Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 10/2008

01.10.2008 | Original article

Real-time in vivo monitoring of viable stem cells implanted on biocompatible scaffolds

verfasst von: Do Won Hwang, Sung June Jang, Yun Hui Kim, Hyun Joo Kim, In Kyong Shim, Jae Min Jeong, June-Key Chung, Myung Chul Lee, Seung Jin Lee, Seung U. Kim, Soonhag Kim, Dong Soo Lee

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 10/2008

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Three-dimensional fibrous scaffolds provide an environment that enhances transplanted stem cell survival in vivo and facilitates imaging their localization, viability, and growth in vivo. To assess transplanted stem cell viability on biocompatible polymer scaffolds in vivo, we developed in vivo imaging systems for evaluation of implanted viable neural stem cells (NSC) and mesenchymal stem cells (MSC) on scaffolds using luciferase or sodium/iodide symporter (NIS) genes.

Methods

Firefly luciferase stably expressing-C6 cell was established (C6-Fluc). The human neural stem cell, F3, was infected with adenoviral vector carrying luciferase gene (F3-Fluc) and MSC expressing NIS controlled by ubiquitin C promoter using lentiviral vector was established by treating blasticidine for 2 weeks (MSC-NIS). Chitosan and poly l-lactic acid (PLLA) scaffolds were used for in vivo image. In vivo expression of luciferase and human NIS was examined by bioluminescence image or 99mTc-pertechnetate gamma camera image, respectively. The cell/scaffold complex was implanted into subcutaneous or abdominal area of BALB/C nude mouse. For quantitative evaluation of cell viability, regions of interest were drawn on 99mTc-pertechnetate scintigraphy by manual.

Results

The gradual increase of luciferase activity was observed in C6-Fluc seeded with chitosan according to the increase in the number of cells. C6-Fluc/chitosan complex subcutaneously implanted into nude mice showed longitudinal bioluminescence image until 34 days. Luciferase image of abdominal-injected C6-Fluc/PLLA complex was saturated in only 14 days, showing great cell growth due to abundant nutrients. F3 cells showed well-incorporated pattern with fibrous chitosan scaffold using scanning electron microscopy. F3 infected with Ad-Fluc showed >100-fold higher luciferase activity than luciferase activity in F3. Cell-number-dependent increase of luciferase activity was shown in F3-Fluc seeded on chitosan. F3-Fluc incorporation into chitosan after abdominal injection was clearly visible on bioluminescence image up to 11 days. Radionuclide imaging showed higher uptake by MSC-NIS on PLLA scaffolds than by MSC-NIS not seeded on a scaffold. Quantitative data showed significantly better survival of MSC-NIS on PLLA scaffolds than without scaffold at 72 h post-implantation, which concurred with histologic findings.

