Skip to main content
Erschienen in: Clinical and Translational Oncology 8/2013

01.08.2013 | Educational Series - Red Series

Radiosensitization by gold nanoparticles

verfasst von: B. Jeremic, A. R. Aguerri, N. Filipovic

Erschienen in: Clinical and Translational Oncology | Ausgabe 8/2013

Einloggen, um Zugang zu erhalten

Abstract

Recent years brought increasing use of gold nano particles (GNP) as a model platform for interaction of irradiation and GNPs aiming radiosensitization. Endocytosis seems to be one of the major pathways for cellular uptake of GNPs. Internalization mechanism of GNPs is likely receptor-mediated endocytosis, influenced by GNP size, shape, its coating and surface charging. Many showed that DNA damage can occur as a consequence of metal-enhanced production of low energy electrons, Auger electrons and alike. Kilovoltage radiotherapy (RT) carries significantly higher dose enhancement factor (DEF) that is observed with megavoltage irradiations, the latter usually been at the order of 1.1–1.2. Higher gold concentrations seem to carry higher risk of toxicity, while with lower concentrations the DEF can be reduced. Adding a chemotherapeutic agent could increase level of enhancement. Clinical trials are eagerly awaited with a promise of gaining more knowledge deemed necessary for more successful transition to widespread clinical practice.
Literatur
1.
Zurück zum Zitat ASTM International, E-2456-06 (2006) Terminology for nanotechnology. ASTM International, West Conshohocken ASTM International, E-2456-06 (2006) Terminology for nanotechnology. ASTM International, West Conshohocken
2.
Zurück zum Zitat Turkevich J, Hiller J, Stevenson PC (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRef Turkevich J, Hiller J, Stevenson PC (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRef
3.
Zurück zum Zitat Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782PubMedCrossRef Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782PubMedCrossRef
4.
Zurück zum Zitat Shukla R, Bansal V, Chaudhary M et al (2005) Biocompatibility mod gold nanoparticles and their endocytic fate inside the cellular compartment: a microscopic overview. Langmuir 21:10644–10654PubMedCrossRef Shukla R, Bansal V, Chaudhary M et al (2005) Biocompatibility mod gold nanoparticles and their endocytic fate inside the cellular compartment: a microscopic overview. Langmuir 21:10644–10654PubMedCrossRef
5.
Zurück zum Zitat Hainfeld JF, Dilmanian FA, Slatkin DN et al (2008) Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol 60:977–985PubMedCrossRef Hainfeld JF, Dilmanian FA, Slatkin DN et al (2008) Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol 60:977–985PubMedCrossRef
6.
Zurück zum Zitat Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:N309–N315PubMedCrossRef Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:N309–N315PubMedCrossRef
7.
Zurück zum Zitat Kong T, Zeng J, Wang X et al (2008) Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles. Small 4:1537–1543PubMedCrossRef Kong T, Zeng J, Wang X et al (2008) Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles. Small 4:1537–1543PubMedCrossRef
8.
Zurück zum Zitat Rahman WN, Bishara N, Ackerly T et al (2009) Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomed Nanotechnol Biol Med 5:136–142CrossRef Rahman WN, Bishara N, Ackerly T et al (2009) Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomed Nanotechnol Biol Med 5:136–142CrossRef
9.
Zurück zum Zitat Butterworth KT, Coulter JA, Jain S et al (2010) Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy. Nanotechnology 21:295101 Butterworth KT, Coulter JA, Jain S et al (2010) Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy. Nanotechnology 21:295101
10.
Zurück zum Zitat Chithrani BD, Ghazani AA, Chen WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668PubMedCrossRef Chithrani BD, Ghazani AA, Chen WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668PubMedCrossRef
11.
Zurück zum Zitat Chithrani BD, Stewart J, Allen C et al (2009) Intracellular uptake, transport, and processing of nanostructures in cancer cells. Nanomedicine 5:118–127PubMedCrossRef Chithrani BD, Stewart J, Allen C et al (2009) Intracellular uptake, transport, and processing of nanostructures in cancer cells. Nanomedicine 5:118–127PubMedCrossRef
12.
Zurück zum Zitat Mukherjee S, Ghosh RN, Maxfield FR (1997) Endocytosis. Physiol Rev 77:759–803PubMed Mukherjee S, Ghosh RN, Maxfield FR (1997) Endocytosis. Physiol Rev 77:759–803PubMed
13.
