates the inhibitory effects of rapamycin on human umbilical vein endothelial cells. Mol Med Rep 18(2):1405–1414PubMedPubMedCentral
44.
Zurück zum Zitat Josipovic I, Fork C, Preussner J et al (2016) PAFAH1B1 and the lncRNA NONHSAT073641 maintain an angiogenic phenotype in human endothelial cells. Acta Physiol (Oxf) 218(1):13–27 Josipovic I, Fork C, Preussner J et al (2016) PAFAH1B1 and the lncRNA NONHSAT073641 maintain an angiogenic phenotype in human endothelial cells. Acta Physiol (Oxf) 218(1):13–27
45.
Zurück zum Zitat Ma Y, Wang P, Xue Y et al (2017) PVT1 affects growth of glioma microvascular endothelial cells by negatively regulating miR-186. Tumour Biol 39(3):1010428317694326PubMed Ma Y, Wang P, Xue Y et al (2017) PVT1 affects growth of glioma microvascular endothelial cells by negatively regulating miR-186. Tumour Biol 39(3):1010428317694326PubMed
46.
Zurück zum Zitat Zheng J, Hu L, Cheng J et al (2018) lncRNA PVT1 promotes the angiogenesis of vascular endothelial cell by targeting miR26b to activate CTGF/ANGPT2. Int J Mol Med 42(1):489–496PubMed Zheng J, Hu L, Cheng J et al (2018) lncRNA PVT1 promotes the angiogenesis of vascular endothelial cell by targeting miR26b to activate CTGF/ANGPT2. Int J Mol Med 42(1):489–496PubMed
47.
Zurück zum Zitat Leisegang MS, Fork C, Josipovic I et al (2017) Long noncoding RNA MANTIS facilitates endothelial angiogenic function. Circulation 136(1):65–79PubMedPubMedCentral Leisegang MS, Fork C, Josipovic I et al (2017) Long noncoding RNA MANTIS facilitates endothelial angiogenic function. Circulation 136(1):65–79PubMedPubMedCentral
48.
Zurück zum Zitat He C, Yang W, Yang J et al (2017) Long Noncoding RNA MEG3 Negatively Regulates Proliferation and Angiogenesis in Vascular Endothelial Cells. DNA Cell Biol 36(6):475–481PubMed He C, Yang W, Yang J et al (2017) Long Noncoding RNA MEG3 Negatively Regulates Proliferation and Angiogenesis in Vascular Endothelial Cells. DNA Cell Biol 36(6):475–481PubMed
49.
Zurück zum Zitat Ruan W, Zhao F, Zhao S, Zhang L, Shi L, Pang T (2018) Knockdown of long noncoding RNA MEG3 impairs VEGF-stimulated endothelial sprouting angiogenesis via modulating VEGFR2 expression in human umbilical vein endothelial cells. Gene 649:32–39PubMed Ruan W, Zhao F, Zhao S, Zhang L, Shi L, Pang T (2018) Knockdown of long noncoding RNA MEG3 impairs VEGF-stimulated endothelial sprouting angiogenesis via modulating VEGFR2 expression in human umbilical vein endothelial cells. Gene 649:32–39PubMed
50.
Zurück zum Zitat Ma Y, Xue Y, Liu X et al (2017) SNHG15 affects the growth of glioma microvascular endothelial cells by negatively regulating miR-153. Oncol Rep 38(5):3265–3277PubMed Ma Y, Xue Y, Liu X et al (2017) SNHG15 affects the growth of glioma microvascular endothelial cells by negatively regulating miR-153. Oncol Rep 38(5):3265–3277PubMed
51.
Zurück zum Zitat Bao MH, Li GY, Huang XS, Tang L, Dong LP, Li JM (2018) Long noncoding RNA LINC00657 acting as a miR-590-3p sponge to facilitate low concentration oxidized low-density lipoprotein-induced angiogenesis. Mol Pharmacol 93(4):368–375PubMed Bao MH, Li GY, Huang XS, Tang L, Dong LP, Li JM (2018) Long noncoding RNA LINC00657 acting as a miR-590-3p sponge to facilitate low concentration oxidized low-density lipoprotein-induced angiogenesis. Mol Pharmacol 93(4):368–375PubMed
52.
Zurück zum Zitat Wang Z, Wang R, Wang K, Liu X (2018) Upregulated long noncoding RNA Snhg1 promotes the angiogenesis of brain microvascular endothelial cells after oxygen-glucose deprivation treatment by targeting miR-199a. Can J Physiol Pharmacol 96(9):909–915PubMed Wang Z, Wang R, Wang K, Liu X (2018) Upregulated long noncoding RNA Snhg1 promotes the angiogenesis of brain microvascular endothelial cells after oxygen-glucose deprivation treatment by targeting miR-199a. Can J Physiol Pharmacol 96(9):909–915PubMed
53.
Zurück zum Zitat Zhao M, Wang J, Xi X, Tan N, Zhang L (2018) SNHG12 promotes angiogenesis following ischemic stroke via regulating miR-150/VEGF pathway. Neuroscience 390:231–240PubMed Zhao M, Wang J, Xi X, Tan N, Zhang L (2018) SNHG12 promotes angiogenesis following ischemic stroke via regulating miR-150/VEGF pathway. Neuroscience 390:231–240PubMed
54.
Zurück zum Zitat Yin D, Fu C, Sun D (2018) Silence of lncRNA UCA1 represses the growth and tube formation of human microvascular endothelial cells through miR-195. Cell Physiol Biochem 49(4):1499–1511PubMed Yin D, Fu C, Sun D (2018) Silence of lncRNA UCA1 represses the growth and tube formation of human microvascular endothelial cells through miR-195. Cell Physiol Biochem 49(4):1499–1511PubMed
55.
Zurück zum Zitat Halimulati M, Duman B, Nijiati J, Aizezi A (2018) Long noncoding RNA TCONS_00024652 regulates vascular endothelial cell proliferation and angiogenesis via microRNA-21. Exp Ther Med 16(4):3309–3316PubMedPubMedCentral Halimulati M, Duman B, Nijiati J, Aizezi A (2018) Long noncoding RNA TCONS_00024652 regulates vascular endothelial cell proliferation and angiogenesis via microRNA-21. Exp Ther Med 16(4):3309–3316PubMedPubMedCentral
56.
Zurück zum Zitat Yin D, Li Y, Fu C, Feng Y (2018) Pro-angiogenic role of lncRNA HULC in microvascular endothelial cells via sequestrating miR-124. Cell Physiol Biochem 50(6):2188–2202PubMed Yin D, Li Y, Fu C, Feng Y (2018) Pro-angiogenic role of lncRNA HULC in microvascular endothelial cells via sequestrating miR-124. Cell Physiol Biochem 50(6):2188–2202PubMed
57.
Zurück zum Zitat Qin WW, Xin ZL, Wang HQ, Wang KP, Li XY, Wang X (2018) Inhibiting lncRNA ROR suppresses growth, migration and angiogenesis in microvascular endothelial cells by up-regulating miR-26. Eur Rev Med Pharmacol Sci 22(22):7985–7993PubMed Qin WW, Xin ZL, Wang HQ, Wang KP, Li XY, Wang X (2018) Inhibiting lncRNA ROR suppresses growth, migration and angiogenesis in microvascular endothelial cells by up-regulating miR-26. Eur Rev Med Pharmacol Sci 22(22):7985–7993PubMed
58.
Zurück zum Zitat Zhou Q, Yu B, Anderson C et al (2019) LncEGFL7OS regulates human angiogenesis by interacting with MAX at the EGFL7/miR-126 locus. Elife 8:e40470 Zhou Q, Yu B, Anderson C et al (2019) LncEGFL7OS regulates human angiogenesis by interacting with MAX at the EGFL7/miR-126 locus. Elife 8:e40470
59.
Zurück zum Zitat Man HSJ, Sukumar AN, Lam GC et al (2018) Angiogenic patterning by STEEL, an endothelial-enriched long noncoding RNA. Proc Natl Acad Sci U S A 115(10):2401–2406PubMedPubMedCentral Man HSJ, Sukumar AN, Lam GC et al (2018) Angiogenic patterning by STEEL, an endothelial-enriched long noncoding RNA. Proc Natl Acad Sci U S A 115(10):2401–2406PubMedPubMedCentral
60.
Zurück zum Zitat Puthanveetil P, Chen S, Feng B, Gautam A, Chakrabarti S (2015) Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. J Cell Mol Med 19(6):1418–1425PubMedPubMedCentral Puthanveetil P, Chen S, Feng B, Gautam A, Chakrabarti S (2015) Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. J Cell Mol Med 19(6):1418–1425PubMedPubMedCentral
61.
Zurück zum Zitat Zhang X, Tang X, Liu K, Hamblin MH, Yin KJ (2017) Long noncoding RNA Malat1 regulates cerebrovascular pathologies in ischemic stroke. J Neurosci 37(7):1797–1806PubMedPubMedCentral Zhang X, Tang X, Liu K, Hamblin MH, Yin KJ (2017) Long noncoding RNA Malat1 regulates cerebrovascular pathologies in ischemic stroke. J Neurosci 37(7):1797–1806PubMedPubMedCentral
62.
