Skip to main content
Erschienen in: BMC Ophthalmology 1/2020

Open Access 01.12.2020 | Research article

Rapamycin prevents retinal neovascularization by downregulation of cyclin D1 in a mouse model of oxygen-induced retinopathy

verfasst von: Feng Jiang, Ying Wang, Shufang Du, Heng Jin, Jindong Han

Erschienen in: BMC Ophthalmology | Ausgabe 1/2020

Abstract

Background

Rapamycin (RAPA) is a potent angiogenic inhibitor and the aim of this study is to identify the inhibitory effect of RAPA on retinal neovascularization (RNV) in experimental oxygen-induced retinopathy (OIR).

Methods

Forty-two 7-day-old C57BL/6 J mice were randomly divided into normoxia control group (14 mice), OIR group (14 mice), and rapamycin (RAPA) group. OIR model was induced in OIR and RAPA group. Vehicle and RAPA (2 mg/kg/d) was injected intraperitoneally daily from postnatal day 12 (P12) in OIR and RAPA groups, respectively. RNV was evaluated using fluorescence angiography and histopathology on P17. Non-perfused areas of retina were analyzed by Image-Pro plus 6.0 software. Retinal expression of cyclin D1 was detected both at mRNA and protein levels.

Results

RAPA treatment significantly decreased RNV, non-perfused areas and number of endothelial cell nuclei breaking through the internal limiting membrane (ILM) in OIR mice. Moreover, RAPA decreased activation of cyclin D1 in retina caused by OIR.

Conclusion

RAPA can inhibit RNV by downregulating the expression of cyclin D1, which indicates its therapeutic potential in treating RNV-related diseases.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AMD
Age-related macular degeneration
ARVO
Association for Research in Vision and Ophthalmology
BRVO
Branch retinal vein occlusion
CDKs
Cyclin-dependent kinases
CON
Control group
CRVO
Central retinal vein occlusion
DR
Diabetic retinopathy
DTT
Dithiothreitol
ECs
Endothelial cells
FITC
Fluorescein isothiocyanate
G1
Gap 1
G2
Gap 2
ILM
Internal limiting membrane
M
Mitosis
mTOR
mammalian target of rapamycin
OIR
Oxygen-induced retinopathy
P12
Postnatal day 12
PMSF
Phenylmethylsulfonyl fluoride
PVDF
Polyvinylidene fluoride
RAPA
Rapamycin
Rb
Retinoblastoma protein
RNV
Retinal neovascularization
ROP
Retinopathy of prematurity

Background

Retinal neovascularization (RNV) is one of the leading causes of blindness in a wide range of ocular diseases, such as diabetic retinopathy (DR), age-related macular degeneration (AMD), central and branch retinal vein occlusion (CRVO and BRVO), retinopathy of prematurity (ROP) and so on [1]. Angiogenesis, the process responsible for RNV, brings about cellular and morphological changes, including endothelial cells (ECs) activation [2].
Mammalian target of rapamycin (mTOR) protein plays key roles in the activation of quiescent ECs [3], and mTOR inhibitors induce G1 cell cycle arrest [4], resulting in inhibition of ECs proliferation, migration and tube formation [5, 6]. Our previous study showed that mTOR inhibitor, rapamycin (RAPA), could inhibit the proliferation of Rhesus retinal vascular endothelial cells by downregulating cyclin D1 in vitro [7].
In the current study, our intent was to demonstrate that RAPA prevents RNV in an oxygen-induced retinopathy (OIR) model.

Methods

Animals

The experimental procedures performed on mice were approved by Tianjin Medical University, Laboratory Animal Care and Use Committee; and the study protocol followed the Association for Research in Vision and Ophthalmology (ARVO) for the Use of Ophthalmic Animals. Forty-two 7-day-old C57BL/6 J mice (Academy of Military Medical Science, Beijing, China) were randomly divided into normoxia control group (CON) (14 mice), OIR group (14 mice), and RAPA group (14 mice). OIR model was induced in OIR and RAPA groups according to method described by Smith et al. [8]. Briefly, 7-day-old C57BL/6 mice were exposed to 75% oxygen for 5 days, then abruptly returned to room air. Mice in RAPA group were treated with RAPA (dissolved in 2% carboxymethylcellulose, 2 mg/kg/d) by intraperitoneal injection every day from postnatal day 12(P12) to P17. And mice in OIR group were treated with the same volume of the vehicle (carboxymethylcellulose). Mice were fed commercial mouse food and were allowed access to water freely in a room with a 12 h light/12 h dark cycle. The experiments were performed on P17.