Zurück zum Zitat Jin H, Heller DA, Strano MS et al (2009) Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano 3:149–158PubMedCrossRef Jin H, Heller DA, Strano MS et al (2009) Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano 3:149–158PubMedCrossRef
14.
Zurück zum Zitat Xu X-HN, Brownlow WJ, Kyriacou SV et al (2004) Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. Biochem 43:10400–10413CrossRef Xu X-HN, Brownlow WJ, Kyriacou SV et al (2004) Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. Biochem 43:10400–10413CrossRef
15.
Zurück zum Zitat Arnida, Malugin A, Ghandehari H (2009) Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J Appl Toxicol 30:212–217 Arnida, Malugin A, Ghandehari H (2009) Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J Appl Toxicol 30:212–217
16.
Zurück zum Zitat Cartiera MS, Johnson KM, Rajendran V et al (2009) The uptake and intracellular fate of PLGA nanoparticles in epithelial cells. Biomaterials 30:2790–2798PubMedCrossRef Cartiera MS, Johnson KM, Rajendran V et al (2009) The uptake and intracellular fate of PLGA nanoparticles in epithelial cells. Biomaterials 30:2790–2798PubMedCrossRef
17.
Zurück zum Zitat Aoyama Y, Kanamori T, Nakai T et al (2003) Artificial viruses and their application to gene delivery. Size-controlled gene coating with glycocluster nanoparticles. J Am Chem Soc 125:3455–3457PubMedCrossRef Aoyama Y, Kanamori T, Nakai T et al (2003) Artificial viruses and their application to gene delivery. Size-controlled gene coating with glycocluster nanoparticles. J Am Chem Soc 125:3455–3457PubMedCrossRef
18.
Zurück zum Zitat Nakai T, Kanemori T, Sando S et al (2003) Remarkably size-regulated cell invasions by artificial viruses. Saccharide-dependent self-aggregation of glycoviruses and its consequences in glycoviral gene delivery. J Am Chem Soc 125:8465–8475PubMedCrossRef Nakai T, Kanemori T, Sando S et al (2003) Remarkably size-regulated cell invasions by artificial viruses. Saccharide-dependent self-aggregation of glycoviruses and its consequences in glycoviral gene delivery. J Am Chem Soc 125:8465–8475PubMedCrossRef
19.
Zurück zum Zitat Osaki F, Kanemori T, Sando S et al (2004) A quantum dot conjugated sugar ball and its cellular uptake on the size effects of endocytosis in the subviral region. J Am Chem Soc 126:6520–6521PubMedCrossRef Osaki F, Kanemori T, Sando S et al (2004) A quantum dot conjugated sugar ball and its cellular uptake on the size effects of endocytosis in the subviral region. J Am Chem Soc 126:6520–6521PubMedCrossRef
20.
Zurück zum Zitat Gao H, Shi W, Freund LB (2005) Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA 102:9469–9474PubMedCrossRef Gao H, Shi W, Freund LB (2005) Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA 102:9469–9474PubMedCrossRef
21.
Zurück zum Zitat Shi W, Wang J, Fan X, Gao H (2008) Size and shape effects on diffusion and absorption of colloidal particles near a partially absorbing sphere: implications for uptake of nanoparticles in animal cells. Phy Rev E 78:061914–061925CrossRef Shi W, Wang J, Fan X, Gao H (2008) Size and shape effects on diffusion and absorption of colloidal particles near a partially absorbing sphere: implications for uptake of nanoparticles in animal cells. Phy Rev E 78:061914–061925CrossRef
22.
Zurück zum Zitat Chithrani DB (2010) Intracellular uptake, transport, and processing of gold nanostructures. Mol Membr Biol 27:299–311PubMedCrossRef Chithrani DB (2010) Intracellular uptake, transport, and processing of gold nanostructures. Mol Membr Biol 27:299–311PubMedCrossRef
23.
Zurück zum Zitat Cho EC, Xie J, Wurm PA et al (2009) Understanding the role of surface charge sin cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett 9:1080–1084PubMedCrossRef Cho EC, Xie J, Wurm PA et al (2009) Understanding the role of surface charge sin cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett 9:1080–1084PubMedCrossRef
24.
Zurück zum Zitat Vertegel AS, Siegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20:6800–6807PubMedCrossRef Vertegel AS, Siegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20:6800–6807PubMedCrossRef
25.