Zurück zum Zitat Zhu X, Du J, Yu J et al (2019) LncRNA NKILA regulates endothelium inflammation by controlling a NF-kappaB/KLF4 positive feedback loop. J Mol Cell Cardiol 126:60–69PubMed Zhu X, Du J, Yu J et al (2019) LncRNA NKILA regulates endothelium inflammation by controlling a NF-kappaB/KLF4 positive feedback loop. J Mol Cell Cardiol 126:60–69PubMed
63.
Zurück zum Zitat Das S, Zhang E, Senapati P et al (2018) A novel angiotensin II-induced long noncoding RNA giver regulates oxidative stress, inflammation, and proliferation in vascular smooth muscle cells. Circ Res 123(12):1298–1312PubMedPubMedCentral Das S, Zhang E, Senapati P et al (2018) A novel angiotensin II-induced long noncoding RNA giver regulates oxidative stress, inflammation, and proliferation in vascular smooth muscle cells. Circ Res 123(12):1298–1312PubMedPubMedCentral
64.
Zurück zum Zitat Huang L, Li L, Yang T et al (2018) Transgelin as a potential target in the reversibility of pulmonary arterial hypertension secondary to congenital heart disease. J Cell Mol Med 22(12):6249–6261PubMedPubMedCentral Huang L, Li L, Yang T et al (2018) Transgelin as a potential target in the reversibility of pulmonary arterial hypertension secondary to congenital heart disease. J Cell Mol Med 22(12):6249–6261PubMedPubMedCentral
65.
Zurück zum Zitat Dabral S, Tian X, Kojonazarov B et al (2016) Notch1 signalling regulates endothelial proliferation and apoptosis in pulmonary arterial hypertension. Eur Respir J 48(4):1137–1149PubMed Dabral S, Tian X, Kojonazarov B et al (2016) Notch1 signalling regulates endothelial proliferation and apoptosis in pulmonary arterial hypertension. Eur Respir J 48(4):1137–1149PubMed
66.
Zurück zum Zitat Kumar S, Williams D, Sur S, Wang JY, Jo H (2018) Role of flow-sensitive microRNAs and long noncoding RNAs in vascular dysfunction and atherosclerosis. Vascul Pharmacol 114:76-92 Kumar S, Williams D, Sur S, Wang JY, Jo H (2018) Role of flow-sensitive microRNAs and long noncoding RNAs in vascular dysfunction and atherosclerosis. Vascul Pharmacol 114:76-92
67.
68.
Zurück zum Zitat Eisenberg LM, Markwald RR (1995) Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res 77(1):1–6PubMed Eisenberg LM, Markwald RR (1995) Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res 77(1):1–6PubMed
69.
Zurück zum Zitat Zeisberg EM, Tarnavski O, Zeisberg M et al (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13(8):952–961PubMed Zeisberg EM, Tarnavski O, Zeisberg M et al (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13(8):952–961PubMed
70.
Zurück zum Zitat Evrard SM, Lecce L, Michelis KC et al (2016) Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun 7:11853PubMedPubMedCentral Evrard SM, Lecce L, Michelis KC et al (2016) Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun 7:11853PubMedPubMedCentral
71.
Zurück zum Zitat Ranchoux B, Antigny F, Rucker-Martin C et al (2015) Endothelial-to-mesenchymal transition in pulmonary hypertension. Circulation 131(11):1006–1018PubMed Ranchoux B, Antigny F, Rucker-Martin C et al (2015) Endothelial-to-mesenchymal transition in pulmonary hypertension. Circulation 131(11):1006–1018PubMed
72.
Zurück zum Zitat Hulshoff MS, Xu X, Krenning G, Zeisberg EM (2018) Epigenetic regulation of endothelial-to-mesenchymal transition in chronic heart disease. Arterioscler Thromb Vasc Biol 38(9):1986–1996PubMed Hulshoff MS, Xu X, Krenning G, Zeisberg EM (2018) Epigenetic regulation of endothelial-to-mesenchymal transition in chronic heart disease. Arterioscler Thromb Vasc Biol 38(9):1986–1996PubMed
73.
Zurück zum Zitat Huston JH, Ryan JJ (2016) The emerging role of epigenetics in pulmonary arterial hypertension: an important avenue for clinical trials (2015 Grover Conference Series). Pulm Circ 6(3):274–284PubMedPubMedCentral Huston JH, Ryan JJ (2016) The emerging role of epigenetics in pulmonary arterial hypertension: an important avenue for clinical trials (2015 Grover Conference Series). Pulm Circ 6(3):274–284PubMedPubMedCentral
74.
Zurück zum Zitat Potus F, Ruffenach G, Provencher S, Bonnet S (2015) Emerging role of epigenetic in pulmonary arterial hypertension right ventricular failure. FASEB J 29:1_supplement Potus F, Ruffenach G, Provencher S, Bonnet S (2015) Emerging role of epigenetic in pulmonary arterial hypertension right ventricular failure. FASEB J 29:1_supplement
75.
Zurück zum Zitat Brock M, Schuoler C, Leuenberger C et al (2017) Analysis of hypoxia-induced noncoding RNAs reveals metastasis-associated lung adenocarcinoma transcript 1 as an important regulator of vascular smooth muscle cell proliferation. Exp Biol Med (Maywood) 242(5):487–496 Brock M, Schuoler C, Leuenberger C et al (2017) Analysis of hypoxia-induced noncoding RNAs reveals metastasis-associated lung adenocarcinoma transcript 1 as an important regulator of vascular smooth muscle cell proliferation. Exp Biol Med (Maywood) 242(5):487–496
76.
Zurück zum Zitat Deng L. (2016) The role of non-coding RNA in the development of pulmonary arterial hypertension: University of Glasgow Deng L. (2016) The role of non-coding RNA in the development of pulmonary arterial hypertension: University of Glasgow
77.
Zurück zum Zitat Brock M, Schuoler C, Ulrich S et al (2016) The long noncoding RNA MEG3 is an emerging factor in hypoxia-induced pulmonary hypertension. J Heart Lung Transplant 35(4):S358 Brock M, Schuoler C, Ulrich S et al (2016) The long noncoding RNA MEG3 is an emerging factor in hypoxia-induced pulmonary hypertension. J Heart Lung Transplant 35(4):S358
78.
Zurück zum Zitat Sun Z, Nie X, Sun S et al (2017) Long non-coding RNA MEG3 downregulation triggers human pulmonary artery smooth muscle cell proliferation and migration via the p53 signaling pathway. Cell Physiol Biochem 42(6):2569–2581PubMed Sun Z, Nie X, Sun S et al (2017) Long non-coding RNA MEG3 downregulation triggers human pulmonary artery smooth muscle cell proliferation and migration via the p53 signaling pathway. Cell Physiol Biochem 42(6):2569–2581PubMed
79.
Zurück zum Zitat Zhu D, Xing Y, Zheng X et al (2018) Long noncoding RNA-maternally expressed gene 3 contributes to hypoxic pulmonary hypertension. bioRxiv:243063 Zhu D, Xing Y, Zheng X et al (2018) Long noncoding RNA-maternally expressed gene 3 contributes to hypoxic pulmonary hypertension. bioRxiv:243063
80.
Zurück zum Zitat Zhu B, Gong Y, Yan G et al (2018) Down-regulation of lncRNA MEG3 promotes hypoxia-induced human pulmonary artery smooth muscle cell proliferation and migration via repressing PTEN by sponging miR-21. Biochem Biophys Res Commun 495(3):2125–2132PubMed Zhu B, Gong Y, Yan G et al (2018) Down-regulation of lncRNA MEG3 promotes hypoxia-induced human pulmonary artery smooth muscle cell proliferation and migration via repressing PTEN by sponging miR-21. Biochem Biophys Res Commun 495(3):2125–2132PubMed
81.
Zurück zum Zitat Leisegang MS, Fork C, Josipovic I et al (2017) LncRNA MANTIS facilitates endothelial angiogenic function. Acta Physiol 219:59 Leisegang MS, Fork C, Josipovic I et al (2017) LncRNA MANTIS facilitates endothelial angiogenic function. Acta Physiol 219:59
82.
Zurück zum Zitat Puthenparampil HT, Jandl K, Wilhelm J et al (2017) Differentially expressed lncRNAs in IPAH: the impact of PAXIP1-AS1 on hPASMCs function. Wien Klin Wochenschr 129(19-20):755 Puthenparampil HT, Jandl K, Wilhelm J et al (2017) Differentially expressed lncRNAs in IPAH: the impact of PAXIP1-AS1 on hPASMCs function. Wien Klin Wochenschr 129(19-20):755
83.
Zurück zum Zitat Jandl K, Thekkekara Puthenparampil H, Marsh LM et al (2018) Long non-coding RNAs influence the transcriptome in pulmonary arterial hypertension: the role of PAXIP1-AS1. J Pathol 247(3):357-370 Jandl K, Thekkekara Puthenparampil H, Marsh LM et al (2018) Long non-coding RNAs influence the transcriptome in pulmonary arterial hypertension: the role of PAXIP1-AS1. J Pathol 247(3):357-370
84.
