Skip to main content
Erschienen in: Radiation Oncology 1/2018

Open Access 01.12.2018 | Research

Recommendation for the definition of postoperative radiotherapy target volume based on a pooled analysis of patterns of failure after radical surgery among patients with thoracic esophageal squamous cell carcinoma

verfasst von: Xiaofei Zhang, Xi Yang, Jianjiao Ni, Yida Li, Liqing Zou, Li Chu, Xiao Chu, Fan Xia, Zhengfei Zhu

Erschienen in: Radiation Oncology | Ausgabe 1/2018

Abstract

Background

Elective use of radiation therapy to treat regionally involved lymph nodes (LNs) after radical surgery for esophageal squamous cell carcinoma (ESCC) is controversial. We studied metastasis patterns through a pooled analysis of published results to guide post-operative radiotherapy (PORT) target designation.

Methods

We searched the MEDLINE database for literature published from May 1977 to March 2018, and found 14 relevant original studies that included 2738 patients with thoracic ESCC. We calculated probabilities of recurrence and metastasis in local (including anastomoses and tumor bed), LNs and distal areas.

Results

Recurrence rates were 1.88% for local, 13.18% for distal, and 22.16% for LNs. Within LNs, recurrence rates were cervical/supraclavicular: 37.69%, upper mediastinal: 44.30%, middle mediastinal: 21.81%, lower mediastinal: 2.57%, abdominal paraaortic: 25% and upper abdominal: 9.56%. Whereas cervical/supraclavicular and upper mediastinal LNs had the highest recurrence rates, abdominal LNs also had high recurrence rates in patients with lower thoracic ESCC.

Conclusions

PORT volume should include the cervical/supraclavicular and upper mediastinal LNs for all thoracic ESCC, and abdominal paraaortic LNs for lower thoracic ESCC. Anastomoses and tumor beds should not be included in the PORT volume if they are not adjacent to the PORT-LN regions. Upper abdominal LNs might not necessarily be included in the PORT volume for thoracic ESCC.

Introduction

Although incidence rates for esophageal adenocarcinoma have been increasing in several Western countries, esophageal squamous cell carcinoma (ESCC) is the most common histological type in Asian countries, such as China, where it accounts for more than 90% of esophageal carcinoma cases [1].
Currently, surgery is the mainstay treatment for ESCC, but the overall treatment outcomes have not been satisfactory, with recurrence rates as high as 40–50% after radical surgery [2]. Locoregional recurrence is the most frequent recurrence pattern in ESCC even after definitive lymph node (LN) dissection [3, 4]. Several studies have shown that postoperative radiotherapy (PORT) can improve locoregional control in ESCC patients who undergo surgery [57]. However, these studies found no improved overall survival benefits among their total study cohorts and could therefore support no consensus for the use of PORT in ESCC [8]. However, a survival benefit was found in subgroup analysis, which indicated that further studies of PORT in this setting were warranted.
Defining reasonable target volume is very important in optimizing PORT, but no consensus on target volume for PORT in ESCC is yet available. We believe that identifying patterns of locoregional failure after surgery can help establish optimal PORT target volume, which prompted us to perform the present pooled analysis based on published data.