Conclusion

These results suggest that NSC-Fluc and MSC-NIS cells incorporated within polymer scaffolds can be monitored on a long-term basis by serial in vivo imaging. We believe that a biocompatible scaffold-based imaging system could be used to assess stem cell viabilities in a non-invasive way to aid the development of regenerative therapeutics.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Griffith LG, Naughton G. Tissue engineering: current challenges and expanding opportunities. Science 2002;295:1009–14.PubMedCrossRef Griffith LG, Naughton G. Tissue engineering: current challenges and expanding opportunities. Science 2002;295:1009–14.PubMedCrossRef
3.
Zurück zum Zitat Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T. Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res 2006;15:185–92.CrossRef Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T. Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res 2006;15:185–92.CrossRef
4.
Zurück zum Zitat Boo JS, Yamada Y, Okazaki Y, Hibino Y, Okada K, Hata K, et al. Tissue-engineered bone using mesenchymal stem cells and a biodegradable scaffold. J Craniofac Surg 2002;13:231–9.PubMedCrossRef Boo JS, Yamada Y, Okazaki Y, Hibino Y, Okada K, Hata K, et al. Tissue-engineered bone using mesenchymal stem cells and a biodegradable scaffold. J Craniofac Surg 2002;13:231–9.PubMedCrossRef
5.
Zurück zum Zitat Hammond JS, Beckingham IJ, Shakesheff KM. Scaffolds for liver tissue engineering. Expert Rev Med Devices 2006;3:21–7.PubMedCrossRef Hammond JS, Beckingham IJ, Shakesheff KM. Scaffolds for liver tissue engineering. Expert Rev Med Devices 2006;3:21–7.PubMedCrossRef
6.
Zurück zum Zitat Liu W, Cui L, Cao Y. Bone reconstruction with bone marrow stromal cells. Methods Enzymol 2006;420:362–80.PubMedCrossRef Liu W, Cui L, Cao Y. Bone reconstruction with bone marrow stromal cells. Methods Enzymol 2006;420:362–80.PubMedCrossRef
7.
Zurück zum Zitat Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 2004;303:1352–5.PubMedCrossRef Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 2004;303:1352–5.PubMedCrossRef
8.
Zurück zum Zitat Park KI, Teng YD, Snyder EY. The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat Biotechnol 2002;20:1111–7.PubMedCrossRef Park KI, Teng YD, Snyder EY. The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat Biotechnol 2002;20:1111–7.PubMedCrossRef
9.
Zurück zum Zitat Evans GR, Brandt K, Niederbichler AD, Chauvin P, Herrman S, Bogle M, et al. Clinical long-term in vivo evaluation of poly(l-lactic acid) porous conduits for peripheral nerve regeneration. J Biomater Sci Polym Ed 2000;11:869–78.PubMedCrossRef Evans GR, Brandt K, Niederbichler AD, Chauvin P, Herrman S, Bogle M, et al. Clinical long-term in vivo evaluation of poly(l-lactic acid) porous conduits for peripheral nerve regeneration. J Biomater Sci Polym Ed 2000;11:869–78.PubMedCrossRef
10.
Zurück zum Zitat Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005;26:2603–10.PubMedCrossRef Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005;26:2603–10.PubMedCrossRef
11.
Zurück zum Zitat Lee JY, Nam SH, Im SY, Park YJ, Lee YM, Seol YJ, et al. Enhanced bone formation by controlled growth factor delivery from chitosan-based biomaterials. J Control Release 2002;78:187–97.PubMedCrossRef Lee JY, Nam SH, Im SY, Park YJ, Lee YM, Seol YJ, et al. Enhanced bone formation by controlled growth factor delivery from chitosan-based biomaterials. J Control Release 2002;78:187–97.PubMedCrossRef
12.
Zurück zum Zitat Suh JK, Matthew HW. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 2000;21:2589–98.PubMedCrossRef Suh JK, Matthew HW. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 2000;21:2589–98.PubMedCrossRef
13.
Zurück zum Zitat Chung JK. Sodium iodide symporter: its role in nuclear medicine. J Nucl Med 2002;43:1188–200.PubMed Chung JK. Sodium iodide symporter: its role in nuclear medicine. J Nucl Med 2002;43:1188–200.PubMed
14.
Zurück zum Zitat Kang JH, Lee DS, Paeng JC, Lee JS, Kim YH, Lee YJ, et al. Development of a sodium/iodide symporter (NIS)-transgenic mouse for imaging of cardiomyocyte-specific reporter gene expression. J Nucl Med 2005;46:479–83.PubMed Kang JH, Lee DS, Paeng JC, Lee JS, Kim YH, Lee YJ, et al. Development of a sodium/iodide symporter (NIS)-transgenic mouse for imaging of cardiomyocyte-specific reporter gene expression. J Nucl Med 2005;46:479–83.PubMed
15.
Zurück zum Zitat Ourednik V, Ourednik J, Flax JD, Zawada WM, Hutt C, Yang C, et al. Segregation of human neural stem cells in the developing primate forebrain. Science 2001;293:1820–4.PubMedCrossRef Ourednik V, Ourednik J, Flax JD, Zawada WM, Hutt C, Yang C, et al. Segregation of human neural stem cells in the developing primate forebrain. Science 2001;293:1820–4.PubMedCrossRef
16.
Zurück zum Zitat Scoof H, Apel J, Heschel I, Rau G. Control of pore structure and size in freeze dried collagen sponges. J Biomed Mater Res 2001;58:352–7.CrossRef Scoof H, Apel J, Heschel I, Rau G. Control of pore structure and size in freeze dried collagen sponges. J Biomed Mater Res 2001;58:352–7.CrossRef
17.
Zurück zum Zitat Mikos AG, Thorsen AJ, Czwerwonka LA, Bao Y, Langer R. Preparation and characterization of poly(l-lactic acid) foams. Polymer 1994;35:1068–77.CrossRef Mikos AG, Thorsen AJ, Czwerwonka LA, Bao Y, Langer R. Preparation and characterization of poly(l-lactic acid) foams. Polymer 1994;35:1068–77.CrossRef