Zurück zum Zitat Chen J, Guo J, Cui X et al (2018) The long noncoding RNA lnRPT is regulated by PDGF-BB and modulates the proliferation of pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol 58(2):181–193PubMed Chen J, Guo J, Cui X et al (2018) The long noncoding RNA lnRPT is regulated by PDGF-BB and modulates the proliferation of pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol 58(2):181–193PubMed
85.
Zurück zum Zitat Chen J, Guo J, Chen J, Gou D (2018) The vascular LNCRNA VELRP defines an epigenetic checkpoint in hyperproliferation of pulmonary arterial smooth muscle cell. Am J Respir Crit Care Med:197 (Meeting Abstracts) Chen J, Guo J, Chen J, Gou D (2018) The vascular LNCRNA VELRP defines an epigenetic checkpoint in hyperproliferation of pulmonary arterial smooth muscle cell. Am J Respir Crit Care Med:197 (Meeting Abstracts)
86.
Zurück zum Zitat Liu Y, Sun Z, Zhu J, Xiao B, Dong J, Li X (2018) LncRNA-TCONS_00034812 in cell proliferation and apoptosis of pulmonary artery smooth muscle cells and its mechanism. J Cell Physiol 233(6):4801–4814PubMed Liu Y, Sun Z, Zhu J, Xiao B, Dong J, Li X (2018) LncRNA-TCONS_00034812 in cell proliferation and apoptosis of pulmonary artery smooth muscle cells and its mechanism. J Cell Physiol 233(6):4801–4814PubMed
87.
Zurück zum Zitat Omura J, Peterlini T, Provencher S, Bonnet S (2018) Long noncoding RNA h19 in the development of pulmonary arterial hypertension and right ventricular failure. Am J Respir Crit Care Med:197 (Meeting Abstracts) Omura J, Peterlini T, Provencher S, Bonnet S (2018) Long noncoding RNA h19 in the development of pulmonary arterial hypertension and right ventricular failure. Am J Respir Crit Care Med:197 (Meeting Abstracts)
88.
Zurück zum Zitat Wang R, Zhou S, Wu P et al (2018) Identifying involvement of H19-miR-675-3p-IGF1R and H19-miR-200a-PDCD4 in treating pulmonary hypertension with melatonin. Mol Ther Nucleic Acids 13:44–54PubMedPubMedCentral Wang R, Zhou S, Wu P et al (2018) Identifying involvement of H19-miR-675-3p-IGF1R and H19-miR-200a-PDCD4 in treating pulmonary hypertension with melatonin. Mol Ther Nucleic Acids 13:44–54PubMedPubMedCentral
89.
Zurück zum Zitat Su H, Xu X, Yan C et al (2018) LncRNA H19 promotes the proliferation of pulmonary artery smooth muscle cells through AT1R via sponging let-7b in monocrotaline-induced pulmonary arterial hypertension. Respir Res 19(1):254PubMedPubMedCentral Su H, Xu X, Yan C et al (2018) LncRNA H19 promotes the proliferation of pulmonary artery smooth muscle cells through AT1R via sponging let-7b in monocrotaline-induced pulmonary arterial hypertension. Respir Res 19(1):254PubMedPubMedCentral
90.
Zurück zum Zitat Zhang H, Liu Y, Yan L et al (2018) Long noncoding RNA Hoxaas3 contributes to hypoxia-induced pulmonary artery smooth muscle cell proliferation. Cardiovasc Res 115(3):647-657 Zhang H, Liu Y, Yan L et al (2018) Long noncoding RNA Hoxaas3 contributes to hypoxia-induced pulmonary artery smooth muscle cell proliferation. Cardiovasc Res 115(3):647-657
91.
Zurück zum Zitat Zhu TT, Sun RL, Yin YL et al (2018) Long noncoding RNA UCA1 promotes the proliferation of hypoxic human pulmonary artery smooth muscle cells. Pflugers Arch 471(2):347-355 Zhu TT, Sun RL, Yin YL et al (2018) Long noncoding RNA UCA1 promotes the proliferation of hypoxic human pulmonary artery smooth muscle cells. Pflugers Arch 471(2):347-355
92.
Zurück zum Zitat Jiang Y, Mo H, Luo J et al (2018) HOTAIR is a potential novel biomarker in patients with congenital heart diseases. Biomed Res Int 2018:2850657PubMedPubMedCentral Jiang Y, Mo H, Luo J et al (2018) HOTAIR is a potential novel biomarker in patients with congenital heart diseases. Biomed Res Int 2018:2850657PubMedPubMedCentral
93.
Zurück zum Zitat Josipovic I, Pfluger B, Fork C et al (2018) Long noncoding RNA LISPR1 is required for S1P signaling and endothelial cell function. J Mol Cell Cardiol 116:57–68PubMed Josipovic I, Pfluger B, Fork C et al (2018) Long noncoding RNA LISPR1 is required for S1P signaling and endothelial cell function. J Mol Cell Cardiol 116:57–68PubMed
94.
Zurück zum Zitat Bischoff FC, Werner A, John D et al (2017) Identification and functional characterization of hypoxia-induced endoplasmic reticulum stress regulating lncRNA (HypERlnc) in pericytes. Circ Res 121(4):368–375PubMed Bischoff FC, Werner A, John D et al (2017) Identification and functional characterization of hypoxia-induced endoplasmic reticulum stress regulating lncRNA (HypERlnc) in pericytes. Circ Res 121(4):368–375PubMed
95.
Zurück zum Zitat Gong J, Chen Z, Chen Y et al (2019) Long non-coding RNA CASC2 suppresses pulmonary artery smooth muscle cell proliferation and phenotypic switch in hypoxia-induced pulmonary hypertension. Respir Res 20(1):53PubMedPubMedCentral Gong J, Chen Z, Chen Y et al (2019) Long non-coding RNA CASC2 suppresses pulmonary artery smooth muscle cell proliferation and phenotypic switch in hypoxia-induced pulmonary hypertension. Respir Res 20(1):53PubMedPubMedCentral
97.
Zurück zum Zitat Yang L, Liang H, Shen L, Guan Z, Meng X (2019) LncRNA Tug1 involves in the pulmonary vascular remodeling in mice with hypoxic pulmonary hypertension via the microRNA-374c-mediated Foxc1. Life Sci 237:116769 Yang L, Liang H, Shen L, Guan Z, Meng X (2019) LncRNA Tug1 involves in the pulmonary vascular remodeling in mice with hypoxic pulmonary hypertension via the microRNA-374c-mediated Foxc1. Life Sci 237:116769
98.
Zurück zum Zitat Bekri S, Adelaide J, Merscher S et al (1997) Detailed map of a region commonly amplified at 11q13-- > q14 in human breast carcinoma. Cytogenet Cell Genet 79(1-2):125–131PubMed Bekri S, Adelaide J, Merscher S et al (1997) Detailed map of a region commonly amplified at 11q13-- > q14 in human breast carcinoma. Cytogenet Cell Genet 79(1-2):125–131PubMed
99.
Zurück zum Zitat Ji P, Diederichs S, Wang W et al (2003) MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22(39):8031–8041PubMed Ji P, Diederichs S, Wang W et al (2003) MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22(39):8031–8041PubMed
100.
Zurück zum Zitat Comer BS, Ba M, Singer CA, Gerthoffer WT (2015) Epigenetic targets for novel therapies of lung diseases. Pharmacol Ther 147:91–110PubMed Comer BS, Ba M, Singer CA, Gerthoffer WT (2015) Epigenetic targets for novel therapies of lung diseases. Pharmacol Ther 147:91–110PubMed
101.
Zurück zum Zitat Xu C, Yang M, Tian J, Wang X, Li Z (2011) MALAT-1: a long non-coding RNA and its important 3′ end functional motif in colorectal cancer metastasis. Int J Oncol 39(1):169–175PubMed Xu C, Yang M, Tian J, Wang X, Li Z (2011) MALAT-1: a long non-coding RNA and its important 3′ end functional motif in colorectal cancer metastasis. Int J Oncol 39(1):169–175PubMed
102.
Zurück zum Zitat Lai MC, Yang Z, Zhou L et al (2012) Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation. Med Oncol 29(3):1810–1816PubMed Lai MC, Yang Z, Zhou L et al (2012) Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation. Med Oncol 29(3):1810–1816PubMed
103.
Zurück zum Zitat Ying L, Chen Q, Wang Y, Zhou Z, Huang Y, Qiu F (2012) Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition. Mol BioSyst 8(9):2289–2294PubMed Ying L, Chen Q, Wang Y, Zhou Z, Huang Y, Qiu F (2012) Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition. Mol BioSyst 8(9):2289–2294PubMed
104.
Zurück zum Zitat Lin R, Roychowdhury-Saha M, Black C et al (2011) Control of RNA processing by a large non-coding RNA over-expressed in carcinomas. FEBS Lett 585(4):671–676PubMedPubMedCentral Lin R, Roychowdhury-Saha M, Black C et al (2011) Control of RNA processing by a large non-coding RNA over-expressed in carcinomas. FEBS Lett 585(4):671–676PubMedPubMedCentral
105.