Material and methods

We searched through PubMed for original investigations of patterns of failure after radical surgery in patients with ESCC that were published from May 1977 to March 2018. The PubMed database was chosen because it is the most widely used resource for medical literature and indexes only peer-reviewed biomedical literature.
The search strategy used the following key words in various combinations: “esophageal carcinoma”, “esophageal cancer”, “recurrence”, “LN”, “surgery”, and “resection”. The logic used for the search was “(((((esophageal cancer) OR esophageal carcinoma)) AND ((resection) OR surgery)) AND LN) AND recurrence)))))”. The inclusion criteria for the studies were (a) they described patterns of recurrence after radical surgery among patients with ESCC; (b) they should include patients with thoracic ESCC or predominantly thoracic ESCC, which would account for at least 90% of the study population; and (c) the studies were available as full texts, in English. We excluded studies in which one field lymphadenectomy or no lymphadenectomy was performed. If we found more than one article that used the same database, only the most suitable article was chosen for analysis. We also supplemented correlative articles by reading the references included in the reviews.
In our analysis, treatment failure was divided into local, regional, and distant failure. Local failure included esophagus, tumor bed, and anastomotic stoma. Regional failure included the regional LNs extending from peri-esophageal cervical to celiac LNs, according to the AJCC (7th edition) staging system; everything else was considered distant failure.
For regional failure, LN regions were first divided into cervical/supraclavicular, mediastinal and abdominal. For appropriate studies, we also performed analyses based on the mediastinal LN classification as upper, middle, and lower mediastinal LNs in parallel with the classification of their location at the esophagus, as described elsewhere [9]. The abdominal LN classification was divided into the upper abdominal and abdominal para-aortic LNs, as suggested by Doki et al. [10].
Whereas some previous studies enrolled only patients with recurrence, others offered continuous data from a consecutive series of patients with or without relapse. Therefore, we used two statistical variables: (a) recurrence rate, which was based on continuous patient data and represented the proportion of patients with recurrences at specific sites among all enrolled patients (with or without recurrence); and (b) the recurrence ratio, which represented the proportion of patients with recurrences at specific sites among all patients with recurrence. To determine the general recurrence rates of local, regional, and distant recurrences, we include studies that provided continuous patient data (including recurrent and non-recurrent patient data) and recurrence data for at least one of the LNs, local (tumor bed and anastomoses) and/or distal metastasis. Because most recurrences were in LNs, we explored the recurrence ratios of different LN regions using appropriate studies that reported total LN recurrence data and recurrence data for at least one of cervical/supraclavicular, upper mediastinal, middle mediastinal, lower mediastinal, abdominal paraaortic, and/or upper abdominal LNs. P < 0.05 was considered significant.

Results

The initial search resulted in the identification of 1028 citations. The title and abstract of each retrieved publication were reviewed to confirm that the article reported on the incidence of recurrence patterns, including LN positivity in thoracic ESCC patients after radical surgery. If this approach was not informative, the full article was retrieved and reviewed in detail. We finally excluded 1012 studies and selected 14 studies (Fig. 1, Additional file 1: Table S1) [1023], which included 2738 patients with thoracic ESCC who were treated with radical surgery, and of whom 1643 patients suffered recurrence or metastasis.
Pooled analysis of the 10 selected studies showed that LN recurrence rates were regional: 22.16%, local: 1.88%, and distal: 13.18% (Table 1). Eleven studies were selected for calculating recurrence ratios for cervical/supraclavicular LNs [1014, 1722], 6 for upper mediastinal LNs [1012, 14, 17, 22], 5 for middle and lower mediastinal LNs [10, 11, 14, 17, 22], and 2 for abdominal para-aortic and upper abdominal LNs (Table 2, Fig. 2) [10, 17].
Table 1
Recurrence pattern summary using recurrence rate
Study No.
Total sample size
LN Rec
Local
Distal Meta
2
90
18/90
2/90
20/90
3
414
160/414
13/414
49/414
4
501
121/501
13/501
72/501
6
112
37/112
1/112
7/112
8
70
15/70
*
*
9
196
51/196
1/196
44/196
10
174
34/174
1/174
29/174
11
685
74/685
19/685
47/685
12
208
29/208
8/208
32/208
rate%
 
22.16
1.88
13.18
*Not attainable from the literature
Table 2
Recurrence pattern summary using recurrence ratio
Study No.
LN Rec
Cervical supraclavicular LN
Upper Med LN
middle Med LN
lower Med LN
Abdominal paraaortic
Upper abdominal
1
126
55/126
93/126
50/126
2/126
*
*
2
18
3/18
3/18
*
*
*
*
3
160
61/160
*
*
*
*
*
4
121
34/121
30/121
9.5/121
9.5/121
30/121
8/121
5
79
35/79
18/79
21/79
2/79
*
*
8
15
10/15
6/15
3/15
0/15
4/15
5/15
9
51
8/51
*
*
*
*
*
10
34
10/34
*
*
*
*
*
11
74
50/74
*
*
*
*
*
12
29
3/29
*
*
*
*
*
13
106
37/106
56/106
14/106
0/106
*
*
ratio
 