Zurück zum Zitat Aubin-Tam M-E, Hamad-Schifferli K (2005) Gold nanoparticle—cytochrome c complexes: the effect of nanoparticle ligand charge on protein structure. Langmuir 21:12080–12084PubMedCrossRef Aubin-Tam M-E, Hamad-Schifferli K (2005) Gold nanoparticle—cytochrome c complexes: the effect of nanoparticle ligand charge on protein structure. Langmuir 21:12080–12084PubMedCrossRef
26.
Zurück zum Zitat Yang Z, Leon J, Martin M et al (2009) Pharmacokinetics and biodistribution of near-infrared fluorescence polymeric nanoparticles. Nanotechnology 20:165101PubMedCrossRef Yang Z, Leon J, Martin M et al (2009) Pharmacokinetics and biodistribution of near-infrared fluorescence polymeric nanoparticles. Nanotechnology 20:165101PubMedCrossRef
27.
Zurück zum Zitat Ishida O, Maruyama K, Sasaki K et al (1999) Size-dependent extravasation and interstitial localization of polyethyleneglycol liposomes in solid tumor-bearing mice. Int J Pharm 190:49–56PubMedCrossRef Ishida O, Maruyama K, Sasaki K et al (1999) Size-dependent extravasation and interstitial localization of polyethyleneglycol liposomes in solid tumor-bearing mice. Int J Pharm 190:49–56PubMedCrossRef
28.
Zurück zum Zitat Perrault SD, Walkey C, Jennings T et al (2009) Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 9:1909–1915PubMedCrossRef Perrault SD, Walkey C, Jennings T et al (2009) Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 9:1909–1915PubMedCrossRef
29.
Zurück zum Zitat Chen J, Irudayaraj J (2009) Quantitative investigation of compartmentalized dynamics of erbB2 targeting gold nanorods in live cells by single molecule spectroscopy. ACS Nano 3:4071–4079PubMedCrossRef Chen J, Irudayaraj J (2009) Quantitative investigation of compartmentalized dynamics of erbB2 targeting gold nanorods in live cells by single molecule spectroscopy. ACS Nano 3:4071–4079PubMedCrossRef
30.
Zurück zum Zitat Lukacs GL, Haggie P, Seksek O et al (2000) Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 275:1625–1629PubMedCrossRef Lukacs GL, Haggie P, Seksek O et al (2000) Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 275:1625–1629PubMedCrossRef
31.
Zurück zum Zitat Goldstein JL, Anderson RGW, Brown MS (1979) Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 279:679–685PubMedCrossRef Goldstein JL, Anderson RGW, Brown MS (1979) Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 279:679–685PubMedCrossRef
32.
Zurück zum Zitat See L, Free P, Cesbron Y et al (2009) Cathepsin L digestion of nanobioconjugates upon endocytosis. ACS Nano 3:2461–2468PubMedCrossRef See L, Free P, Cesbron Y et al (2009) Cathepsin L digestion of nanobioconjugates upon endocytosis. ACS Nano 3:2461–2468PubMedCrossRef
33.
Zurück zum Zitat Taylor U, Klein S, Petersen S et al (2010) Nonendosomal cellular uptake of ligand-free, positively charged nanoparticles. Cytometry A 77A:439–446 Taylor U, Klein S, Petersen S et al (2010) Nonendosomal cellular uptake of ligand-free, positively charged nanoparticles. Cytometry A 77A:439–446
34.
Zurück zum Zitat Panyam J, Zhou WZ, Prabhs S et al (2002) Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J 16:1217–1226PubMedCrossRef Panyam J, Zhou WZ, Prabhs S et al (2002) Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J 16:1217–1226PubMedCrossRef
35.
Zurück zum Zitat Chithrani BD, Chan WCW (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7:1542–1550PubMedCrossRef Chithrani BD, Chan WCW (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7:1542–1550PubMedCrossRef
36.
Zurück zum Zitat Nativo P, Prior IA, Brust M (2008) Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano 2:1639–1644PubMedCrossRef Nativo P, Prior IA, Brust M (2008) Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano 2:1639–1644PubMedCrossRef
37.
Zurück zum Zitat Tkachenko AG, Xie H, Coleman D et al (2003) Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J Am Chem Soc 125:4700–4701PubMedCrossRef Tkachenko AG, Xie H, Coleman D et al (2003) Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J Am Chem Soc 125:4700–4701PubMedCrossRef
38.
Zurück zum Zitat Tkachenko A, Xie H, Liu Y et al (2004) Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjugate Chem 15:482–490CrossRef Tkachenko A, Xie H, Liu Y et al (2004) Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjugate Chem 15:482–490CrossRef
39.