Zurück zum Zitat Zhuo Y, Zeng Q, Zhang P, Li G, Xie Q, Cheng Y (2017) Functional polymorphism of lncRNA MALAT1 contributes to pulmonary arterial hypertension susceptibility in Chinese people. Clin Chem Lab Med 55(1):38–46PubMed Zhuo Y, Zeng Q, Zhang P, Li G, Xie Q, Cheng Y (2017) Functional polymorphism of lncRNA MALAT1 contributes to pulmonary arterial hypertension susceptibility in Chinese people. Clin Chem Lab Med 55(1):38–46PubMed
106.
Zurück zum Zitat Li Q, Zhu W, Zhang B et al (2018) The MALAT1 gene polymorphism and its relationship with the onset of congenital heart disease in Chinese. Biosci Rep 38(3): BSR20171381 Li Q, Zhu W, Zhang B et al (2018) The MALAT1 gene polymorphism and its relationship with the onset of congenital heart disease in Chinese. Biosci Rep 38(3): BSR20171381
107.
Zurück zum Zitat Brock M, Schuoler C, Haider T et al (2016) Detection and characterization of long noncoding RNAs in hypoxia-induced pulmonary hypertension. Eur Respir J 48: OA3009 Brock M, Schuoler C, Haider T et al (2016) Detection and characterization of long noncoding RNAs in hypoxia-induced pulmonary hypertension. Eur Respir J 48: OA3009
108.
Zurück zum Zitat Zhang CY, Yu MS, Li X, Zhang Z, Han CR, Yan B (2017) Overexpression of long non-coding RNA MEG3 suppresses breast cancer cell proliferation, invasion, and angiogenesis through AKT pathway. Tumour Biol 39(6):1010428317701311PubMed Zhang CY, Yu MS, Li X, Zhang Z, Han CR, Yan B (2017) Overexpression of long non-coding RNA MEG3 suppresses breast cancer cell proliferation, invasion, and angiogenesis through AKT pathway. Tumour Biol 39(6):1010428317701311PubMed
109.
Zurück zum Zitat Piccoli MT, Gupta SK, Viereck J et al (2017) Inhibition of the cardiac fibroblast-enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ Res 121(5):575–583PubMed Piccoli MT, Gupta SK, Viereck J et al (2017) Inhibition of the cardiac fibroblast-enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ Res 121(5):575–583PubMed
110.
Zurück zum Zitat Mizuno S, Bogaard HJ, Kraskauskas D et al (2011) p53 Gene deficiency promotes hypoxia-induced pulmonary hypertension and vascular remodeling in mice. Am J Physiol Lung Cell Mol Physiol 300(5):L753–L761PubMed Mizuno S, Bogaard HJ, Kraskauskas D et al (2011) p53 Gene deficiency promotes hypoxia-induced pulmonary hypertension and vascular remodeling in mice. Am J Physiol Lung Cell Mol Physiol 300(5):L753–L761PubMed
111.
Zurück zum Zitat Mouraret N, Marcos E, Abid S et al (2013) Activation of lung p53 by Nutlin-3a prevents and reverses experimental pulmonary hypertension. Circulation 127(16):1664–1676PubMedPubMedCentral Mouraret N, Marcos E, Abid S et al (2013) Activation of lung p53 by Nutlin-3a prevents and reverses experimental pulmonary hypertension. Circulation 127(16):1664–1676PubMedPubMedCentral
112.
Zurück zum Zitat Fish JE, Yan MS, Matouk CC et al (2010) Hypoxic repression of endothelial nitric-oxide synthase transcription is coupled with eviction of promoter histones. J Biol Chem 285(2):810–826PubMed Fish JE, Yan MS, Matouk CC et al (2010) Hypoxic repression of endothelial nitric-oxide synthase transcription is coupled with eviction of promoter histones. J Biol Chem 285(2):810–826PubMed
113.
Zurück zum Zitat Weirick T, Militello G, Ponomareva Y et al (2018) Logic programming to infer complex RNA expression patterns from RNA-seq data. Brief Bioinform 19(2):199–209PubMed Weirick T, Militello G, Ponomareva Y et al (2018) Logic programming to infer complex RNA expression patterns from RNA-seq data. Brief Bioinform 19(2):199–209PubMed
114.
Zurück zum Zitat Veith C, Marsh LM, Wygrecka M et al (2012) Paxillin regulates pulmonary arterial smooth muscle cell function in pulmonary hypertension. Am J Pathol 181(5):1621–1633PubMed Veith C, Marsh LM, Wygrecka M et al (2012) Paxillin regulates pulmonary arterial smooth muscle cell function in pulmonary hypertension. Am J Pathol 181(5):1621–1633PubMed
115.
Zurück zum Zitat Grimminger F, Schermuly RT (2010) PDGF receptor and its antagonists: role in treatment of PAH. Adv Exp Med Biol 661:435–446PubMed Grimminger F, Schermuly RT (2010) PDGF receptor and its antagonists: role in treatment of PAH. Adv Exp Med Biol 661:435–446PubMed
116.
Zurück zum Zitat Oldham WM (2018) The long noncoding RNA lnRPT puts the brakes on pulmonary artery smooth muscle cell proliferation. Am J Respir Cell Mol Biol 58(2):138–139PubMedPubMedCentral Oldham WM (2018) The long noncoding RNA lnRPT puts the brakes on pulmonary artery smooth muscle cell proliferation. Am J Respir Cell Mol Biol 58(2):138–139PubMedPubMedCentral
117.
Zurück zum Zitat Ducat A, Doridot L, Calicchio R et al (2016) Endothelial cell dysfunction and cardiac hypertrophy in the STOX1 model of preeclampsia. Sci Rep 6:19196PubMedPubMedCentral Ducat A, Doridot L, Calicchio R et al (2016) Endothelial cell dysfunction and cardiac hypertrophy in the STOX1 model of preeclampsia. Sci Rep 6:19196PubMedPubMedCentral
118.
Zurück zum Zitat Wang J, Wang X, Chen T, Jiang L, Yang Q (2017) Huaier extract inhibits breast cancer progression through a lncRNA-H19/MiR-675-5p pathway. Cell Physiol Biochem 44(2):581–593PubMed Wang J, Wang X, Chen T, Jiang L, Yang Q (2017) Huaier extract inhibits breast cancer progression through a lncRNA-H19/MiR-675-5p pathway. Cell Physiol Biochem 44(2):581–593PubMed
119.
Zurück zum Zitat Matouk IJ, Halle D, Gilon M, Hochberg A (2015) The non-coding RNAs of the H19-IGF2 imprinted loci: a focus on biological roles and therapeutic potential in Lung Cancer. J Transl Med 13:113PubMedPubMedCentral Matouk IJ, Halle D, Gilon M, Hochberg A (2015) The non-coding RNAs of the H19-IGF2 imprinted loci: a focus on biological roles and therapeutic potential in Lung Cancer. J Transl Med 13:113PubMedPubMedCentral
120.
Zurück zum Zitat Liu L, An X, Li Z et al (2016) The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc Res 111(1):56–65PubMed Liu L, An X, Li Z et al (2016) The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc Res 111(1):56–65PubMed
121.
Zurück zum Zitat Gomez J, Lorca R, Reguero JR et al (2018) Genetic variation at the long noncoding RNA H19 gene is associated with the risk of hypertrophic cardiomyopathy. Epigenomics 10(7):865–873PubMed Gomez J, Lorca R, Reguero JR et al (2018) Genetic variation at the long noncoding RNA H19 gene is associated with the risk of hypertrophic cardiomyopathy. Epigenomics 10(7):865–873PubMed
122.
Zurück zum Zitat Pearson JC, Lemons D, McGinnis W (2005) Modulating Hox gene functions during animal body patterning. Nat Rev Genet 6(12):893–904PubMed Pearson JC, Lemons D, McGinnis W (2005) Modulating Hox gene functions during animal body patterning. Nat Rev Genet 6(12):893–904PubMed
123.
Zurück zum Zitat Wang XS, Zhang Z, Wang HC et al (2006) Rapid identification of UCA1 as a very sensitive and specific unique marker for human bladder carcinoma. Clin Cancer Res 12(16):4851–4858PubMed Wang XS, Zhang Z, Wang HC et al (2006) Rapid identification of UCA1 as a very sensitive and specific unique marker for human bladder carcinoma. Clin Cancer Res 12(16):4851–4858PubMed
124.
Zurück zum Zitat He A, Hu R, Chen Z et al (2017) Role of long noncoding RNA UCA1 as a common molecular marker for lymph node metastasis and prognosis in various cancers: a meta-analysis. Oncotarget 8(1):1937–1943PubMed He A, Hu R, Chen Z et al (2017) Role of long noncoding RNA UCA1 as a common molecular marker for lymph node metastasis and prognosis in various cancers: a meta-analysis. Oncotarget 8(1):1937–1943PubMed
125.
