Skip to main content
Erschienen in: Journal of Ovarian Research 1/2018

Open Access 01.12.2018 | Case report

Rapidly growing juvenile granulosa cell tumor of the ovary arising in adult: a case report and review of the literature

verfasst von: Yuki Inada, Go Nakai, Kazuhiro Yamamoto, Takashi Yamada, Yoshinobu Hirose, Yoshito Terai, Masahide Ohmichi, Yoshifumi Narumi

Erschienen in: Journal of Ovarian Research | Ausgabe 1/2018

Abstract

Background

Ovarian granulosa cell tumors (GCTs) are divided into adult GCT (AGCT) and juvenile GCT (JGCT). The AGCT is more common type, conversely, less than 5% of tumors are the JGCT and occur in mainly premenarchal girls and in women younger than 30 years. Although JGCT have different histologic features compared to AGCT, the two types have similar imaging features because they have similar gross appearance. Therefore, it is difficult to distinguish two types by radiologic findings. In addition, it has not been described about the growth rate of JGCTs in past literatures. The aims of this report were to describe a case of rapidly growing JGCT arising in adult with difficulty in diagnosing and to review the literatures.

Case presentation

A 38-year-old woman, presented with abdominal distension and frequent urination, was found to have a pelvic mass measuring approximately 12 cm on ultrasonography. On magnetic resonance imaging (MRI), right ovarian multiloculated cystic mass accompanied with hemorrhagic foci was demonstrated. Although the presumptive diagnosis of GCT was made based on MR findings, the intraoperative differential diagnoses included GCT, yolk sac tumor or malignant mucinous tumor due to cytologic atypia and lack of the typical findings for AGCT such as nuclear grooves and Call-Exner bodies. As a result, abdominal simple total hysterectomy, bilateral oophoro-salpingectomy, partial omentectomy and appendectomy were performed. Moreover, she had a history of laparoscopic uterine myomectomy about one year before, and during that surgery bilateral ovaries were found to be macrospically normal. Therefore, it was suspected the tumor became enlarged within the short period of time.

Conclusions

Even though it is difficult to distinguish two types of GCT by imaging findings, in some cases without typical findings for AGCT pathologically, MRI could provide useful information in accurately diagnosing JGCT. Moreover, in this case, the tumor growth rate seemed to be rapid regardless of its borderline malignant potential. It may be related with nuclear atypia and high mitotic rate of the tumor.
Abkürzungen
AGCT
Adult granulosa cell tumor
CA 125
Carbohydrate antigen-125
CA 19–9
Carbohydrate antigen 19–9
CD99
Cluster of differentiation 99
CEA
Carcinoembryonic antigen
DWI
Diffusion-weighted image.
E2
Estradiol
FIGO
International Federation of Gynecology and Obstetrics
FSH
Follicle stimulating hormone
GCT
Granulosa cell tumor
JGCT
Juvenile granulosa cell tumor
LH
Luteinizing hormone
MRI
Magnetic resonance imaging
SCC
Squamous cell carcinoma
SI
Signal intensity

Background

Granulosa cell tumors (GCTs) are rare sex cord-stromal tumors, encompassing 1–5% of all ovarian tumors [1]. These tumors are divided into adult GCT (AGCT) and juvenile GCT (JGCT) [2]. The AGCT is the more common type, accounting for nearly 95% of all GCTs. They are usually present in their 40’s or above [3]. Conversely, less than 5% of tumors are the JGCT and occur in mainly prepubescent girls and in women younger than 30 years [2]. Histologically, Call- Exner bodies which are gland-like structures resembling ovarian follicles, and grooved, pale, round nuclei called “coffee-bean” nuclei displaying a low mitotic rate are classic features of AGCT. On the other hand, there are few typical findings for AGCT, in addition the immature nuclei show atypia with increased mitotic activity in JGCT [2]. Although two types of GCT have different clinical and histologic features, they have similar imaging features because they have similar gross appearance [1, 4]. So there may be discrepancy between diagnostic imaging and pathological diagnosis in adult patients of JGCT. The growth rate of JGCT is considered more slowly because it is borderline malignant tumor. Here, we report a case of rapidly growing JGCT in adult patient.