317/841
206/465
97.5/447
11.5/447
34/136
13/136
%
 
37.69
44.30
21.81
2.57
25.0
9.56
*Not attainable from the literature
Among studies that reported total recurrence data for patients and for the respective cervical, supraclavicular, upper mediastinal, middle mediastinal, lower mediastinal, abdominal paraaortic, and upper abdominal LN regions, two studies reported findings for upper thoracic ESCC [10, 13], three for middle thoracic ESCC, [10, 13, 23], and three for lower thoracic ESCC [10, 11, 22] (Table 3, Fig. 3).
Table 3
Recurrence pattern of upper/middle/lower squamous esophageal carcinoma using recurrence ratio
Study No.
Total Recurrence Size
Cervical supraclavicular LN
Upper Med LN
Middle Med LN
lower Med LN
Abdominal paraaortic
Upperabdominal
1
16
9/16
*
*
*
*
*
4
43
9/43
6/43
2/43
2/43
1/43
0/43
U(%)^
 
0.3051
0.1395
0.0465
0.0465
0.0233
0
1
92
40/92
*
*
*
*
*
4
141
20/141
19/141
4.5/141
4.5/141
7/141
4/141
14
338
96/338
*
88/338
*
*
*
M(%)^
 
0.2575
0.1348
0.0319
0.0319
0.0496
0.0284
1
18
6/18
*
*
*
*
*
4
109
5/109
5/109
3/109
3/109
22/109
4/109
13
108
37/108
56/108
14/108
0/108
*
*
L (%)^
 
0.2043
0.2811
0.0783
0.0138
0.2018
0.0367
*Not attainable from the literature. U upper, M middle, L lower

Discussion

To our knowledge, this is the first pooled analysis of recurrence patterns after radical surgery among patients with thoracic ESCC. We found locoregional recurrence to be the most common recurrence pattern after radical surgery for thoracic ESCC at 24%, which was more than for distant metastases (13%), and is consistent with previous studies [19]. This finding indicates that PORT would useful in selected cases. Our study also showed that local sites (tumor beds and anastomoses) accounted for 1.88% of recurrences, compared with regional LNs at 22.16%, which implies that PORT should focus on regional LNs.
The esophagus lymphatic pathways consist of abundant lymphatics that form a dense submucosal plexus that transversally penetrates the esophageal wall and drains into adjacent LNs, and also has more longitudinal communication. This system is not segmental; therefore, LN metastases from thoracic ESCC tend to be widely dispersed [2426]. With this in mind, a large T-shaped radiation field was first used, encompassing the tumor bed, bilateral cervical and supraclavicular areas, mediastinal LNs, site of anastomosis, and the left gastric LNs. However, such a large field can induce a relatively high rate of radiation toxicity [5]. Although several studies [7, 2731] show the feasibility of using a reduced irradiation field in thoracic ESCC, no consensus on optimal target volume for PORT in thoracic ESCC has been reached.
Because surgical procedure would also influence the pattern of locoregional recurrence, we think that the locoregional recurrence pattern after surgery is more useful in guiding the PORT target designation directly than is the LN metastatic model. In this study, the cervical and supraclavicular areas and the upper mediastinal area had the highest recurrence rates compared with every other thoracic ESCC location. This might be partly because the incidences of LN metastasis was highest in all locations of the thoracic ESCC, and partly because of the difficulty of performing en bloc lymphadenectomies in the cervical and supraclavicular areas and in the upper mediastinal area, which are rich in nerves and large blood vessels. However, even the total incidence of LN metastases was high for the middle- and lower-thoracic ESCC, whereas incidences of recurrence in middle and lower mediastinum LNs were low. This might be partly because lymphadenectomy may be readily performed en bloc in the middle and lower mediastinum. In patients with lower thoracic ESCC, we found that the abdominal LN region was also an area of greater recurrence, which had recurrence rates similar to the cervical and supraclavicular region. However, when we performed further analysis, which divided the abdominal LNs into upper abdominal and abdominal para-aortic LNs, the abdominal para-aortic LN area was found to have a much higher recurrence rate than the upper abdominal LN area; this was also demonstrated in a phase III trial [5], in which the upper abdominal LN region was included in the PORT field, but recurrences in the upper abdominal LN were not reduced by PORT compared with surgery alone. This finding suggests that the upper abdominal LN region need not necessarily be encompassed in the PORT volume for thoracic ESCC.
Our study had some limitations. All of the studies included in this pooled analysis were retrospective; therefore, recurrence rates in different regions might not be accurate because of insufficient follow-up in some studies. To partly compensate for this fault for the LN recurrence pattern, we mainly used the recurrence ratio as the parameter that was analyzed only in recurrent patients, instead of using recurrence rates for all patients, which could avoid underestimation because of insufficient follow-up in some studies. We also could not explore predictive factors for locoregional recurrence based on the current information; thus, this study cannot provide information needed in selecting suitable patients for PORT. Although this subject is beyond the scope of the present study, additional studies, especially randomized clinical trials to explore predictive factors in selecting suitable patients for PORT, based on the normative irradiation target volume are warranted.
In our analysis, we included some studies in which some patients had received PORT, which might partly change the patterns of failure. However, because PORT has not been approved to be a worldwide standard of care for thoracic ESCC, these studies might have a variety of PORT target volume designs. Because we were not willing to omit high-risk LN recurrence areas even after PORT, we did not exclude the studies in which PORT was conducted only for some patients. Instead, we did further analyses based on studies with no PORT or PORT in not more than 10% of patients (Additional file 1: Tables S2–S4), and found the patterns of failure were not changed (Additional file 1: Figure S1).
In most of the included studies, the detailed information about postoperative chemotherapy were not provided. Although postoperative chemotherapy might reduce the local recurrence rate and metastasis rate for ESCC, we think postoperative chemotherapy will not significantly change spatial recurrence patterns, because chemotherapy is a systemic therapy that acts throughout the body. Furthermore, the systemic chemotherapy and local radiotherapy are not mutually exclusive; many patients need both after surgery.