Zurück zum Zitat Liu Y, Zhou D, Li G et al (2015) Long non coding RNA-UCA1 contributes to cardiomyocyte apoptosis by suppression of p27 expression. Cell Physiol Biochem 35(5):1986–1998PubMed Liu Y, Zhou D, Li G et al (2015) Long non coding RNA-UCA1 contributes to cardiomyocyte apoptosis by suppression of p27 expression. Cell Physiol Biochem 35(5):1986–1998PubMed
126.
Zurück zum Zitat Zhou G, Li C, Feng J, Zhang J, Fang Y (2018) lncRNA UCA1 Is a novel regulator in cardiomyocyte hypertrophy through targeting the miR-184/HOXA9 axis. Cardiorenal Med 8(2):130–139PubMedPubMedCentral Zhou G, Li C, Feng J, Zhang J, Fang Y (2018) lncRNA UCA1 Is a novel regulator in cardiomyocyte hypertrophy through targeting the miR-184/HOXA9 axis. Cardiorenal Med 8(2):130–139PubMedPubMedCentral
127.
Zurück zum Zitat Reiner O, Carrozzo R, Shen Y et al (1993) Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364(6439):717–721PubMed Reiner O, Carrozzo R, Shen Y et al (1993) Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364(6439):717–721PubMed
128.
Zurück zum Zitat Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323PubMedPubMedCentral Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323PubMedPubMedCentral
129.
Zurück zum Zitat Bhan A, Mandal SS (2015) LncRNA HOTAIR: a master regulator of chromatin dynamics and cancer. Biochim Biophys Acta 1856(1):151–164PubMedPubMedCentral Bhan A, Mandal SS (2015) LncRNA HOTAIR: a master regulator of chromatin dynamics and cancer. Biochim Biophys Acta 1856(1):151–164PubMedPubMedCentral
130.
Zurück zum Zitat Lai Y, He S, Ma L et al (2017) HOTAIR functions as a competing endogenous RNA to regulate PTEN expression by inhibiting miR-19 in cardiac hypertrophy. Mol Cell Biochem 432(1-2):179–187PubMed Lai Y, He S, Ma L et al (2017) HOTAIR functions as a competing endogenous RNA to regulate PTEN expression by inhibiting miR-19 in cardiac hypertrophy. Mol Cell Biochem 432(1-2):179–187PubMed
131.
Zurück zum Zitat Gao L, Liu Y, Guo S et al (2017) Circulating long noncoding RNA HOTAIR is an essential mediator of acute myocardial infarction. Cell Physiol Biochem 44(4):1497–1508PubMed Gao L, Liu Y, Guo S et al (2017) Circulating long noncoding RNA HOTAIR is an essential mediator of acute myocardial infarction. Cell Physiol Biochem 44(4):1497–1508PubMed
132.
Zurück zum Zitat Kimura T, Watanabe T, Sato K et al (2000) Sphingosine 1-phosphate stimulates proliferation and migration of human endothelial cells possibly through the lipid receptors, Edg-1 and Edg-3. Biochem J 348(Pt 1):71–76PubMedPubMedCentral Kimura T, Watanabe T, Sato K et al (2000) Sphingosine 1-phosphate stimulates proliferation and migration of human endothelial cells possibly through the lipid receptors, Edg-1 and Edg-3. Biochem J 348(Pt 1):71–76PubMedPubMedCentral
133.
Zurück zum Zitat Purschke WG, Hoehlig K, Buchner K et al (2014) Identification and characterization of a mirror-image oligonucleotide that binds and neutralizes sphingosine 1-phosphate, a central mediator of angiogenesis. Biochem J 462(1):153–162PubMedPubMedCentral Purschke WG, Hoehlig K, Buchner K et al (2014) Identification and characterization of a mirror-image oligonucleotide that binds and neutralizes sphingosine 1-phosphate, a central mediator of angiogenesis. Biochem J 462(1):153–162PubMedPubMedCentral
134.
Zurück zum Zitat Chen J, Tang H, Sysol JR et al (2014) The sphingosine kinase 1/sphingosine-1-phosphate pathway in pulmonary arterial hypertension. Am J Respir Crit Care Med 190(9):1032–1043PubMedPubMedCentral Chen J, Tang H, Sysol JR et al (2014) The sphingosine kinase 1/sphingosine-1-phosphate pathway in pulmonary arterial hypertension. Am J Respir Crit Care Med 190(9):1032–1043PubMedPubMedCentral
135.
Zurück zum Zitat Koyama M, Furuhashi M, Ishimura S et al (2014) Reduction of endoplasmic reticulum stress by 4-phenylbutyric acid prevents the development of hypoxia-induced pulmonary arterial hypertension. Am J Phys Heart Circ Phys 306(9):H1314–H1323 Koyama M, Furuhashi M, Ishimura S et al (2014) Reduction of endoplasmic reticulum stress by 4-phenylbutyric acid prevents the development of hypoxia-induced pulmonary arterial hypertension. Am J Phys Heart Circ Phys 306(9):H1314–H1323
136.
Zurück zum Zitat Wang JJ, Zuo XR, Xu J et al (2016) Evaluation and treatment of endoplasmic reticulum (ER) stress in right ventricular dysfunction during monocrotaline-induced rat pulmonary arterial hypertension. Cardiovasc Drugs Ther 30(6):587–598PubMed Wang JJ, Zuo XR, Xu J et al (2016) Evaluation and treatment of endoplasmic reticulum (ER) stress in right ventricular dysfunction during monocrotaline-induced rat pulmonary arterial hypertension. Cardiovasc Drugs Ther 30(6):587–598PubMed
137.
Zurück zum Zitat Wang Y, Liu Z, Yao B et al (2017) Long non-coding RNA CASC2 suppresses epithelial-mesenchymal transition of hepatocellular carcinoma cells through CASC2/miR-367/FBXW7 axis. Mol Cancer 16(1):123PubMedPubMedCentral Wang Y, Liu Z, Yao B et al (2017) Long non-coding RNA CASC2 suppresses epithelial-mesenchymal transition of hepatocellular carcinoma cells through CASC2/miR-367/FBXW7 axis. Mol Cancer 16(1):123PubMedPubMedCentral
138.
Zurück zum Zitat Zhang L, Cheng H, Yue Y, Li S, Zhang D, He R (2018) TUG1 knockdown ameliorates atherosclerosis via up-regulating the expression of miR-133a target gene FGF1. Cardiovasc Pathol 33:6–15PubMed Zhang L, Cheng H, Yue Y, Li S, Zhang D, He R (2018) TUG1 knockdown ameliorates atherosclerosis via up-regulating the expression of miR-133a target gene FGF1. Cardiovasc Pathol 33:6–15PubMed
139.
Zurück zum Zitat Gu S, Li G, Zhang X et al (2015) Aberrant expression of long noncoding RNAs in chronic thromboembolic pulmonary hypertension. Mol Med Rep 11(4):2631–2643PubMed Gu S, Li G, Zhang X et al (2015) Aberrant expression of long noncoding RNAs in chronic thromboembolic pulmonary hypertension. Mol Med Rep 11(4):2631–2643PubMed
140.
Zurück zum Zitat Wang M, Gu S, Liu Y et al (2019) miRNA-PDGFRB/HIF1A-lncRNA CTEPHA1 network plays important roles in the mechanism of chronic thromboembolic pulmonary hypertension. Int Heart J 60(4):924–937PubMed Wang M, Gu S, Liu Y et al (2019) miRNA-PDGFRB/HIF1A-lncRNA CTEPHA1 network plays important roles in the mechanism of chronic thromboembolic pulmonary hypertension. Int Heart J 60(4):924–937PubMed
141.
Zurück zum Zitat Wang X, Yan C, Xu X et al (2016) Long noncoding RNA expression profiles of hypoxic pulmonary hypertension rat model. Gene 579(1):23–28PubMed Wang X, Yan C, Xu X et al (2016) Long noncoding RNA expression profiles of hypoxic pulmonary hypertension rat model. Gene 579(1):23–28PubMed
142.
Zurück zum Zitat Cao Y, Yang Y, Wang L et al (2018) Analyses of long non-coding RNA and mRNA profiles in right ventricle myocardium of acute right heart failure in pulmonary arterial hypertension rats. Biomed Pharmacother 106:1108–1115PubMed Cao Y, Yang Y, Wang L et al (2018) Analyses of long non-coding RNA and mRNA profiles in right ventricle myocardium of acute right heart failure in pulmonary arterial hypertension rats. Biomed Pharmacother 106:1108–1115PubMed
143.
Zurück zum Zitat Sun Z, Liu Y, Yu F, Xu Y, Yanli L, Liu N (2019) Long non-coding RNA and mRNA profile analysis of metformin to reverse the pulmonary hypertension vascular remodeling induced by monocrotaline. Biomed Pharmacother 115:108933PubMed Sun Z, Liu Y, Yu F, Xu Y, Yanli L, Liu N (2019) Long non-coding RNA and mRNA profile analysis of metformin to reverse the pulmonary hypertension vascular remodeling induced by monocrotaline. Biomed Pharmacother 115:108933PubMed
144.