Retinal flat mounts

Retinal flat mounts were used to show the non-perfused areas and neovascularization in retina. Four animals from each of the three groups were anesthetized with pentobarbital sodium (50 mg/Kg) by intraperitoneal injection. Mice were perfused with fluorescein isothiocyanate (FITC)-dextran (Sigma, St. Louis, MO, USA) through left ventricle. Then eyes were enucleated after euthanasia (intraperitoneal injection with pentobarbital sodium, 800 mg/Kg) and fixed in 4% paraformaldehyde at 4 °C for 12 h. Retinas were isolated, flat-mounted on glycerol/gelatin-coated glass slides, and viewed by fluorescent microscope (Zeiss, Oberkochen, Germany), and photographed. Areas of retinal nonperfusion were quantified by Image-Pro plus 6.0 analysis software for statistical analysis.

Histopathology

The severity of RNV was quantified by counting the number of vascular cell nuclei broke through the internal limiting membrane (ILM) into the vitreous. For the orientation, two eyes (one eye of each animal) were selected from each group then enucleated and placed in 4% paraformaldehyde at 4 °C for 24 h, after that they were embedded in paraffin. Serial 5-μm sections (each separated by at least 30 μm) through the cornea and parallel to the optic nerve were prepared, stained with hematoxylin and eosin (H&E), and viewed by light microscopy (OLYMPUS Optical Co., Ltd., Japan), for the assessment of the retinal vasculature.

Quantitative real-time PCR (qRT-PCR)

Using Trizol reagent (Invitrogen, Carlsbad, CA), total retinal RNA was isolated (four eyes from four mice from each group) according to the manufacturer’s instructions. Then RNA was reverse transcribed with reverse transcriptase (Promega, Madison, WI, USA) to generate cDNA, and the relative amounts of cyclin D1 transcript were determined by real-time quantitative PCR (qRT-PCR). The primers used were: 5′-TGC CAT CCA TGC GGA AAA TCG T-3′ and 5′-GCT CCT CGA CGA CGT TTA CCT T-3′ for Cyclin D1, and 5′-ATG GAT GAC GAT ATC GCT GCG C-3′ and 5′-TAC CTA CTG CTA TAG CGA CGC G-3′ for β-actin. The conditions of PCR were 94 °C for 30 min followed by 40 cycles at 95 °C for 20 s, 57 °C for 20 s, and 72 °C for 20 s. Measurements were performed three times independently.

Western blot

Western blot was performed using the documented standard methods as we have done before [9]. Retinas (four eyes from four mice from each group) were dissected, immersed and homogenized in 0.1% triton X-100 extraction buffer (Solarbio, Beijing, China) containing phenylmethylsulfonyl fluoride (PMSF) and dithiothreitol (DTT), then the lysates were centrifuged to remove insoluble material, after which total retinal protein was extracted. Protein concentration was measured by a protein assay (Bradford Protein Assay; Bio-Rad, Hercules, CA, USA), and adjusted to allow equal total protein loading on the gels. Proteins were transfer to polyvinylidene fluoride (PVDF) membranes (Millipore, Billerica, MA, USA) using standard electroblotting procedures. Then membranes were blocked with 5% skim milk and then incubated with cyclin D1(1:500 in 5% BSA) (AC853, Beyotime Biotechnology, Jiangsu, China), or β-actin (1:5000 in 5% BSA) (Santa Cruz Biotechnology, Santa Cruz, CA, USA) primary antibodies at 4 °C overnight. Then membranes were incubated with horseradish peroxidase (HRP)-conjugated secondary antibodies (ZSGB-BIO, Beijing, China) at 37 °C for 1 h, and visualized by the ChemiDoc™ MP System (Bio-Rad, Hercules, CA, USA). Protein bands were quantified using Image-Pro plus 6.0 analysis software.

Statistics

All data are presented as the means ± SD. Data were analyzed by the independent sample student’s t-test, or one-way ANOVA followed by LSD test. Differences were considered statistically significant when p < 0.05.

Results

Effect of RAPA on the inhibition of experimental RNV

RNV was examined by FITC-dextran in retinal flat mounts at P17. Control group retinas had both superficial and deep vascular layers extended from optic nerve to periphery. Vessels in superficial retinal layers formed a fine radial branching pattern and in deeper retinal layers formed a polygonal reticular pattern (Fig. 1a). OIR group retinas were characterized by non-perfusion areas and neovascularization. Compared to OIR group, the ratio of non-perfused area to total retinal area was lower in RAPA group (0.018 ± 0.007 VS 0.059 ± 0.08; t = 8.780, p < 0.001), which demonstrates a strong inhibitory effect of RAPA on RNV in OIR model. (Fig. 1).
H&E stained retina sections are shown in Fig. 2, and the degree of RNV was quantified in serial 5-μm cross sections by counting the number of vascular cell nuclei on vitreous side of ILM. Large clusters of blood vessels were observed in OIR group, while fewer blood vessels were observed in RAPA group retinas. The average number of nuclei in CON, OIR and RAPA groups was 0.67 ± 0.52, 12.83 ± 2.64 and 4.83 ± 1.33, respectively (F = 76.463, p < 0.001) (Fig. 2).