Case presentation

A 38-year-old Japanese woman, gravida 0, presented with abdominal distension and frequent urination, was found to have a pelvic mass on radiologic examinations. She had a history of laparoscopic uterine myomectomy about a year before the onset, where the bilateral ovaries were macroscopically normal (Fig. 1). She had no menstrual irregularities or dysfunctional uterine bleeding. Serum estradiol (E2) level was elevated to 214.5 pg/ml (normal 70–160 pg/ml), while testosterone was within the normal range. Luteinizing hormone (LH) and follicle stimulating hormone (FSH) were 2.0 mIU/ml (normal 1-14mIU/ml) and less than 0.1 mIU/ml (normal 1.5-8mIU/ml) respectively, indicating E2-mediated negative feedback. CA 125 level was slightly elevated to 39.2 U/ml (normal < 35.0 U/ml). CEA, CA 19–9 and SCC antigen were within the normal range.
The MR showed a large, multiloculated cystic mass with numerous septations in the pelvis measuring approximately 10 × 10 × 12 cm. On T2-weighted images, fluid-fluid levels were demonstrated in several cystic components (Fig. 2a). T1-weighted images demonstrated intracystic high signal intensities suggesting intracystic hemorrhage (Fig. 2b). Contrast-enhanced fat-suppressed T1-weighted images showed strong enhancement of the septations similar to uterine myometrium (Fig. 2c). The mass was suspected to originate from the right ovary because the right ovary was not identified. The left ovary was atrophic for her age (Fig. 2a). On diffusion-weighted imaging, the septations showed high signal intensity (Fig. 2d). The uterus was of normal size without endometrial thickening. There was a small amount of ascites which was limited to the pouch of Douglas and vesicouterine pouch (Fig. 2e). Any calcifications were not detected on CT images. GCT was suspected from these findings.
Abdominal right ovarian tumor resection was performed. During the operation, the frozen section of the right ovarian tumor showed that malignancy could not be excluded due to its nuclear atypia. The differential diagnoses of the tumor included yolk sac tumor, malignant mucinous tumor and AGCT despite of the lack of any typical findings such as coffee-bean nuclei and Call-Exner bodies. Based on this report, abdominal simple total hysterectomy, bilateral oophoro-salpingectomy, partial omentectomy and appendectomy were performed.
The gross appearance of the cut surface of the right ovarian tumor, measuring 13 cm in diameter, showed multiloculated cystic tumor accompanied by intracystic hemorrhagic foci. The left ovary had a maximum diameter of 1.7 cm, suggesting atrophy for her age (Fig. 3). Microscopic examination of the right ovary showed round cells that surrounded the macrofolliculars with eosinophilic material and hemorrhage (Fig. 4a).The tumor cells had scant cytoplasm, round-to-oval vesicular nuclei with small eosinophilic nucleoli, and irregular nuclear contours. The typical findings for AGCT such as longitudinal nuclear grooves (coffee-bean nuclei) and Call-Exner bodies were not identified. The mitotic activity was focally brisk, with an average of 10 mitoses per 10 high-power fields in these areas (Fig. 4b). Immunohistochemically, tumor cells were positive for vimentin, calretinin, CD99, a-inhibin and MIB-1 labeling index was about 30%. The above findings supported the diagnosis of JGCT. Accordingly, the definitive diagnosis of JGCT, FIGO Stage IA led to no additional treatment.