Zurück zum Zitat Leung A, Trac C, Jin W et al (2013) Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells. Circ Res 113(3):266–278PubMedPubMedCentral Leung A, Trac C, Jin W et al (2013) Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells. Circ Res 113(3):266–278PubMedPubMedCentral
145.
Zurück zum Zitat Lyu Q, Xu S, Lyu Y et al (2019) SENCR stabilizes vascular endothelial cell adherens junctions through interaction with CKAP4. Proc Natl Acad Sci U S A 116(2):546–555PubMed Lyu Q, Xu S, Lyu Y et al (2019) SENCR stabilizes vascular endothelial cell adherens junctions through interaction with CKAP4. Proc Natl Acad Sci U S A 116(2):546–555PubMed
146.
Zurück zum Zitat Lu W, Huang SY, Su L, Zhao BX, Miao JY (2016) Long noncoding RNA LOC100129973 suppresses apoptosis by targeting miR-4707-5p and miR-4767 in vascular endothelial cells. Sci Rep 6:21620PubMedPubMedCentral Lu W, Huang SY, Su L, Zhao BX, Miao JY (2016) Long noncoding RNA LOC100129973 suppresses apoptosis by targeting miR-4707-5p and miR-4767 in vascular endothelial cells. Sci Rep 6:21620PubMedPubMedCentral
147.
Zurück zum Zitat Teng W, Qiu C, He Z, Wang G, Xue Y, Hui X (2017) Linc00152 suppresses apoptosis and promotes migration by sponging miR-4767 in vascular endothelial cells. Oncotarget 8(49):85014–85023PubMedPubMedCentral Teng W, Qiu C, He Z, Wang G, Xue Y, Hui X (2017) Linc00152 suppresses apoptosis and promotes migration by sponging miR-4767 in vascular endothelial cells. Oncotarget 8(49):85014–85023PubMedPubMedCentral
148.
Zurück zum Zitat Li L, Wang M, Mei Z et al (2017) lncRNAs HIF1A-AS2 facilitates the up-regulation of HIF-1alpha by sponging to miR-153-3p, whereby promoting angiogenesis in HUVECs in hypoxia. Biomed Pharmacother 96:165–172PubMed Li L, Wang M, Mei Z et al (2017) lncRNAs HIF1A-AS2 facilitates the up-regulation of HIF-1alpha by sponging to miR-153-3p, whereby promoting angiogenesis in HUVECs in hypoxia. Biomed Pharmacother 96:165–172PubMed
149.
Zurück zum Zitat Congrains A, Kamide K, Oguro R et al (2012) Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B. Atherosclerosis 220(2):449–455PubMed Congrains A, Kamide K, Oguro R et al (2012) Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B. Atherosclerosis 220(2):449–455PubMed
150.
Zurück zum Zitat Motterle A, Pu X, Wood H et al (2012) Functional analyses of coronary artery disease associated variation on chromosome 9p21 in vascular smooth muscle cells. Hum Mol Genet 21(18):4021–4029PubMedPubMedCentral Motterle A, Pu X, Wood H et al (2012) Functional analyses of coronary artery disease associated variation on chromosome 9p21 in vascular smooth muscle cells. Hum Mol Genet 21(18):4021–4029PubMedPubMedCentral
151.
Zurück zum Zitat Wu G, Cai J, Han Y et al (2014) LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation 130(17):1452–1465PubMedPubMedCentral Wu G, Cai J, Han Y et al (2014) LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation 130(17):1452–1465PubMedPubMedCentral
152.
Zurück zum Zitat Ma Y, Huang D, Yang F et al (2016) Long noncoding RNA highly upregulated in liver cancer regulates the tumor necrosis factor-alpha-induced apoptosis in human vascular endothelial cells. DNA Cell Biol 35(6):296–300PubMed Ma Y, Huang D, Yang F et al (2016) Long noncoding RNA highly upregulated in liver cancer regulates the tumor necrosis factor-alpha-induced apoptosis in human vascular endothelial cells. DNA Cell Biol 35(6):296–300PubMed
153.
Zurück zum Zitat Ballantyne MD, Pinel K, Dakin R et al (2016) Smooth muscle enriched long noncoding RNA (SMILR) regulates cell proliferation. Circulation 133(21):2050–2065PubMedPubMedCentral Ballantyne MD, Pinel K, Dakin R et al (2016) Smooth muscle enriched long noncoding RNA (SMILR) regulates cell proliferation. Circulation 133(21):2050–2065PubMedPubMedCentral
154.
Zurück zum Zitat Shan K, Jiang Q, Wang XQ et al (2016) Role of long non-coding RNA-RNCR3 in atherosclerosis-related vascular dysfunction. Cell Death Dis 7(6):e2248PubMedPubMedCentral Shan K, Jiang Q, Wang XQ et al (2016) Role of long non-coding RNA-RNCR3 in atherosclerosis-related vascular dysfunction. Cell Death Dis 7(6):e2248PubMedPubMedCentral
155.
Zurück zum Zitat Lin Z, Ge J, Wang Z et al (2017) Let-7e modulates the inflammatory response in vascular endothelial cells through ceRNA crosstalk. Sci Rep 7:42498PubMedPubMedCentral Lin Z, Ge J, Wang Z et al (2017) Let-7e modulates the inflammatory response in vascular endothelial cells through ceRNA crosstalk. Sci Rep 7:42498PubMedPubMedCentral
156.
Zurück zum Zitat Zhang BY, Jin Z, Zhao Z (2017) Long intergenic noncoding RNA 00305 sponges miR-136 to regulate the hypoxia induced apoptosis of vascular endothelial cells. Biomed Pharmacother 94:238–243PubMed Zhang BY, Jin Z, Zhao Z (2017) Long intergenic noncoding RNA 00305 sponges miR-136 to regulate the hypoxia induced apoptosis of vascular endothelial cells. Biomed Pharmacother 94:238–243PubMed
157.
Zurück zum Zitat Li H, Liu X, Zhang L, Li X (2017) LncRNA BANCR facilitates vascular smooth muscle cell proliferation and migration through JNK pathway. Oncotarget 8(70):114568–114575PubMedPubMedCentral Li H, Liu X, Zhang L, Li X (2017) LncRNA BANCR facilitates vascular smooth muscle cell proliferation and migration through JNK pathway. Oncotarget 8(70):114568–114575PubMedPubMedCentral
158.
Zurück zum Zitat Liao B, Chen R, Lin F et al (2018) Long noncoding RNA HOTTIP promotes endothelial cell proliferation and migration via activation of the Wnt/beta-catenin pathway. J Cell Biochem 119(3):2797–2805PubMed Liao B, Chen R, Lin F et al (2018) Long noncoding RNA HOTTIP promotes endothelial cell proliferation and migration via activation of the Wnt/beta-catenin pathway. J Cell Biochem 119(3):2797–2805PubMed
159.
Zurück zum Zitat Zhang Y, Zheng L, Xu BM et al (2018) LncRNA-RP11-714G18.1 suppresses vascular cell migration via directly targeting LRP2BP. Immunol Cell Biol 96(2):175–189PubMed Zhang Y, Zheng L, Xu BM et al (2018) LncRNA-RP11-714G18.1 suppresses vascular cell migration via directly targeting LRP2BP. Immunol Cell Biol 96(2):175–189PubMed
160.
Zurück zum Zitat Yao X, Yan C, Zhang L, Li Y, Wan Q (2018) LncRNA ENST00113 promotes proliferation, survival, and migration by activating PI3K/Akt/mTOR signaling pathway in atherosclerosis. Medicine 97(16):e0473PubMedPubMedCentral Yao X, Yan C, Zhang L, Li Y, Wan Q (2018) LncRNA ENST00113 promotes proliferation, survival, and migration by activating PI3K/Akt/mTOR signaling pathway in atherosclerosis. Medicine 97(16):e0473PubMedPubMedCentral
161.
Zurück zum Zitat Natarelli L, Geissler C, Csaba G et al (2018) miR-103 promotes endothelial maladaptation by targeting lncWDR59. Nat Commun 9(1):2645PubMedPubMedCentral Natarelli L, Geissler C, Csaba G et al (2018) miR-103 promotes endothelial maladaptation by targeting lncWDR59. Nat Commun 9(1):2645PubMedPubMedCentral
162.
Zurück zum Zitat Miao C, Cao H, Zhang Y, Guo X, Wang Z, Wang J (2018) LncRNA DIGIT accelerates tube formation of vascular endothelial cells by sponging miR-134. Int Heart J 59(5):1086–1095PubMed Miao C, Cao H, Zhang Y, Guo X, Wang Z, Wang J (2018) LncRNA DIGIT accelerates tube formation of vascular endothelial cells by sponging miR-134. Int Heart J 59(5):1086–1095PubMed
163.
Zurück zum Zitat Wang H, Jin Z, Pei T et al (2019) Long noncoding RNAs C2dat1 enhances vascular smooth muscle cell proliferation and migration by targeting MiR-34a-5p. J Cell Biochem 120(3):3001–3008PubMed Wang H, Jin Z, Pei T et al (2019) Long noncoding RNAs C2dat1 enhances vascular smooth muscle cell proliferation and migration by targeting MiR-34a-5p. J Cell Biochem 120(3):3001–3008PubMed
164.