Conclusion

Taken together, we recommend that PORT volume include the cervical and supraclavicular LN areas and the upper mediastinal LN area for thoracic ESCC, as well as the abdominal para-aortic LNs for lower thoracic ESCC. The anastomoses and tumor beds should not be included in the PORT volume if they are not adjacent to the PORT-LN regions.

Acknowledgments

We thank Mark Abramovitz, PhD, from Liwen Bianji, Edanz Group China (www.​liwenbianji.​cn/​ac), for editing the English text of a draft of this manuscript.

Funding

This work was sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, and Foundation of Shanghai Municipal Commission of Health and Family Planning (No.201540211).

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
Not applicable.
Not applicable.

Competing interests

The authors declare no conflict of interest.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRef Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRef
2.
Zurück zum Zitat Mirinezhad SK, Somi MH, Seyednezhad F, Jangjoo AG, Ghojazadeh M, et al. Survival in patients treated with definitive chemo-radiotherapy for nonmetastatic esophageal cancer in north- West Iran. Asian Pac J Cancer Prev. 2013;14:1677–80.CrossRef Mirinezhad SK, Somi MH, Seyednezhad F, Jangjoo AG, Ghojazadeh M, et al. Survival in patients treated with definitive chemo-radiotherapy for nonmetastatic esophageal cancer in north- West Iran. Asian Pac J Cancer Prev. 2013;14:1677–80.CrossRef
3.
Zurück zum Zitat Giuli R, Gignoux M. Treatment of carcinoma of the esophagus. Retrospective study of 2,400 patients. Ann Surg. 1980;192:44–52.CrossRef Giuli R, Gignoux M. Treatment of carcinoma of the esophagus. Retrospective study of 2,400 patients. Ann Surg. 1980;192:44–52.CrossRef
4.
Zurück zum Zitat Katayama A, Mafune K, Tanaka Y, et al. Autopsy findings in patients after curative esophagectomy for esophageal carcinoma. J Am Coll Surg. 2003;196:866–73.CrossRef Katayama A, Mafune K, Tanaka Y, et al. Autopsy findings in patients after curative esophagectomy for esophageal carcinoma. J Am Coll Surg. 2003;196:866–73.CrossRef
5.
Zurück zum Zitat Xiao ZF, Yang ZY, Miao YJ, et al. Influence of number of metastatic lymph nodes on survival of curative resected thoracic esophageal cancer patients and value of radiotherapy: report of 549 cases. Int J Radiat Oncol Biol Phys. 2005;62:82–90.CrossRef Xiao ZF, Yang ZY, Miao YJ, et al. Influence of number of metastatic lymph nodes on survival of curative resected thoracic esophageal cancer patients and value of radiotherapy: report of 549 cases. Int J Radiat Oncol Biol Phys. 2005;62:82–90.CrossRef
6.
Zurück zum Zitat Chen JQ, Zhu J, Pan JJ, et al. Postoperative radiotherapy improved survival of poor prognostic squamous cell carcinoma esophagus. Ann Thorac Surg. 2010;90:435–42.CrossRef Chen JQ, Zhu J, Pan JJ, et al. Postoperative radiotherapy improved survival of poor prognostic squamous cell carcinoma esophagus. Ann Thorac Surg. 2010;90:435–42.CrossRef
7.
Zurück zum Zitat Chen JQ, Pan JJ, Zheng XW, et al. Number and location of positive nodes, postoperative radiotherapy, and survival after esophagectomy with three-field lymph node dissection for thoracic esophageal squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 2012;82:475–82.CrossRef Chen JQ, Pan JJ, Zheng XW, et al. Number and location of positive nodes, postoperative radiotherapy, and survival after esophagectomy with three-field lymph node dissection for thoracic esophageal squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 2012;82:475–82.CrossRef