Discussion

GCTs are rare sex cord-stromal tumors, encompassing 1–5% of all ovarian tumors [1]. These tumors are divided into AGCT and JGCT, reflecting not only the typical age of presentation, the differentiating histologic characteristics but also the differing natural history [2]. The AGCT is the more common type, accounting for nearly 95% of all GCTs. They are usually present in women in their 40’s or above [3]. Conversely, less than 5% of tumors are the JGCT and occur in mainly prepubescent girls and in women younger than 30 years, with a mean age of 13 years. In one series, 97% of cases were present before 30 years of age [2].
Histologically, Call-Exner bodies which are gland-like structures resembling ovarian follicles, and “coffee-bean” nuclei, which are grooved, pale and round nuclei displaying a low mitotic rate are classic features of AGCTs, while gland-like structures resembling ovarian follicles in JGCTs are irregular in size and shape. In addition, the immature nuclei show atypia with increased mitotic activity in JGCTs [2]. A positive immunohistochemical stain for a-inhibin, an ovarian glycoprotein, is a key diagnostic feature for GCTs.
Grossly, AGCTs can be cystic (30.3%), solid (27.8%) or solid and cystic (41.7%) [5], while JGCTs show similar gross feature, that are cystic (14%), solid (37%) and solid and cystic (45%) [2]. Although JGCTs have different clinical and histologic features compared to AGCTs, the two types have similar imaging features because they have similar gross appearance [1, 4]. GCTs have some distinctive MR imaging features: a sponge-like appearance with solid areas of intermediate signal intensity and numerous cystic spaces on T2-weighted MR images, and hemorrhagic foci of high signal intensity on T1-weighted MR images. It also can manifest as a solid mass with variable cystic areas or as a predominantly cystic mass with solid portions. Uterine enlargement or endometrial thickening may be seen as a result of estrogenic effect [1, 6, 7]. Although a few literatures described MR findings of AGCTs, a JGCT typically appears at imaging as a large, unilateral, multicystic mass with a solid portion and sometimes with irregular septa [5, 8, 9].
In this case, the tumor showed multiloculated cystic mass with intracystic hemorrhage on the MRI. On diffusion-weighted images (DWIs), the septations of tumor demonstrated high signal intensities (SIs). The feature was consistent with the previous result reporting that DWIs showed high SIs in the solid component of the GCT [10]. Although these findings were considerable for both AGCT and JGCT, there were no typical features of AGCT in a frozen section of the tumor, such as Call-Exner bodies and “coffee-bean” nuclei. In addition, taking the patient’s age into consideration, it was more difficult to reach a correct diagnosis during the operation. A similar case of JGCT has been described in a 43-year-old woman in a previous study [11]. As a result, the discrepancy between the diagnosis based on MR findings and intraoperative pathologic results may lead to difficulty in choosing appropriate treatment in adult patients with JGCTs.
The most common presenting symptoms of both AGCT and JGCT are abdominal pain and increasing abdominal girth [12]. The produced estrogen induces precocious puberty in 10% of premenarchal females as JGCT can be hormonally active [13]. Dysfunctional uterine bleeding and menstrual irregularities are frequently seen in women of reproductive age with hormonally active GCTs [12]. However, this case did not show menstrual irregularities despite of the tumor secretion of E2 but showed the atrophic contralateral ovary on gross appearance as well as on the MRI due to suppression of the serum LH and FSH levels. In women of reproductive age, it is not easy to assume if the ovarian tumor produces E2 or not on MRI, although the enlarged uterus, thickened endometrium and the typical symptom such as postmenopausal bleeding can be referred as signs of estrogen-producing ovarian tumor in postmenopausal women. However, the atrophic change in the normal side ovary observed in this case can be one of the clues in terms of assuming the hormonal activity of the ovarian tumor.
Another striking feature in this case was the growth rate of the tumor regardless of its borderline malignant potential. Any macroscopic abnormalities in the bilateral ovaries in the previous surgery about one year before were not observed. Therefore, it was suspected the tumor became enlarged within the short period of time. It has not been described about the growth rate of JGCTs in past literatures. It may be related with nuclear atypia and high mitotic rate of the tumor.