18.
Zurück zum Zitat Kosugi S, Sasaki N, Hai N, Sugawa H, Aoki N, Shigemasa C, et al. Establishment and characterization of a Chinese hamster ovary cell line, CHO-4J, stably expressing a number of Na+/I− symporters. Biochem Biophys Res Commun 1996;227:94–101.PubMedCrossRef Kosugi S, Sasaki N, Hai N, Sugawa H, Aoki N, Shigemasa C, et al. Establishment and characterization of a Chinese hamster ovary cell line, CHO-4J, stably expressing a number of Na+/I− symporters. Biochem Biophys Res Commun 1996;227:94–101.PubMedCrossRef
19.
Zurück zum Zitat Bensaïd W, Triffitt JT, Blanchat C, Oudina K, Sedel L, Petite H. A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials 2003;24:2497–502.PubMedCrossRef Bensaïd W, Triffitt JT, Blanchat C, Oudina K, Sedel L, Petite H. A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials 2003;24:2497–502.PubMedCrossRef
20.
Zurück zum Zitat Elçin YM, Dixit V, Lewin K, Gitnick G. Xenotransplantation of fetal porcine hepatocytes in rats using a tissue engineering approach. Artif Organs 1999;23:146–52.PubMedCrossRef Elçin YM, Dixit V, Lewin K, Gitnick G. Xenotransplantation of fetal porcine hepatocytes in rats using a tissue engineering approach. Artif Organs 1999;23:146–52.PubMedCrossRef
21.
Zurück zum Zitat Hutmacher DW, Goh JC, Teoh SH. An introduction to biodegradable materials for tissue engineering applications. Ann Acad Med Singapore 2001;30:183–91.PubMed Hutmacher DW, Goh JC, Teoh SH. An introduction to biodegradable materials for tissue engineering applications. Ann Acad Med Singapore 2001;30:183–91.PubMed
22.
Zurück zum Zitat Madihally SV, Matthew HW. Porous chitosan scaffolds for tissue engineering. Biomaterials 1999;20:1133–42.PubMedCrossRef Madihally SV, Matthew HW. Porous chitosan scaffolds for tissue engineering. Biomaterials 1999;20:1133–42.PubMedCrossRef
23.
Zurück zum Zitat Chen VJ, Ma PX. Nano-fibrous poly(l-lactic acid) scaffolds with interconnected spherical macropores. Biomaterials 2004;25:2065–73.PubMedCrossRef Chen VJ, Ma PX. Nano-fibrous poly(l-lactic acid) scaffolds with interconnected spherical macropores. Biomaterials 2004;25:2065–73.PubMedCrossRef
24.
Zurück zum Zitat Yamaguchi M, Shinbo T, Kanamori T. Surface modification of poly(l-lactic acid) affects initial cell attachment, cell morphology, and cell growth. J Artif Organs 2004;7:187–93.PubMedCrossRef Yamaguchi M, Shinbo T, Kanamori T. Surface modification of poly(l-lactic acid) affects initial cell attachment, cell morphology, and cell growth. J Artif Organs 2004;7:187–93.PubMedCrossRef
25.
Zurück zum Zitat Liu X, Won Y, Ma PX. Porogen-induced surface modification of nano-fibrous poly(l-lactic acid) scaffolds for tissue engineering. Biomaterials 2006;27:3980–7.PubMedCrossRef Liu X, Won Y, Ma PX. Porogen-induced surface modification of nano-fibrous poly(l-lactic acid) scaffolds for tissue engineering. Biomaterials 2006;27:3980–7.PubMedCrossRef
26.
Zurück zum Zitat Ma Z, Gao C, Gong Y, Shen J. Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor. Biomaterials 2005;26:1253–9.PubMedCrossRef Ma Z, Gao C, Gong Y, Shen J. Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor. Biomaterials 2005;26:1253–9.PubMedCrossRef
27.
Zurück zum Zitat Li J, Pan J, Zhang L, Yu Y. Culture of hepatocytes on fructose-modified chitosan scaffolds. Biomaterials 2003;24:2317–22.PubMedCrossRef Li J, Pan J, Zhang L, Yu Y. Culture of hepatocytes on fructose-modified chitosan scaffolds. Biomaterials 2003;24:2317–22.PubMedCrossRef
28.
Zurück zum Zitat Ho MH, Hou LT, Tu CY, Hsieh HJ, Lai JY, Chen WJ, et al. Promotion of cell affinity of porous PLLA scaffolds by immobilization of RGD peptides via plasma treatment. Macromol Biosci 2006;6:90–8.PubMedCrossRef Ho MH, Hou LT, Tu CY, Hsieh HJ, Lai JY, Chen WJ, et al. Promotion of cell affinity of porous PLLA scaffolds by immobilization of RGD peptides via plasma treatment. Macromol Biosci 2006;6:90–8.PubMedCrossRef
29.
Zurück zum Zitat Levenberg S, Huang NF, Lavik E, Rogers AB, Itskovitz-Eldor J, Langer R. Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc Natl Acad Sci USA 2003;100:12741–6.PubMedCrossRef Levenberg S, Huang NF, Lavik E, Rogers AB, Itskovitz-Eldor J, Langer R. Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc Natl Acad Sci USA 2003;100:12741–6.PubMedCrossRef
30.
Zurück zum Zitat Taqvi S, Roy K. Influence of scaffold physical properties and stromal cell coculture on hematopoietic differentiation of mouse embryonic stem cells. Biomaterials 2006;27:6024–31.PubMedCrossRef Taqvi S, Roy K. Influence of scaffold physical properties and stromal cell coculture on hematopoietic differentiation of mouse embryonic stem cells. Biomaterials 2006;27:6024–31.PubMedCrossRef
Metadaten
Titel
Real-time in vivo monitoring of viable stem cells implanted on biocompatible scaffolds
verfasst von
Do Won Hwang
Sung June Jang
Yun Hui Kim
Hyun Joo Kim
In Kyong Shim
Jae Min Jeong
June-Key Chung
Myung Chul Lee
Seung Jin Lee
Seung U. Kim
Soonhag Kim
Dong Soo Lee
Publikationsdatum
01.10.2008
Verlag
Springer-Verlag
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 10/2008
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-008-0751-z

Weitere Artikel der Ausgabe 10/2008

European Journal of Nuclear Medicine and Molecular Imaging 10/2008 Zur Ausgabe