RAPA inhibits levels of cyclin D1

Cyclin D1 is the most important positive regulatory factor of the cell cycle, and the effect of RAPA on the expression levels of both Cyclin D1 mRNA and protein were determined in the retina of OIR mice. The Cyclin D1 mRNA levels in the retina of OIR group was 289.8% ± 48.5% of CON, and RAPA treatment significantly reduced Cyclin D1 mRNA level (147.1% ± 33.1% of the control) (F = 22.641, p < 0.001). The protein expression level of Cyclin D1 demonstrated the same trend. Cyclin D1 protein level significantly increased in OIR group, and RAPA prevented the change, at least in part (246.3% ± 47.4 and 157.1% ± 33.4% of CON, respectively) (Fig. 3).
Mice in the three groups all got weight (P17) and there was no significant difference in mean body weight among three groups, indicating that no obvious systemic side effect was associated with RAPA treatment (Fig. 4).

Discussion

Retinal vascular ECs proliferation is a crucial step in the complicated process of pathological angiogenesis, thus, inhibition of vascular ECs proliferation demonstrates a potentially important treatment for blinding RNV diseases. The mouse model of OIR is the most widely used model for pathological angiogenesis resulting from ischemia, and it is a reliable method of quantifying retinal neovascularization [8, 10]. We, therefore, used the OIR model to evaluate the inhibitory effect(s) of RAPA on RNV, and explore the potential underlying mechanism.
The cell cycle is divided into four consecutive phases: gap 1 (G1), synthesis (S), and gap 2 (G2) phases; mitosis (M) phase (DNA segregation and cell division). Cyclin D1, as the most important positive regulatory factor of the cell cycle, could form active complexes with cyclin-dependent kinases (CDKs), either CDK4 or CDK6, which in turn phosphorylate the retinoblastoma protein (Rb) and regulate cell cycle transition from G1 to S phase. Overexpression of cyclin D1 results in activated CDK, rapid cell growth under conditions of restricted mitogenic signaling, bypass of key cellular checkpoints and ultimately cell proliferation [7, 11].
mTOR plays a key role in controlling cell growth and proliferation, regulating mitogens in mammalian cells and promoting cell cycle progression [12]. By activating downstream pathways, mTOR controls the translation of mRNA that encode proteins important for cell cycle progression, including cyclin D1 [1214]. RAPA is a potent, naturally occurring mTOR inhibitor [15, 16], which prevents primary and metastatic tumor growth by antiangiogenesis [16].
Our data demonstrate that intraperitoneal injection of RAPA could reduce the number of retinal non-perfused areas and neovascular tufts. Moreover, our previous study [7] revealed that RAPA induced cell accumulation in the G1/G0 phase of retinal vascular ECs, which was in accordance with inhibition of ECs proliferation, and along with fewer cell nuclei on the vitreous side of ILM and downregulation of cyclin D1 in the retina. These results demonstrate that RAPA could inhibit retinal vascular endothelial cell proliferation and RNV, with the underlying mechanism of arresting the cell cycle in its transition from the G1- to S-phase via inhibition of cyclin D1 activity, which is different from current clinical used anti-VEGF drugs or glucocorticoids [17, 18].

Conclusion

To sum up, RAPA can inhibit RNV by downregulating the expression of cyclin D1, which indicates its therapeutic potential in treating RNV-related diseases.