9.
Zurück zum Zitat Zhu Z, Yu W, Li H, et al. Nodal skip metastasis is not a predictor of survival in thoracic esophageal squamous cell carcinoma. Ann Surg Onco. 2013;20(9):3052–8.CrossRef Zhu Z, Yu W, Li H, et al. Nodal skip metastasis is not a predictor of survival in thoracic esophageal squamous cell carcinoma. Ann Surg Onco. 2013;20(9):3052–8.CrossRef
10.
Zurück zum Zitat Doki Y, Ishikawa O, Takachi K, et al. Association of the Primary Tumor Location with the site of tumor recurrence after curative resection of thoracic esophageal Carcinoma. World J Surg. 2005;29:700–7.CrossRef Doki Y, Ishikawa O, Takachi K, et al. Association of the Primary Tumor Location with the site of tumor recurrence after curative resection of thoracic esophageal Carcinoma. World J Surg. 2005;29:700–7.CrossRef
11.
Zurück zum Zitat Li C, Zhang F. Characteristics of recurrence after radical esophagectomy with two-field lymph node dissection for thoracic esophageal cancer. Oncol Lett. 2013;5:355–9.CrossRef Li C, Zhang F. Characteristics of recurrence after radical esophagectomy with two-field lymph node dissection for thoracic esophageal cancer. Oncol Lett. 2013;5:355–9.CrossRef
12.
Zurück zum Zitat Bhansali MS, Fujita H. Pattern of recurrence after extended radical Esophagectomy with three-field lymph node dissection for squamous cell carcinoma in the thoracic esophagus. World J Surg. 1997;21:275–81.CrossRef Bhansali MS, Fujita H. Pattern of recurrence after extended radical Esophagectomy with three-field lymph node dissection for squamous cell carcinoma in the thoracic esophagus. World J Surg. 1997;21:275–81.CrossRef
14.
Zurück zum Zitat Guo X, Mao T, et al. Clinical study on postoperative recurrence in patients with pN1 esophageal squamous cell carcinoma. Thoracic Cancer. 2015;6:146–50.CrossRef Guo X, Mao T, et al. Clinical study on postoperative recurrence in patients with pN1 esophageal squamous cell carcinoma. Thoracic Cancer. 2015;6:146–50.CrossRef
15.
Zurück zum Zitat Guo X, Mao T, et al. Clinical study on postoperative recurrence in patients with pN0 esophageal squamous cell carcinoma. J Cardiothorac Surg. 2014;9:150.CrossRef Guo X, Mao T, et al. Clinical study on postoperative recurrence in patients with pN0 esophageal squamous cell carcinoma. J Cardiothorac Surg. 2014;9:150.CrossRef
16.
Zurück zum Zitat Chen X, Chen T-w. Patterns of lymph node recurrence after radical surgery impacting on survival of patients with pT1-3N0M0 thoracic esophageal squamous cell carcinoma. J Korean Med Sci. 2014;29:217–23.CrossRef Chen X, Chen T-w. Patterns of lymph node recurrence after radical surgery impacting on survival of patients with pT1-3N0M0 thoracic esophageal squamous cell carcinoma. J Korean Med Sci. 2014;29:217–23.CrossRef
17.
Zurück zum Zitat Hiromasa Fujita MD, Teruo Kakegawa MD. Lymph node metastasis and recurrence in patients with a carcinoma of the thoracic esophagus who underwent three-field dissection. World J Surg. 1994;18:266–72.CrossRef Hiromasa Fujita MD, Teruo Kakegawa MD. Lymph node metastasis and recurrence in patients with a carcinoma of the thoracic esophagus who underwent three-field dissection. World J Surg. 1994;18:266–72.CrossRef