Zurück zum Zitat Connor EE, Mwamuka J, Gole A et al (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327PubMedCrossRef Connor EE, Mwamuka J, Gole A et al (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327PubMedCrossRef
40.
Zurück zum Zitat Rayavarapu RJ, Petersen W, Ungureanu C et al (2007) Synthesis and bioconjugation of gold nanoparticles as potential probes for light-based imaging techniques. In J Biomed Imag 2007:1–10CrossRef Rayavarapu RJ, Petersen W, Ungureanu C et al (2007) Synthesis and bioconjugation of gold nanoparticles as potential probes for light-based imaging techniques. In J Biomed Imag 2007:1–10CrossRef
41.
Zurück zum Zitat Berry CC, de la Fuente JM, Mullin M et al (2007) Nuclear localization of HIV-1 tat functionalized gold nanoparticles. IEEE Trans Nano Biosci 6:262–269CrossRef Berry CC, de la Fuente JM, Mullin M et al (2007) Nuclear localization of HIV-1 tat functionalized gold nanoparticles. IEEE Trans Nano Biosci 6:262–269CrossRef
42.
Zurück zum Zitat Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207PubMedCrossRef Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207PubMedCrossRef
43.
Zurück zum Zitat Maki S, Konno T, Maeda H (1985) Image enhancement in computerised tomography for sensitive diagnosis of liver cancer and semiquantitation of tumor selective drug targeting with oily contrast medium. Cancer 56:751–757PubMedCrossRef Maki S, Konno T, Maeda H (1985) Image enhancement in computerised tomography for sensitive diagnosis of liver cancer and semiquantitation of tumor selective drug targeting with oily contrast medium. Cancer 56:751–757PubMedCrossRef
44.
Zurück zum Zitat Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Res 63:136–151CrossRef Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Res 63:136–151CrossRef
45.
Zurück zum Zitat Kaul G, Amiji M (2002) Long-circulating poly(ethylene glycol)-modified gelating nanoparticles for intracellular delivery. Pharm Res 19:1061–1067PubMedCrossRef Kaul G, Amiji M (2002) Long-circulating poly(ethylene glycol)-modified gelating nanoparticles for intracellular delivery. Pharm Res 19:1061–1067PubMedCrossRef
46.
Zurück zum Zitat Cho SH (2005) Estimation of tumor dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study. Phys Med Biol 50:N163–N173PubMedCrossRef Cho SH (2005) Estimation of tumor dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study. Phys Med Biol 50:N163–N173PubMedCrossRef
47.
Zurück zum Zitat Roeske JC, Nunez L, Hoggarth M et al (2007) Characterization of the theoretical dose enhancement from nanoparticles. Technol Cancer Res Treat 6:395–401PubMed Roeske JC, Nunez L, Hoggarth M et al (2007) Characterization of the theoretical dose enhancement from nanoparticles. Technol Cancer Res Treat 6:395–401PubMed
48.
Zurück zum Zitat McMahon SJ, Mendenhall MH, Jain S et al (2008) Radiotherapy in the presence of contrast agents: a general figure of merit and its application to gold nanoparticles. Phys Med Biol 53:5635–5651PubMedCrossRef McMahon SJ, Mendenhall MH, Jain S et al (2008) Radiotherapy in the presence of contrast agents: a general figure of merit and its application to gold nanoparticles. Phys Med Biol 53:5635–5651PubMedCrossRef
49.
Zurück zum Zitat Cho SH, Jones BL, Krishnan S (2009) The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/X-ray sources. Phys Med Biol 54:4889–4905PubMedCrossRef Cho SH, Jones BL, Krishnan S (2009) The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/X-ray sources. Phys Med Biol 54:4889–4905PubMedCrossRef
50.
Zurück zum Zitat Carter JD, Cheng NN, Qu Y et al (2007) Nanoscale energy deposition by X-ray absorbing nanostructures. J Phys Chem 111:11622–11625 Carter JD, Cheng NN, Qu Y et al (2007) Nanoscale energy deposition by X-ray absorbing nanostructures. J Phys Chem 111:11622–11625
51.
Zurück zum Zitat Boudaiffa B, Cloutier P, Hunting DJ et al (2000) Resonant formation of DNA strand breaks by low-energy (3–20 eV) electrons. [Report]. Science 287:1658–1660PubMedCrossRef Boudaiffa B, Cloutier P, Hunting DJ et al (2000) Resonant formation of DNA strand breaks by low-energy (3–20 eV) electrons. [Report]. Science 287:1658–1660PubMedCrossRef
52.