Conclusions

In conclusion, even though JGCT in adult patients could be correctly diagnosed as GCT preoperatively, intraoperative pathological diagnosis may be difficult. MRI could provide useful information in accurately diagnosing JGCT. Moreover, it was suspected the tumor became enlarged within the short period of time in this case. It may be related with nuclear atypia and high mitotic rate of the tumor.

Acknowledgements

Not applicable.

Funding

Not applicable.

Availability of data and materials

The authors declare that the data supporting the findings of this study are available within the article.
No institutional review board approval was required. Written informed consent for clinical use of clinical data was obtained from the patient.
All authors read and approved the final manuscript. All authors agreed to submit this article.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Outwater EK, Wagner BJ, Mannion C, McLarney JK, Kim B. Sex cord-stromal and steroid cell tumors of the ovary. Radiographics. 1998;18:1523–46.CrossRef Outwater EK, Wagner BJ, Mannion C, McLarney JK, Kim B. Sex cord-stromal and steroid cell tumors of the ovary. Radiographics. 1998;18:1523–46.CrossRef
2.
Zurück zum Zitat Young RH. Sex cord-stromal tumors of the ovary and testis: their similarities and differences with consideration of selected problems. Mod Pathol. 2005;18:S81–98.CrossRef Young RH. Sex cord-stromal tumors of the ovary and testis: their similarities and differences with consideration of selected problems. Mod Pathol. 2005;18:S81–98.CrossRef
3.
Zurück zum Zitat Roth LM. Recent advances in the pathology and classification of ovarian sex cord-stromal tumors. Int J Gynecol Pathol. 2006;25:199–215.CrossRef Roth LM. Recent advances in the pathology and classification of ovarian sex cord-stromal tumors. Int J Gynecol Pathol. 2006;25:199–215.CrossRef
4.
Zurück zum Zitat Gittleman AM, Price AP, Coren C, Akhtar M, Donovan V, Katz DS. Juvenile granulosa cell tumor. Clin Imaging. 2003;27:221–4.CrossRef Gittleman AM, Price AP, Coren C, Akhtar M, Donovan V, Katz DS. Juvenile granulosa cell tumor. Clin Imaging. 2003;27:221–4.CrossRef
5.
Zurück zum Zitat Cronje HS, Niemand I, Bam RH, Woodruff JD. Review of the granulosa-theca cell tumors from the emil Novak ovarian tumor registry. Am J Obstet Gynecol. 1999;180:323–7.CrossRef Cronje HS, Niemand I, Bam RH, Woodruff JD. Review of the granulosa-theca cell tumors from the emil Novak ovarian tumor registry. Am J Obstet Gynecol. 1999;180:323–7.CrossRef
6.
Zurück zum Zitat Kim SH, Kim SH. Granulosa cell tumor of the ovary: common findings and unusual appearances on CT and MR. J Comput Assist Tomogr. 2002;26:756–61.CrossRef Kim SH, Kim SH. Granulosa cell tumor of the ovary: common findings and unusual appearances on CT and MR. J Comput Assist Tomogr. 2002;26:756–61.CrossRef
8.
Zurück zum Zitat Kitamura Y, Kanegawa K, Muraji T, Sugimura K. MR imaging of juvenile granulosa cell tumour of the ovary: a case report. Pediatr Radiol. 2000;30:360.CrossRef Kitamura Y, Kanegawa K, Muraji T, Sugimura K. MR imaging of juvenile granulosa cell tumour of the ovary: a case report. Pediatr Radiol. 2000;30:360.CrossRef
9.