Acknowledgments

Not applicable.
All procedures with mice were approved by Tianjin Medical University, Laboratory Animal Care and Use Committee; and the study protocol was followed the statement of the Vision and Ophthalmology (ARVO) for the Use of Ophthalmic Animals.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Zhang SX, Ma JX. Ocular neovascularization: implication of endogenous angiogenic inhibitors and potential therapy. Prog Retin Eye Res. 2007;26(1):1–37.CrossRef Zhang SX, Ma JX. Ocular neovascularization: implication of endogenous angiogenic inhibitors and potential therapy. Prog Retin Eye Res. 2007;26(1):1–37.CrossRef
2.
Zurück zum Zitat Kohler EE, Cowan CE, Chatterjee I, Malik AB, Wary KK. NANOG induction of fetal liver kinase-1 (FLK1) transcription regulates endothelial cell proliferation and angiogenesis. Blood. 2011;117(5):1761–9.CrossRef Kohler EE, Cowan CE, Chatterjee I, Malik AB, Wary KK. NANOG induction of fetal liver kinase-1 (FLK1) transcription regulates endothelial cell proliferation and angiogenesis. Blood. 2011;117(5):1761–9.CrossRef
3.
Zurück zum Zitat Costa LF, Balcells M, Edelman ER, Nadler LM, Cardoso AA. Proangiogenic stimulation of bone marrow endothelium engages mTOR and is inhibited by simultaneous blockade of mTOR and NF-kappaB. Blood. 2006;107(1):285–92.CrossRef Costa LF, Balcells M, Edelman ER, Nadler LM, Cardoso AA. Proangiogenic stimulation of bone marrow endothelium engages mTOR and is inhibited by simultaneous blockade of mTOR and NF-kappaB. Blood. 2006;107(1):285–92.CrossRef
4.
Zurück zum Zitat Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature. 1994;369(6483):756–8.CrossRef Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature. 1994;369(6483):756–8.CrossRef
5.
Zurück zum Zitat Han J, Yuan Z, Yan H. Inhibitory effect of adenoviral vector-mediated delivery of p21WAF1/CIP1 on retinal vascular endothelial cell proliferation and tube formation in cultured rhesus monkey cells (RF/6A). Curr Eye Res. 2013;38(6):670–3.CrossRef Han J, Yuan Z, Yan H. Inhibitory effect of adenoviral vector-mediated delivery of p21WAF1/CIP1 on retinal vascular endothelial cell proliferation and tube formation in cultured rhesus monkey cells (RF/6A). Curr Eye Res. 2013;38(6):670–3.CrossRef
6.
Zurück zum Zitat Wang Y, Yuan Z, You C, Han J, Li H, Zhang Z, Yan H. Overexpression p21WAF1/CIP1 in suppressing retinal pigment epithelial cells and progression of proliferative vitreoretinopathy via inhibition CDK2 and cyclin E. BMC Ophthalmol. 2014;14:144.CrossRef Wang Y, Yuan Z, You C, Han J, Li H, Zhang Z, Yan H. Overexpression p21WAF1/CIP1 in suppressing retinal pigment epithelial cells and progression of proliferative vitreoretinopathy via inhibition CDK2 and cyclin E. BMC Ophthalmol. 2014;14:144.CrossRef
7.
Zurück zum Zitat Han J, Yan H. Inhibitory effect of rapamycin on the proliferation of Rhesus retinal vascular endothelial cells. Chin J Exp ophthalmol. 2014;32(3):216–9. Han J, Yan H. Inhibitory effect of rapamycin on the proliferation of Rhesus retinal vascular endothelial cells. Chin J Exp ophthalmol. 2014;32(3):216–9.
8.
Zurück zum Zitat Smith LE, Wesolowski E, McLellan A, Kostyk SK, D'Amato R, Sullivan R, D'Amore PA. Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci. 1994;35(1):101–11.PubMed Smith LE, Wesolowski E, McLellan A, Kostyk SK, D'Amato R, Sullivan R, D'Amore PA. Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci. 1994;35(1):101–11.PubMed
9.
Zurück zum Zitat Jiang F, Chen Q, Huang L, Wang Y, Zhang Z, Meng X, Liu Y, Mao C, Zheng F, Zhang J, et al. TNFSF15 Inhibits Blood Retinal Barrier Breakdown Induced by Diabetes. Int J Mol Sci. 2016;17(5). Jiang F, Chen Q, Huang L, Wang Y, Zhang Z, Meng X, Liu Y, Mao C, Zheng F, Zhang J, et al. TNFSF15 Inhibits Blood Retinal Barrier Breakdown Induced by Diabetes. Int J Mol Sci. 2016;17(5).
10.
Zurück zum Zitat Grossniklaus HE, Kang SJ, Berglin L. Animal models of choroidal and retinal neovascularization. Prog Retin Eye Res. 2010;29(6):500–19.CrossRef Grossniklaus HE, Kang SJ, Berglin L. Animal models of choroidal and retinal neovascularization. Prog Retin Eye Res. 2010;29(6):500–19.CrossRef
11.
Zurück zum Zitat Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer. 2011;11(8):558–72.CrossRef Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer. 2011;11(8):558–72.CrossRef
12.
Zurück zum Zitat Sabatini DM. mTOR and cancer: insights into a complex relationship. Nat Rev Cancer. 2006;6(9):729–34.CrossRef Sabatini DM. mTOR and cancer: insights into a complex relationship. Nat Rev Cancer. 2006;6(9):729–34.CrossRef
13.
Zurück zum Zitat Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat Rev Cancer. 2004;4(5):335–48.CrossRef Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat Rev Cancer. 2004;4(5):335–48.CrossRef
14.
Zurück zum Zitat Gera JF, Mellinghoff IK, Shi Y, Rettig MB, Tran C, Hsu JH, Sawyers CL, Lichtenstein AK. AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J Biol Chem. 2004;279(4):2737–46.CrossRef Gera JF, Mellinghoff IK, Shi Y, Rettig MB, Tran C, Hsu JH, Sawyers CL, Lichtenstein AK. AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J Biol Chem. 2004;279(4):2737–46.CrossRef
15.
Zurück zum Zitat Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12(1):21–35.CrossRef Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12(1):21–35.CrossRef
16.
Zurück zum Zitat Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, Bruns CJ, Zuelke C, Farkas S, Anthuber M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med. 2002;8(2):128–35.CrossRef Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, Bruns CJ, Zuelke C, Farkas S, Anthuber M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med. 2002;8(2):128–35.CrossRef
17.
Zurück zum Zitat Pacella E, Pacella F, La Torre G, Impallara D, Malarska K, Brillante C, Turchetti P, De Giusti M. Testing the effectiveness of intravitreal ranibizumab during 12 months of follow-up in venous occlusion treatment. La Clinica terapeutica. 2012;163(6):e413–22.PubMed Pacella E, Pacella F, La Torre G, Impallara D, Malarska K, Brillante C, Turchetti P, De Giusti M. Testing the effectiveness of intravitreal ranibizumab during 12 months of follow-up in venous occlusion treatment. La Clinica terapeutica. 2012;163(6):e413–22.PubMed
18.
Zurück zum Zitat Pacella F, Ferraresi AF, Turchetti P, Lenzi T, Giustolisi R, Bottone A, Fameli V, Romano MR, Pacella E. Intravitreal injection of Ozurdex® implant in patients with persistent diabetic macular edema, with six-month follow-up. Ophthalmology and Eye Diseases. 2016;28(8):11–16. Pacella F, Ferraresi AF, Turchetti P, Lenzi T, Giustolisi R, Bottone A, Fameli V, Romano MR, Pacella E. Intravitreal injection of Ozurdex® implant in patients with persistent diabetic macular edema, with six-month follow-up. Ophthalmology and Eye Diseases. 2016;28(8):11–16.
Metadaten
Titel
Rapamycin prevents retinal neovascularization by downregulation of cyclin D1 in a mouse model of oxygen-induced retinopathy
verfasst von
Feng Jiang
Ying Wang
Shufang Du
Heng Jin
Jindong Han
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Ophthalmology / Ausgabe 1/2020
Elektronische ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-020-1325-5