Zurück zum Zitat Roa W, Zhang X, Guo L et al (2009) Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of cell cycle. Nanotechnology 20:375101PubMedCrossRef Roa W, Zhang X, Guo L et al (2009) Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of cell cycle. Nanotechnology 20:375101PubMedCrossRef
53.
Zurück zum Zitat Chang M, Shiau A, Chen Y et al (2008) Increased apoptotic potential and dose-enhancing effects of gold nanoparticles in combination with single-dose clinical electron beams on tumor bearing mice. Cancer Sci 99:1479–1484PubMedCrossRef Chang M, Shiau A, Chen Y et al (2008) Increased apoptotic potential and dose-enhancing effects of gold nanoparticles in combination with single-dose clinical electron beams on tumor bearing mice. Cancer Sci 99:1479–1484PubMedCrossRef
54.
Zurück zum Zitat Chithrani DB, Jelveh S, Jalali F et al (2010) Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res 173:719–728PubMedCrossRef Chithrani DB, Jelveh S, Jalali F et al (2010) Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res 173:719–728PubMedCrossRef
55.
Zurück zum Zitat Liu C-J, Wang C-H, Chien C–C et al (2008) Enhanced X-irradiation-induced cancer cell damage by gold nanoparticles treated by anew synthesis method of polyethylene glycol modification. Nanotechnology 19:295104–295109PubMedCrossRef Liu C-J, Wang C-H, Chien C–C et al (2008) Enhanced X-irradiation-induced cancer cell damage by gold nanoparticles treated by anew synthesis method of polyethylene glycol modification. Nanotechnology 19:295104–295109PubMedCrossRef
56.
Zurück zum Zitat Hainfeld JF, Dilmanian FA, Zhong Z et al (2010) Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys Med Biol 55:3045–3059PubMedCrossRef Hainfeld JF, Dilmanian FA, Zhong Z et al (2010) Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys Med Biol 55:3045–3059PubMedCrossRef
57.
Zurück zum Zitat Kirschenbaum J, Riesz P (2009) Enhancement of 5-aminolevulinic acid-induced oxidative stress on two cancer cell lines by gold nanoparticles. Free Radic Res 43:1214–1224PubMedCrossRef Kirschenbaum J, Riesz P (2009) Enhancement of 5-aminolevulinic acid-induced oxidative stress on two cancer cell lines by gold nanoparticles. Free Radic Res 43:1214–1224PubMedCrossRef
58.
Zurück zum Zitat Kassis AI (2004) The amazing world of Auger electrons. Int J Radiat Biol 11–12:789–803CrossRef Kassis AI (2004) The amazing world of Auger electrons. Int J Radiat Biol 11–12:789–803CrossRef
59.
Zurück zum Zitat Sanche L (2005) Low-energy electron-driven damage in biomolecules. Eur Phys J D 35:367–390CrossRef Sanche L (2005) Low-energy electron-driven damage in biomolecules. Eur Phys J D 35:367–390CrossRef
60.
Zurück zum Zitat Hall EJ, Giaccia AJ (2006) Radiobiology for the radiologist, 6th edn. Lippincott Williams & Wilkins, Philadelphia Hall EJ, Giaccia AJ (2006) Radiobiology for the radiologist, 6th edn. Lippincott Williams & Wilkins, Philadelphia
61.
Zurück zum Zitat Leung MKK, Chow JCL, Chithrani BD et al (2011) Irradiation of gold nanoparticles by X-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electron production. Med Phys 38:624–631PubMedCrossRef Leung MKK, Chow JCL, Chithrani BD et al (2011) Irradiation of gold nanoparticles by X-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electron production. Med Phys 38:624–631PubMedCrossRef
62.
Zurück zum Zitat Jain S, Coulter JA, Hounsell AR et al (2011) Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int J Radiat Oncol Biol Phys 79:531–539PubMedCrossRef Jain S, Coulter JA, Hounsell AR et al (2011) Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int J Radiat Oncol Biol Phys 79:531–539PubMedCrossRef
63.
Zurück zum Zitat Patra HK, Banerjee S, Chaudhuri U et al (2007) Cell selective response to gold nanoparticles. Nanomedicine 3:111–119PubMedCrossRef Patra HK, Banerjee S, Chaudhuri U et al (2007) Cell selective response to gold nanoparticles. Nanomedicine 3:111–119PubMedCrossRef
64.