Zurück zum Zitat Wang X, Zhao Z, Zhang W, Wang Y (2019) Long noncoding RNA LINC00968 promotes endothelial cell proliferation and migration via regulating miR-9-3p expression. J Cell Biochem 120: 8214‐8221 Wang X, Zhao Z, Zhang W, Wang Y (2019) Long noncoding RNA LINC00968 promotes endothelial cell proliferation and migration via regulating miR-9-3p expression. J Cell Biochem 120: 8214‐8221
165.
Zurück zum Zitat Li S, Sun Y, Zhong L et al (2018) The suppression of ox-LDL-induced inflammatory cytokine release and apoptosis of HCAECs by long non-coding RNA-MALAT1 via regulating microRNA-155/SOCS1 pathway. Nutr Metab Cardiovasc Dis 28(11):1175–1187PubMed Li S, Sun Y, Zhong L et al (2018) The suppression of ox-LDL-induced inflammatory cytokine release and apoptosis of HCAECs by long non-coding RNA-MALAT1 via regulating microRNA-155/SOCS1 pathway. Nutr Metab Cardiovasc Dis 28(11):1175–1187PubMed
166.
Zurück zum Zitat Cremer S, Michalik KM, Fischer A et al (2019) Hematopoietic deficiency of the long noncoding RNA MALAT1 promotes atherosclerosis and plaque inflammation. Circulation 139(10):1320–1334PubMed Cremer S, Michalik KM, Fischer A et al (2019) Hematopoietic deficiency of the long noncoding RNA MALAT1 promotes atherosclerosis and plaque inflammation. Circulation 139(10):1320–1334PubMed
167.
Zurück zum Zitat Zhang Y, Liu X, Bai X et al (2018) Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. J Pineal Res 64(2):e12449 Zhang Y, Liu X, Bai X et al (2018) Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. J Pineal Res 64(2):e12449
168.
Zurück zum Zitat Wang S, Zhang X, Yuan Y et al (2015) BRG1 expression is increased in thoracic aortic aneurysms and regulates proliferation and apoptosis of vascular smooth muscle cells through the long non-coding RNA HIF1A-AS1 in vitro. Eur J Cardiothorac Surg 47(3):439–446PubMed Wang S, Zhang X, Yuan Y et al (2015) BRG1 expression is increased in thoracic aortic aneurysms and regulates proliferation and apoptosis of vascular smooth muscle cells through the long non-coding RNA HIF1A-AS1 in vitro. Eur J Cardiothorac Surg 47(3):439–446PubMed
169.
Zurück zum Zitat Li DY, Busch A, Jin H et al (2018) H19 induces abdominal aortic aneurysm development and progression. Circulation 138(15):1551–1568PubMedPubMedCentral Li DY, Busch A, Jin H et al (2018) H19 induces abdominal aortic aneurysm development and progression. Circulation 138(15):1551–1568PubMedPubMedCentral
170.
Zurück zum Zitat Greco S, Zaccagnini G, Fuschi P et al (2017) Increased BACE1-AS long noncoding RNA and beta-amyloid levels in heart failure. Cardiovasc Res 113(5):453–463PubMed Greco S, Zaccagnini G, Fuschi P et al (2017) Increased BACE1-AS long noncoding RNA and beta-amyloid levels in heart failure. Cardiovasc Res 113(5):453–463PubMed
171.
Zurück zum Zitat Zou ZQ, Xu J, Li L, Han YS (2015) Down-regulation of SENCR promotes smooth muscle cells proliferation and migration in db/db mice through up-regulation of FoxO1 and TRPC6. Biomed Pharmacother 74:35–41PubMed Zou ZQ, Xu J, Li L, Han YS (2015) Down-regulation of SENCR promotes smooth muscle cells proliferation and migration in db/db mice through up-regulation of FoxO1 and TRPC6. Biomed Pharmacother 74:35–41PubMed
172.
Zurück zum Zitat Zhang XY, Tang XY, Li N et al (2018) GAS5 promotes airway smooth muscle cell proliferation in asthma via controlling miR-10a/BDNF signaling pathway. Life Sci 212:93–101PubMed Zhang XY, Tang XY, Li N et al (2018) GAS5 promotes airway smooth muscle cell proliferation in asthma via controlling miR-10a/BDNF signaling pathway. Life Sci 212:93–101PubMed
173.
Zurück zum Zitat Austin PJ, Tsitsiou E, Boardman C et al (2017) Transcriptional profiling identifies the long noncoding RNA plasmacytoma variant translocation (PVT1) as a novel regulator of the asthmatic phenotype in human airway smooth muscle. J Allergy Clin Immunol 139(3):780–789PubMedPubMedCentral Austin PJ, Tsitsiou E, Boardman C et al (2017) Transcriptional profiling identifies the long noncoding RNA plasmacytoma variant translocation (PVT1) as a novel regulator of the asthmatic phenotype in human airway smooth muscle. J Allergy Clin Immunol 139(3):780–789PubMedPubMedCentral
174.
Zurück zum Zitat Yu X, Zhe Z, Tang B et al (2017) alpha-Asarone suppresses the proliferation and migration of ASMCs through targeting the lncRNA-PVT1/miR-203a/E2F3 signal pathway in RSV-infected rats. Acta Biochim Biophys Sin (Shanghai) 49(7):598–608 Yu X, Zhe Z, Tang B et al (2017) alpha-Asarone suppresses the proliferation and migration of ASMCs through targeting the lncRNA-PVT1/miR-203a/E2F3 signal pathway in RSV-infected rats. Acta Biochim Biophys Sin (Shanghai) 49(7):598–608
175.
Zurück zum Zitat Maron BA, Leopold JA (2014) The role of the renin-angiotensin-aldosterone system in the pathobiology of pulmonary arterial hypertension (2013 Grover Conference series). Pulm Circ 4(2):200–210PubMedPubMedCentral Maron BA, Leopold JA (2014) The role of the renin-angiotensin-aldosterone system in the pathobiology of pulmonary arterial hypertension (2013 Grover Conference series). Pulm Circ 4(2):200–210PubMedPubMedCentral
176.
Zurück zum Zitat Xu Y, Bei Y, Shen S et al (2017) MicroRNA-222 promotes the proliferation of pulmonary arterial smooth muscle cells by targeting P27 and TIMP3. Cell Physiol Biochem 43(1):282–292PubMed Xu Y, Bei Y, Shen S et al (2017) MicroRNA-222 promotes the proliferation of pulmonary arterial smooth muscle cells by targeting P27 and TIMP3. Cell Physiol Biochem 43(1):282–292PubMed
177.
Zurück zum Zitat Nie X, Chen Y, Tan J et al (2017) MicroRNA-221-3p promotes pulmonary artery smooth muscle cells proliferation by targeting AXIN2 during pulmonary arterial hypertension. Vasc Pharmacol 116:24-35 Nie X, Chen Y, Tan J et al (2017) MicroRNA-221-3p promotes pulmonary artery smooth muscle cells proliferation by targeting AXIN2 during pulmonary arterial hypertension. Vasc Pharmacol 116:24-35
178.
Zurück zum Zitat Yoon JH, Abdelmohsen K, Gorospe M (2014) Functional interactions among microRNAs and long noncoding RNAs. Semin Cell Dev Biol 34:9–14PubMed Yoon JH, Abdelmohsen K, Gorospe M (2014) Functional interactions among microRNAs and long noncoding RNAs. Semin Cell Dev Biol 34:9–14PubMed
179.
Zurück zum Zitat Thomson DW, Dinger ME (2016) Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 17(5):272–283PubMed Thomson DW, Dinger ME (2016) Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 17(5):272–283PubMed
180.
Zurück zum Zitat Wang D, Xu H, Wu B et al (2019) Long noncoding RNA MALAT1 sponges miR1243p.1/KLF5 to promote pulmonary vascular remodeling and cell cycle progression of pulmonary artery hypertension. Int J Mol Med 44(3):871–884PubMedPubMedCentral Wang D, Xu H, Wu B et al (2019) Long noncoding RNA MALAT1 sponges miR1243p.1/KLF5 to promote pulmonary vascular remodeling and cell cycle progression of pulmonary artery hypertension. Int J Mol Med 44(3):871–884PubMedPubMedCentral
181.
Zurück zum Zitat Dalvi P, O'Brien-Ladner A, Dhillon NK (2013) Downregulation of bone morphogenetic protein receptor axis during HIV-1 and cocaine-mediated pulmonary smooth muscle hyperplasia: implications for HIV-related pulmonary arterial hypertension. Arterioscler Thromb Vasc Biol 33(11):2585–2595PubMed Dalvi P, O'Brien-Ladner A, Dhillon NK (2013) Downregulation of bone morphogenetic protein receptor axis during HIV-1 and cocaine-mediated pulmonary smooth muscle hyperplasia: implications for HIV-related pulmonary arterial hypertension. Arterioscler Thromb Vasc Biol 33(11):2585–2595PubMed
182.
