Skip to main content
Erschienen in: BMC Ophthalmology 1/2020

Open Access 01.12.2020 | Technical advance

Rectangular loop suture to correct iris capture of the posterior chamber intraocular lens

verfasst von: Ke Lin, Zhixiang Hu, Zhong Lin, Tianyu Chen, Yongping Tang, Ronghan Wu

Erschienen in: BMC Ophthalmology | Ausgabe 1/2020

Abstract

Background

To report a new technique for iris capture of the posterior chamber intraocular lens (IOL) implanted in patients with a posterior capsule defect.

Methods

In this retrospective case series, a rectangular loop ciliary body suture technique was performed to rectify iris capture. The suture passes between the IOL and iris in a direction perpendicular to the iris edge capturing the IOL.

Results

A total of three IOLs with iris capture underwent a rectangular loop suture technique. No recapture was observed postoperatively. In one case, large astigmatism appeared after the surgery but recovered at 1 month post operation. No further complications were found.

Conclusions

The rectangular loop suture technique is an effective, convenient, and minimally invasive method for iris capture of the IOL.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
IOL
Intraocular lens
IOP
Intraocular pressure

Background

In eyes with a capsular defect, intracapsular intraocular lens (IOL) implantation is not possible. Accordingly, several alternative surgical techniques can be applied, including transscleral IOL fixation, sutureless intrascleral fixation, and the scleral hook technique [13]. While these have proven to be safe and effective, some complications remain, including suture breakage, IOL tilt or dislocation, haptic slip, and iris capture [46]. Cho and Yu reported an incidence of iris capture of 23% in patients who underwent combined scleral IOL fixation and pars plana vitrectomy. Iris capture leads to blurred vision, photophobia, and dull pain. Moreover, iritis and secondary glaucoma may occur during long-term iris capture [7].
Iris capture of the IOL may be caused by pupil dilation [8], IOL deviation or tilt, a floppy iris [9], or reverse pupillary block [10]. Although pupil dilation or laser iridotomy of a reverse pupillary block are useful for iris capture, their success rates are relatively low [1113]. When iris capture is not resolved by these techniques, surgical techniques can be applied, including IOL repositioning [12] and exchange [14]. However, these surgeries cause relatively large injuries and can result in bleeding and corneal endothelium loss. We performed a minimally invasive technique for three cases, and no iris recapture was observed post surgery.

Methods

Surgical technique

First, we design the route of sutures according to the appearance of patient’s anterior segment. The sutures are perpendicular to the iris edge capturing the IOL preoperatively. For example, the direction of sutures in Fig. 1 is 7:30 to 1:30 o’clock. After retrobulbar anesthesia, conjunctival incisions are made at the limbus from 1 to 2 o’clock and 7 to 8 o’clock to expose the sclera areas where the needles are going to be inserted through. Nonabsorbable 10–0 nylon suture with long straight needles is used. The needle is inserted into posterior chamber 2 mm behind the limbus at 1 o’clock, between the iris plane and IOL optic, and is externalized at 8 o’clock 2 mm behind the limbus with the assistance of a 26-gauge needle (Fig. 2a). Subsequently, the needle is inserted at 7 o’clock and withdrawn at 2 o’clock in the same manner (Fig. 2b). The suture is knotted and the knot is buried by rotating the loop into the vitreous cavity to avoid postoperative conjunctival irritation (Fig. 2c). The conjunctival incisions are sutured with 8–0 absorbable thread (Fig. 2d).

Results

Case 1-left eye

A 35-year-old female was diagnosed with bilateral subluxated lenses and underwent successful vitrectomy, phacoemulsification, and IOL intrascleral fixation for the left eye. After 3 months, the patient complained of a dull pain in the left eye and was diagnosed with iris capture of the IOL. Tropicamide and pilocarpine drops were given at 15-min intervals, and the iris capture was soon alleviated, but it reappeared within a few days. The IOL was subsequently repositioned to the pars plana to achieve a greater separation of the IOL and iris. Iris capture reappeared 1 month after the surgery, as shown in Fig. 3a. After 21 months, rectangular loop suture surgery was performed for the left eye. The corrected visual acuity was 0.4 (− 2.25/− 2.00 × 5) preoperatively and improved to 0.5 one month after the surgery. Large astigmatism (− 1.00/− 5.50 × 165) appeared after the surgery, with the astigmatism axis almost perpendicular to the suture direction. The astigmatism decreased to 2.75 D at the one-month visit and to 2.25 D at the 9-month visit.