Zurück zum Zitat Cho WS, Cho M, Jeong J et al (2009) Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol Appl Pharmacol 236:16–24PubMedCrossRef Cho WS, Cho M, Jeong J et al (2009) Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol Appl Pharmacol 236:16–24PubMedCrossRef
65.
Zurück zum Zitat McMahon SJ, Hyland WB, Muir MF et al (2011) Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci Rep 1:18PubMedCrossRef McMahon SJ, Hyland WB, Muir MF et al (2011) Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci Rep 1:18PubMedCrossRef
66.
Zurück zum Zitat Lechtman E, Chattopadhyay N, Cai Z et al (2011) Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location. Phys Med Biol 56:4631–4647PubMedCrossRef Lechtman E, Chattopadhyay N, Cai Z et al (2011) Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location. Phys Med Biol 56:4631–4647PubMedCrossRef
67.
Zurück zum Zitat Brun E, Sanche L, Sicard-Roselli C (2009) Parameters governing gold nanoparticles X-ray sensitization of DNA in solution. Colloids Surf B 72:128–134CrossRef Brun E, Sanche L, Sicard-Roselli C (2009) Parameters governing gold nanoparticles X-ray sensitization of DNA in solution. Colloids Surf B 72:128–134CrossRef
68.
Zurück zum Zitat Rahman WN, Wong CJ, Ackerly T et al (2012) Polymer gels impregnated with gold nanoparticles implemented for measurements of radiation dose enhancement in synchrotron and conventional radiotherapy type beams. Australas Phys Eng Sci Med 35:301–309PubMedCrossRef Rahman WN, Wong CJ, Ackerly T et al (2012) Polymer gels impregnated with gold nanoparticles implemented for measurements of radiation dose enhancement in synchrotron and conventional radiotherapy type beams. Australas Phys Eng Sci Med 35:301–309PubMedCrossRef
69.
Zurück zum Zitat Zhang C, Huang P, Bao L et al (2011) Enhancement of gastric cell radiation sensitivity by chitosan-modified gold nanoparticles. J Nanosci Nanotechnol 11:9528–9535PubMedCrossRef Zhang C, Huang P, Bao L et al (2011) Enhancement of gastric cell radiation sensitivity by chitosan-modified gold nanoparticles. J Nanosci Nanotechnol 11:9528–9535PubMedCrossRef
70.
Zurück zum Zitat Berbeco RI, Ngwa W, Makrigiorgios GM (2011) Localized dose enhancement to tumor blood vessel endothelial cells via megavoltage X-rays and targeted nanoparticles: new potential for external beam radiotherapy. Int J Radiat Oncol Biol Phys 81:270–276PubMedCrossRef Berbeco RI, Ngwa W, Makrigiorgios GM (2011) Localized dose enhancement to tumor blood vessel endothelial cells via megavoltage X-rays and targeted nanoparticles: new potential for external beam radiotherapy. Int J Radiat Oncol Biol Phys 81:270–276PubMedCrossRef
71.
Zurück zum Zitat Pan Y, Neuss S, Leifert A et al (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3:1941–1949PubMedCrossRef Pan Y, Neuss S, Leifert A et al (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3:1941–1949PubMedCrossRef
72.
73.
Zurück zum Zitat Herold DM, Das IJ, Stobe CC et al (2000) Gold microspheres: a selective technique for producing biologically effective dose enhancement. Int J Radiat Biol 76:1357–1364PubMedCrossRef Herold DM, Das IJ, Stobe CC et al (2000) Gold microspheres: a selective technique for producing biologically effective dose enhancement. Int J Radiat Biol 76:1357–1364PubMedCrossRef
74.
Zurück zum Zitat Hainfeld JF, Foley CF, Shrivastava SC et al (1990) Radioactive gold cluster immunoconjugates: potential agents for cancer therapy. Nucl Med Biol 17:287–294 Hainfeld JF, Foley CF, Shrivastava SC et al (1990) Radioactive gold cluster immunoconjugates: potential agents for cancer therapy. Nucl Med Biol 17:287–294
75.
Zurück zum Zitat Niidome T, Nakashima H, Takahashi Y et al (2004) Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cells. Chem Commun 17:1978–1979CrossRef Niidome T, Nakashima H, Takahashi Y et al (2004) Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cells. Chem Commun 17:1978–1979CrossRef
76.