Zurück zum Zitat Chinnappan M, Dalvi P, Dhillon NK (2017) Micro-RNA 216a mediated post-transcriptional regulation of bone morphogenetic protein receptor 2 expression in cocaine and HIV Tat exposed pulmonary smooth muscle cells. C34 Mechanisms of Host Defense in Bacterial and Fungal Infections: American Thoracic Society: A5274-A Chinnappan M, Dalvi P, Dhillon NK (2017) Micro-RNA 216a mediated post-transcriptional regulation of bone morphogenetic protein receptor 2 expression in cocaine and HIV Tat exposed pulmonary smooth muscle cells. C34 Mechanisms of Host Defense in Bacterial and Fungal Infections: American Thoracic Society: A5274-A
183.
Zurück zum Zitat Chinnappan M, Mohan A, Agarwal S, Dalvi P, Dhillon NK (2018) Network of microRNAs mediate translational repression of bone morphogenetic protein receptor-2: involvement in HIV-associated pulmonary vascular remodeling. J Am Heart Assoc 7(5):e008472 Chinnappan M, Mohan A, Agarwal S, Dalvi P, Dhillon NK (2018) Network of microRNAs mediate translational repression of bone morphogenetic protein receptor-2: involvement in HIV-associated pulmonary vascular remodeling. J Am Heart Assoc 7(5):e008472
184.
Zurück zum Zitat Chinnappan M, Mohan A, Chalise P, Koestler D, Dhillon NK (2018) Differential expression of long noncoding RNAs in cocaine and HIV-1 Tat treated pulmonary smooth muscle cells. Am J Respir Crit Care Med:197 (Meeting Abstracts) Chinnappan M, Mohan A, Chalise P, Koestler D, Dhillon NK (2018) Differential expression of long noncoding RNAs in cocaine and HIV-1 Tat treated pulmonary smooth muscle cells. Am J Respir Crit Care Med:197 (Meeting Abstracts)
185.
Zurück zum Zitat Chinnappan M, Gunewardena S, Chalise P, Dhillon NK (2019) Analysis of lncRNA-miRNA-mRNA interactions in hyper-proliferative human pulmonary arterial smooth muscle cells. Sci Rep 9(1):10533PubMedPubMedCentral Chinnappan M, Gunewardena S, Chalise P, Dhillon NK (2019) Analysis of lncRNA-miRNA-mRNA interactions in hyper-proliferative human pulmonary arterial smooth muscle cells. Sci Rep 9(1):10533PubMedPubMedCentral
186.
Zurück zum Zitat Yin Q, Wu A, Liu M (2017) Plasma Long non-coding RNA (lncRNA) GAS5 is a new biomarker for coronary artery disease. Med Sci Monit 23:6042–6048PubMedPubMedCentral Yin Q, Wu A, Liu M (2017) Plasma Long non-coding RNA (lncRNA) GAS5 is a new biomarker for coronary artery disease. Med Sci Monit 23:6042–6048PubMedPubMedCentral
187.
Zurück zum Zitat Kumarswamy R, Bauters C, Volkmann I et al (2014) Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ Res 114(10):1569–1575PubMed Kumarswamy R, Bauters C, Volkmann I et al (2014) Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ Res 114(10):1569–1575PubMed
188.
Zurück zum Zitat Gu M, Zheng A, Tu W et al (2016) Circulating LncRNAs as novel, non-invasive biomarkers for prenatal detection of fetal congenital heart defects. Cell Physiol Biochem 38(4):1459–1471PubMed Gu M, Zheng A, Tu W et al (2016) Circulating LncRNAs as novel, non-invasive biomarkers for prenatal detection of fetal congenital heart defects. Cell Physiol Biochem 38(4):1459–1471PubMed
189.
Zurück zum Zitat Schlosser K, Stewart DJ (2015) Limited potential of circulating long non-coding RNAs as biomarkers for pulmonary arterial hypertension. Can J Cardiol 31(10):S38–SS9 Schlosser K, Stewart DJ (2015) Limited potential of circulating long non-coding RNAs as biomarkers for pulmonary arterial hypertension. Can J Cardiol 31(10):S38–SS9
190.
Zurück zum Zitat Schlosser K, Hanson J, Villeneuve PJ et al (2016) Assessment of circulating lncRNAs under physiologic and pathologic conditions in humans reveals potential limitations as biomarkers. Sci Rep 6:36596PubMedPubMedCentral Schlosser K, Hanson J, Villeneuve PJ et al (2016) Assessment of circulating lncRNAs under physiologic and pathologic conditions in humans reveals potential limitations as biomarkers. Sci Rep 6:36596PubMedPubMedCentral
191.
Zurück zum Zitat Smaldone MC, Davies BJ (2010) BC-819, a plasmid comprising the H19 gene regulatory sequences and diphtheria toxin A, for the potential targeted therapy of cancers. Curr Opin Mol Ther 12(5):607–616PubMed Smaldone MC, Davies BJ (2010) BC-819, a plasmid comprising the H19 gene regulatory sequences and diphtheria toxin A, for the potential targeted therapy of cancers. Curr Opin Mol Ther 12(5):607–616PubMed
192.
Zurück zum Zitat Halachmi S, Leibovitch I, Zisman A et al (2018) Phase II trial of BC-819 intravesical gene therapy in combination with BCG in patients with non-muscle invasive bladder cancer (NMIBC). J Clin Oncol 36(6_suppl):499 Halachmi S, Leibovitch I, Zisman A et al (2018) Phase II trial of BC-819 intravesical gene therapy in combination with BCG in patients with non-muscle invasive bladder cancer (NMIBC). J Clin Oncol 36(6_suppl):499
193.
Zurück zum Zitat Viereck J, Kumarswamy R, Foinquinos A et al (2016) Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med 8(326):326ra22PubMed Viereck J, Kumarswamy R, Foinquinos A et al (2016) Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med 8(326):326ra22PubMed
194.
Zurück zum Zitat Lennox KA, Behlke MA (2016) Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Res 44(2):863–877PubMed Lennox KA, Behlke MA (2016) Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Res 44(2):863–877PubMed
195.
Zurück zum Zitat Johnsson P, Lipovich L, Grander D, Morris KV (2014) Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim Biophys Acta 1840(3):1063–1071PubMed Johnsson P, Lipovich L, Grander D, Morris KV (2014) Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim Biophys Acta 1840(3):1063–1071PubMed
196.
Zurück zum Zitat Amaral PP, Leonardi T, Han N et al (2018) Genomic positional conservation identifies topological anchor point RNAs linked to developmental loci. Genome Biol 19(1):32PubMedPubMedCentral Amaral PP, Leonardi T, Han N et al (2018) Genomic positional conservation identifies topological anchor point RNAs linked to developmental loci. Genome Biol 19(1):32PubMedPubMedCentral
197.
Zurück zum Zitat Kirk JM, Kim SO, Inoue K et al (2018) Functional classification of long non-coding RNAs by k-mer content. Nat Genet 50(10):1474–1482PubMedPubMedCentral Kirk JM, Kim SO, Inoue K et al (2018) Functional classification of long non-coding RNAs by k-mer content. Nat Genet 50(10):1474–1482PubMedPubMedCentral
Metadaten
Titel
Long noncoding RNAs: emerging roles in pulmonary hypertension
verfasst von
Qi Jin
Zhihui Zhao
Qing Zhao
Xue Yu
Lu Yan
Yi Zhang
Qin Luo
Zhihong Liu
Publikationsdatum
18.11.2019
Verlag
Springer US
Erschienen in
Heart Failure Reviews / Ausgabe 5/2020
Print ISSN: 1382-4147
Elektronische ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-019-09866-2

Weitere Artikel der Ausgabe 5/2020

Heart Failure Reviews 5/2020 Zur Ausgabe

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Vorhofflimmern bei Jüngeren gefährlicher als gedacht

06.05.2024 Vorhofflimmern Nachrichten

Immer mehr jüngere Menschen leiden unter Vorhofflimmern. Betroffene unter 65 Jahren haben viele Risikofaktoren und ein signifikant erhöhtes Sterberisiko verglichen mit Gleichaltrigen ohne die Erkrankung.

Chronisches Koronarsyndrom: Gefahr von Hospitalisierung wegen Herzinsuffizienz

06.05.2024 Herzinsuffizienz Nachrichten

Obwohl ein rezidivierender Herzinfarkt bei chronischem Koronarsyndrom wahrscheinlich die Hauptsorge sowohl der Patienten als auch der Ärzte ist, sind andere Ereignisse womöglich gefährlicher. Laut einer französischen Studie stellt eine Hospitalisation wegen Herzinsuffizienz eine größere Gefahr dar.

Das Risiko für Vorhofflimmern in der Bevölkerung steigt

02.05.2024 Vorhofflimmern Nachrichten

Das Risiko, im Lauf des Lebens an Vorhofflimmern zu erkranken, ist in den vergangenen 20 Jahren gestiegen: Laut dänischen Zahlen wird es drei von zehn Personen treffen. Das hat Folgen weit über die Schlaganfallgefährdung hinaus.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.