Weitere Artikel der Ausgabe 1/2020

BMC Ophthalmology 1/2020 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

Ophthalmika in der Schwangerschaft

Die Verwendung von Ophthalmika in der Schwangerschaft und Stillzeit stellt immer eine Off-label-Anwendung dar. Ein Einsatz von Arzneimitteln muss daher besonders sorgfältig auf sein Risiko-Nutzen-Verhältnis bewertet werden. In der vorliegenden …

Operative Therapie und Keimnachweis bei endogener Endophthalmitis

Vitrektomie Originalie

Die endogene Endophthalmitis ist eine hämatogen fortgeleitete, bakterielle oder fungale Infektion, die über choroidale oder retinale Gefäße in den Augapfel eingeschwemmt wird [ 1 – 3 ]. Von dort infiltrieren die Keime in die Netzhaut, den …

Bakterielle endogene Endophthalmitis

Vitrektomie Leitthema

Eine endogene Endophthalmitis stellt einen ophthalmologischen Notfall dar, der umgehender Diagnostik und Therapie bedarf. Es sollte mit geeigneten Methoden, wie beispielsweise dem Freiburger Endophthalmitis-Set, ein Keimnachweis erfolgen. Bei der …

So erreichen Sie eine bestmögliche Wundheilung der Kornea

Die bestmögliche Wundheilung der Kornea, insbesondere ohne die Ausbildung von lichtstreuenden Narben, ist oberstes Gebot, um einer dauerhaften Schädigung der Hornhaut frühzeitig entgegenzuwirken und die Funktion des Auges zu erhalten.   

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.