18.
Zurück zum Zitat Gang C, Wang Z. Recurrence patterns of esophageal Cancer after Ivor-Lewis Esophagectomy—a report of 196 cases. Chinese Journal of Cancer. 2006;25(1):96–9. Gang C, Wang Z. Recurrence patterns of esophageal Cancer after Ivor-Lewis Esophagectomy—a report of 196 cases. Chinese Journal of Cancer. 2006;25(1):96–9.
19.
Zurück zum Zitat Nakagawa S, Kanda T. Recurrence pattern of squamous cell carcinoma of the thoracic esophagus after extended radical Esophagectomy with three-field lymphadenectomy. J Am Coll Surg. 2004;198:205–11.CrossRef Nakagawa S, Kanda T. Recurrence pattern of squamous cell carcinoma of the thoracic esophagus after extended radical Esophagectomy with three-field lymphadenectomy. J Am Coll Surg. 2004;198:205–11.CrossRef
20.
Zurück zum Zitat Cai W-J, Xin P-L. Pattern of relapse in surgical treated patients with thoracic esophageal squamous cell carcinoma and its possible impact on target delineation for postoperative radiotherapy. Radiother Oncol. 2010;96:104–7.CrossRef Cai W-J, Xin P-L. Pattern of relapse in surgical treated patients with thoracic esophageal squamous cell carcinoma and its possible impact on target delineation for postoperative radiotherapy. Radiother Oncol. 2010;96:104–7.CrossRef
21.
Zurück zum Zitat Natsugoe S, Matsumoto M. Clinical course and outcome after esophagectomy with three-field lymphadenectomy in esophageal cancer. Langenbeck's Arch Surg. 2010;395:341–6.CrossRef Natsugoe S, Matsumoto M. Clinical course and outcome after esophagectomy with three-field lymphadenectomy in esophageal cancer. Langenbeck's Arch Surg. 2010;395:341–6.CrossRef
22.
Zurück zum Zitat Liu J, Cai X, Liu Q, et al. Characteristics of the local recurrence pattern after curative resection and values in target region delineation in postoperative radiotherapy for lower thoracic esophageal squamous cell cancer. Thoracic Cancer. 2017;8:630–3.CrossRef Liu J, Cai X, Liu Q, et al. Characteristics of the local recurrence pattern after curative resection and values in target region delineation in postoperative radiotherapy for lower thoracic esophageal squamous cell cancer. Thoracic Cancer. 2017;8:630–3.CrossRef
23.
Zurück zum Zitat Wang X, Luo Y, Li M, et al. Recurrence pattern of squamous cell carcinoma in the midthoracic esophagus: implications for the clinical target volume design of postoperative radiotherapy. OncoTargets and Therapy. 2016;9:6021–7.CrossRef Wang X, Luo Y, Li M, et al. Recurrence pattern of squamous cell carcinoma in the midthoracic esophagus: implications for the clinical target volume design of postoperative radiotherapy. OncoTargets and Therapy. 2016;9:6021–7.CrossRef
24.
Zurück zum Zitat Tachibana M, Kinugasa S, Shibakita M, Tonomoto Y, Hattori S, et al. Surgical treatment of superficial esophageal cancer. Langenbeck's Arch Surg. 2006;391:304–21.CrossRef Tachibana M, Kinugasa S, Shibakita M, Tonomoto Y, Hattori S, et al. Surgical treatment of superficial esophageal cancer. Langenbeck's Arch Surg. 2006;391:304–21.CrossRef
25.