Zurück zum Zitat Dvorak HF, Nagy JA, Dvorak JT et al (1988) Identification and characterisation of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 133:95–109PubMed Dvorak HF, Nagy JA, Dvorak JT et al (1988) Identification and characterisation of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 133:95–109PubMed
77.
Zurück zum Zitat Gratton SEA, Ropp PA, Polhaus PD et al (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci 105:11613–11618PubMedCrossRef Gratton SEA, Ropp PA, Polhaus PD et al (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci 105:11613–11618PubMedCrossRef
78.
Zurück zum Zitat Champion JA, Mitragotri S (2009) Shape induced inhibition of phagocytosis of polymer particles. Pharm Res 26:244–249PubMedCrossRef Champion JA, Mitragotri S (2009) Shape induced inhibition of phagocytosis of polymer particles. Pharm Res 26:244–249PubMedCrossRef
79.
Zurück zum Zitat Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:662–667CrossRef Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:662–667CrossRef
80.
Zurück zum Zitat Cho EC, Au L, Zhang Q et al (2009) The effects of size, shape, and surface functional group of gold nanoparticles on their adsorption and internalization by cells. Small 6:517–522CrossRef Cho EC, Au L, Zhang Q et al (2009) The effects of size, shape, and surface functional group of gold nanoparticles on their adsorption and internalization by cells. Small 6:517–522CrossRef
81.
Zurück zum Zitat Sayes CM, Reed KL, Warheit DB (2007) Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 97:163–180PubMedCrossRef Sayes CM, Reed KL, Warheit DB (2007) Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 97:163–180PubMedCrossRef
82.
Zurück zum Zitat Goodman CM, McCucker CD, Yilmaz T et al (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900PubMedCrossRef Goodman CM, McCucker CD, Yilmaz T et al (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900PubMedCrossRef
83.
Zurück zum Zitat Pernodet N, Fang X, Sun Y et al (2006) Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small 2:766–773PubMedCrossRef Pernodet N, Fang X, Sun Y et al (2006) Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small 2:766–773PubMedCrossRef
84.
Zurück zum Zitat Murphy CJ, Gole AM, Stone JW et al (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730PubMedCrossRef Murphy CJ, Gole AM, Stone JW et al (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730PubMedCrossRef
85.
Zurück zum Zitat Male KB, Lachance B, Hrapovic S et al (2008) Assessment of cytotoxicity of quantum dots and gold nanoparticles using cell-based impedance spectroscopy. Anal Chem 80:5487–5493PubMedCrossRef Male KB, Lachance B, Hrapovic S et al (2008) Assessment of cytotoxicity of quantum dots and gold nanoparticles using cell-based impedance spectroscopy. Anal Chem 80:5487–5493PubMedCrossRef
86.
Zurück zum Zitat Zhang X-D, Wu HY, Wu D et al (2010) Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int J Nanomed 5:771–781CrossRef Zhang X-D, Wu HY, Wu D et al (2010) Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int J Nanomed 5:771–781CrossRef
87.
Zurück zum Zitat de Jong WH, Hagens WI, Krystek P et al (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29:1912–1919PubMedCrossRef de Jong WH, Hagens WI, Krystek P et al (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29:1912–1919PubMedCrossRef
88.
Zurück zum Zitat Sonavane G, Tomoda K, Makino K (2008) Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B Biointerfaces 66:274–280PubMedCrossRef Sonavane G, Tomoda K, Makino K (2008) Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B Biointerfaces 66:274–280PubMedCrossRef
89.
Zurück zum Zitat Chen YS, Hung YC, Liau I et al (2009) Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett 4:858–864PubMedCrossRef Chen YS, Hung YC, Liau I et al (2009) Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett 4:858–864PubMedCrossRef
90.
Zurück zum Zitat Cho WS, Kim S, Han BS et al (2009) Comparison of gene expression profiles in mice liver following intravenous injection of 4 and 100 nm-sized PEG-coated gold nanoparticles. Toxicol Lett 191:96–102PubMedCrossRef Cho WS, Kim S, Han BS et al (2009) Comparison of gene expression profiles in mice liver following intravenous injection of 4 and 100 nm-sized PEG-coated gold nanoparticles. Toxicol Lett 191:96–102PubMedCrossRef
91.
Zurück zum Zitat Semmler-Behnke M, Kreyling WG, Lipka J et al (2008) Biodistribution of 1.4- and 18-nm gold particles in rats. Small 4:2108–2111PubMedCrossRef Semmler-Behnke M, Kreyling WG, Lipka J et al (2008) Biodistribution of 1.4- and 18-nm gold particles in rats. Small 4:2108–2111PubMedCrossRef
92.