Zurück zum Zitat Heo SH, Kim JW, Shin SS, Jeong SI, Lim HS, Choi YD, et al. Review of ovarian tumors in children and adolescents: radiologic-pathologic correlation. Radiographics. 2014;34:2039–55.CrossRef Heo SH, Kim JW, Shin SS, Jeong SI, Lim HS, Choi YD, et al. Review of ovarian tumors in children and adolescents: radiologic-pathologic correlation. Radiographics. 2014;34:2039–55.CrossRef
10.
Zurück zum Zitat Bakir B, Bakan S, Tunaci M, Bakir VL, Iyibozkurt AC, Berkman S, et al. Diffusion-weighted imaging of solid or predominantly solid gynaecological adnexial masses: is it useful in the differential diagnosis? Br J Radiol. 2011;84:600–11.CrossRef Bakir B, Bakan S, Tunaci M, Bakir VL, Iyibozkurt AC, Berkman S, et al. Diffusion-weighted imaging of solid or predominantly solid gynaecological adnexial masses: is it useful in the differential diagnosis? Br J Radiol. 2011;84:600–11.CrossRef
11.
Zurück zum Zitat Rakheja D, Sharma S. Pathologic quiz case. Cystic and solid ovarian tumor in a 43-year-old woman. Arch Pathol Lab Med. 2002;126:1123–4.PubMed Rakheja D, Sharma S. Pathologic quiz case. Cystic and solid ovarian tumor in a 43-year-old woman. Arch Pathol Lab Med. 2002;126:1123–4.PubMed
12.
Zurück zum Zitat Pectasides D, Pectasides E, Psyrri A. Granulosa cell tumor of the ovary. Cancer Treat Rev. 2008;34:1–12.CrossRef Pectasides D, Pectasides E, Psyrri A. Granulosa cell tumor of the ovary. Cancer Treat Rev. 2008;34:1–12.CrossRef
13.
Zurück zum Zitat Young RH, Dickersin GR, Scully RE. Juvenile granulosa cell tumor of the ovary. A clinicopathological analysis of 125 cases. Am J Surg Pathol. 1984;8:575–96.CrossRef Young RH, Dickersin GR, Scully RE. Juvenile granulosa cell tumor of the ovary. A clinicopathological analysis of 125 cases. Am J Surg Pathol. 1984;8:575–96.CrossRef
Metadaten
Titel
Rapidly growing juvenile granulosa cell tumor of the ovary arising in adult: a case report and review of the literature
verfasst von
Yuki Inada
Go Nakai
Kazuhiro Yamamoto
Takashi Yamada
Yoshinobu Hirose
Yoshito Terai
Masahide Ohmichi
Yoshifumi Narumi
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Journal of Ovarian Research / Ausgabe 1/2018
Elektronische ISSN: 1757-2215
DOI
https://doi.org/10.1186/s13048-018-0474-0

Weitere Artikel der Ausgabe 1/2018

Journal of Ovarian Research 1/2018 Zur Ausgabe

Erhöhte Mortalität bei postpartalem Brustkrebs

07.05.2024 Mammakarzinom Nachrichten

Auch für Trägerinnen von BRCA-Varianten gilt: Erkranken sie fünf bis zehn Jahre nach der letzten Schwangerschaft an Brustkrebs, ist das Sterberisiko besonders hoch.

Menopausale Hormontherapie für Frauen über 65?

07.05.2024 Klimakterium und Menopause Nachrichten

In den USA erhalten nicht wenige Frauen auch noch im Alter über 65 eine menopausale Hormontherapie. Welche positiven und negativen gesundheitlichen Konsequenzen daraus möglicherweise resultieren, wurde anhand von Versicherungsdaten analysiert.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Nodal-negativ nach neoadjuvanter Chemo: Axilladissektion verzichtbar?

03.05.2024 Mammakarzinom Nachrichten

Wenn bei Mammakarzinomen durch eine neoadjuvante Chemotherapie ein Downstaging von nodal-positiv zu nodal-negativ gelingt, scheint es auch ohne Axilladissektion nur selten zu axillären Rezidiven zu kommen.

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.