Zurück zum Zitat Chen J, Liu S, Pan J, Zheng X, Zhu K, et al. The pattern and prevalence of lymphatic spread in thoracic oesophageal squamous cell carcinoma. Eur J Cardiothorac Surg. 2009;36:480–6.CrossRef Chen J, Liu S, Pan J, Zheng X, Zhu K, et al. The pattern and prevalence of lymphatic spread in thoracic oesophageal squamous cell carcinoma. Eur J Cardiothorac Surg. 2009;36:480–6.CrossRef
26.
Zurück zum Zitat Huang W, Li B, Gong H, Yu J, Sun H, et al. Pattern of lymph node metastases and its implication in radiotherapeutic clinical target volume in patients with thoracic esophageal squamous cell carcinoma: a report of 1077 cases. Radiother Oncol. 2010;95:229–33.CrossRef Huang W, Li B, Gong H, Yu J, Sun H, et al. Pattern of lymph node metastases and its implication in radiotherapeutic clinical target volume in patients with thoracic esophageal squamous cell carcinoma: a report of 1077 cases. Radiother Oncol. 2010;95:229–33.CrossRef
27.
Zurück zum Zitat Ténière P, Hay J-M, Fingerhut A, et al. Postoperation radiation therapy does not increase survival after curative resection for squamous cell carcinoma of the middle and lower esophagus as shown by a multicenter controlled trial. Surg Gynecol Obstet. 1991;173:123–30.PubMed Ténière P, Hay J-M, Fingerhut A, et al. Postoperation radiation therapy does not increase survival after curative resection for squamous cell carcinoma of the middle and lower esophagus as shown by a multicenter controlled trial. Surg Gynecol Obstet. 1991;173:123–30.PubMed
28.
Zurück zum Zitat Mei ZR, Xiang QC, Wu WJ, et al. Randomized controlled trial of prophylactic radiotherapy for postoperative esophageal carcinoma. Chin J Radiat Oncol. 1997;6:188–9. Mei ZR, Xiang QC, Wu WJ, et al. Randomized controlled trial of prophylactic radiotherapy for postoperative esophageal carcinoma. Chin J Radiat Oncol. 1997;6:188–9.
29.
Zurück zum Zitat Fok M, Sham JS, Choy D, et al. Postoperative radiotherapy for carcinoma of the esophagus: a prospective, randomized controlled study. Surgery. 1993;113:138–47.PubMed Fok M, Sham JS, Choy D, et al. Postoperative radiotherapy for carcinoma of the esophagus: a prospective, randomized controlled study. Surgery. 1993;113:138–47.PubMed
30.
Zurück zum Zitat Bédard EL, Inculet RI, Malthaner RA. The role of surgery and postoperative chemoradiation therapy in patients with lymph node positive esophageal carcinoma. Cancer. 2001;91:2423–30.CrossRef Bédard EL, Inculet RI, Malthaner RA. The role of surgery and postoperative chemoradiation therapy in patients with lymph node positive esophageal carcinoma. Cancer. 2001;91:2423–30.CrossRef
31.
Zurück zum Zitat Nishimura Y, Ono K, Imamura M, et al. Postoperative radiation therapy for esophageal cancer. Radiat Med. 1989;7:88–94.PubMed Nishimura Y, Ono K, Imamura M, et al. Postoperative radiation therapy for esophageal cancer. Radiat Med. 1989;7:88–94.PubMed
Metadaten
Titel
Recommendation for the definition of postoperative radiotherapy target volume based on a pooled analysis of patterns of failure after radical surgery among patients with thoracic esophageal squamous cell carcinoma
verfasst von
Xiaofei Zhang
Xi Yang
Jianjiao Ni
Yida Li
Liqing Zou
Li Chu
Xiao Chu
Fan Xia
Zhengfei Zhu
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Radiation Oncology / Ausgabe 1/2018
Elektronische ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-018-1199-3

Weitere Artikel der Ausgabe 1/2018

Radiation Oncology 1/2018 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.