Zurück zum Zitat Lipka J, Semmler-Behnke M, Sperling RA et al (2010) Biodistribution of PED-modified gold nanoparticles following intrathecal instillation and intravenous injection. Biomaterials 31:6574–6581PubMedCrossRef Lipka J, Semmler-Behnke M, Sperling RA et al (2010) Biodistribution of PED-modified gold nanoparticles following intrathecal instillation and intravenous injection. Biomaterials 31:6574–6581PubMedCrossRef
93.
Zurück zum Zitat Cho WS, Cho M, Jeong J et al (2010) Size-dependent tissue-kinetics of PEG-coated gold nanoparticles. Toxicol Appl Pharmacol 245:116–123PubMedCrossRef Cho WS, Cho M, Jeong J et al (2010) Size-dependent tissue-kinetics of PEG-coated gold nanoparticles. Toxicol Appl Pharmacol 245:116–123PubMedCrossRef
94.
Zurück zum Zitat Balasubramaniam SK, Jittiwat J, Manikandan J et al (2010) Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials 31:2034–2042CrossRef Balasubramaniam SK, Jittiwat J, Manikandan J et al (2010) Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials 31:2034–2042CrossRef
95.
Zurück zum Zitat Balogh L, Nigavekar SS, Nair BM et al (2007) Significant effect of size on the in vivo biodistribution of gold composite nanodevices in mouse tumor models. Nanomedicine 3:281–296PubMedCrossRef Balogh L, Nigavekar SS, Nair BM et al (2007) Significant effect of size on the in vivo biodistribution of gold composite nanodevices in mouse tumor models. Nanomedicine 3:281–296PubMedCrossRef
96.
Zurück zum Zitat Zhang X-D, Wu D, Shen X et al (2012) Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials 33:6408–6419PubMedCrossRef Zhang X-D, Wu D, Shen X et al (2012) Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials 33:6408–6419PubMedCrossRef
97.
Zurück zum Zitat Zhang X-D, Wu D, Shen X et al (2011) Size-dependent toxicity of PEG-coated gold nanoparticles. Int J Nanomed 6:2071–2081CrossRef Zhang X-D, Wu D, Shen X et al (2011) Size-dependent toxicity of PEG-coated gold nanoparticles. Int J Nanomed 6:2071–2081CrossRef
98.
Zurück zum Zitat Zhang X-D, Wu D, Shen X et al (2012) In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials 33:4628–4638PubMedCrossRef Zhang X-D, Wu D, Shen X et al (2012) In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials 33:4628–4638PubMedCrossRef
99.
Zurück zum Zitat Zheng Y, Hunting D, Ayotte P et al (2008) Role of secondary low energy electrons in the concomitant chemoradiation therapy of cancer. Phys Rev Lett 100:198101–198104PubMedCrossRef Zheng Y, Hunting D, Ayotte P et al (2008) Role of secondary low energy electrons in the concomitant chemoradiation therapy of cancer. Phys Rev Lett 100:198101–198104PubMedCrossRef
100.
Zurück zum Zitat Pimblott SM, LaVerne JA (2007) Production of low energy electrons by ionizing irradiation. Radiat Phys Chem 76:1244–1249CrossRef Pimblott SM, LaVerne JA (2007) Production of low energy electrons by ionizing irradiation. Radiat Phys Chem 76:1244–1249CrossRef
101.
Zurück zum Zitat Zheng L, Sanche L (2009) Gold nanoparticles enhance DNA damage induced by anti-cancer drugs and irradiation. Radiat Res 172:114–119PubMedCrossRef Zheng L, Sanche L (2009) Gold nanoparticles enhance DNA damage induced by anti-cancer drugs and irradiation. Radiat Res 172:114–119PubMedCrossRef
Metadaten
Titel
Radiosensitization by gold nanoparticles
verfasst von
B. Jeremic
A. R. Aguerri
N. Filipovic
Publikationsdatum
01.08.2013
Verlag
Springer Milan
Erschienen in
Clinical and Translational Oncology / Ausgabe 8/2013
Print ISSN: 1699-048X
Elektronische ISSN: 1699-3055
DOI
https://doi.org/10.1007/s12094-013-1003-7

Weitere Artikel der Ausgabe 8/2013

Clinical and Translational Oncology 8/2013 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.