Case 1-right eye

The patient was similarly diagnosed with iris capture in the right eye 17 months after vitrectomy, phacoemulsification, and IOL intrascleral fixation. Rectangular loop suture surgery was performed on this eye 20 months later. Figure 4 shows the postoperative ultrasound biomicroscopy image of the right eye. The corrected visual acuity improved from 0.5 (− 3.00/− 1.50 × 180) to 0.6 (− 3.00/− 1.25 × 170) at the one-month visit.

Case 2

A 72-year-old female who complained of distending pain in the right eye with accompanying nausea for half a month was diagnosed with iris capture of the IOL. The patient had undergone vitrectomy, IOL removal, and IOL intrascleral fixation one year earlier for IOL complete luxation. The preoperative corrected visual acuity was 0.16 (− 4.50/− 1.00 × 175) and the preoperative intraocular pressure (IOP) was 14.6 mmHg. We performed a rectangular loop suture on this patient. The suture was applied in the directions of 1:00 to 8:30 o’clock and 2:30 to 7:00 o’clock. The visual acuity was maintained at 0.16 (− 4.50/− 2.00 × 175) 3 months later. No recurrence was observed post surgery.

Discussion

Iris capture is a common complication of IOL implantation for eyes with a capsule defect. It may be related to pupil dilation, IOL deviation or tilt, a floppy iris, or reverse pupillary block [810]. Mydriasis and subsequent miosis can release the iris capture, but recurrence is not uncommon, as seen in the right eye of case 1. Choi et al. [12] reported laser iridotomy as one treatment for iris capture, however, with only a 60% success rate. Moreover, surgical techniques are available for failed cases, which include the previously described strategies of IOL repositioning and IOL exchange. In Choi et al.’s study, IOL repositioning was used in 10 eyes, but was successful in only 4 eyes. In one of the failed eyes, the IOL was subluxated and subsequently treated by refixation, but iris capture was still present. A similar case was presented in the present report (left eye of case 1). The IOL was moved from 2 mm behind the limbus to 3.5 mm by an intrascleral fixation technique. However, iris capture reoccurred after this surgery. This failure may have been related to the relaxed iris and increased pupil size under dark conditions. IOL exchange is not commonly used because of the resulting large injuries. Yoo et al. reported a new IOL transscleral suture fixation technique, which they named the H technique [15]. The suture forms a barrier between the lens and the iris to avoid postoperative iris capture, the incidence of which was 2.5%. However, a complication of their technique must be considered, whereby the direction of the H suture was fixed and unchangeable after IOL fixation, such that iris capture may occur at the point where no suture passes.
The new rectangular loop suture technique prevents iris recapture by forming a barrier between the IOL optic and the iris, which is similar to H technique. However, with a well-designed suture direction, our technique is more individualized and precise. The applied direction was calculated according to the appearance of the iris capture before the surgery, as shown in Fig. 1. In case 1, we found that the iris capture tended to occur repeatedly in the same region of the iris, thus the suture was designed to pass behind this part of iris to prevent recurrence. However, more cases should be observed to verify this hypothesis. This technique can also correct the IOL rotation around the coronal axis by the contact between sutures and IOL optic. However, it is incapable to correct the other types of IOL dislocation.
Rho et al. [16] evaluated the influence of across-pupil sutures on the IOL optical quality and found no difference with or without sutures. In the present cases, the distance between two sutures was 3–4 mm, avoiding the central region of the pupil, thus no abnormal vision problems occurred post surgery.
During the operation, adequate attention should be focused on the IOP. When the pressure is insufficient during suturing, a large astigmatism will occur post surgery because of intraocular pressure recovery and the tightness of the suture. Astigmatism will decrease within several months, as shown in case 1.

Conclusion

Our minimally invasive technique of rectangular loop suture can efficiently solve the complication of iris capture and is easy to perform.

Acknowledgements

We thank Robert Blakytny, DPhil, from Liwen Bianji, Edanz Editing China (www.​liwenbianji.​cn/​ac), for editing the English text of a draft of this manuscript.
This study was approved by the Ethics Committee of the Eye Hospital of Wenzhou Medical University. All the participants signed a written consent form.
All the patients included in this study gave written consent for their personal or clinical details along with any identifying images to be published in this study.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Grehn F, Sundmacher R. Fixation of posterior chamber lenses by transscleral sutures: technique and preliminary results. Arch Ophthalmol. 1989;107(7):954–5.PubMed Grehn F, Sundmacher R. Fixation of posterior chamber lenses by transscleral sutures: technique and preliminary results. Arch Ophthalmol. 1989;107(7):954–5.PubMed
2.
Zurück zum Zitat Gabor SGB, Pavlidis MM. Sutureless intrascleral posterior chamber intraocular lens fixation. J Cataract Refract Surg. 2007;33(11):1851–4.PubMed Gabor SGB, Pavlidis MM. Sutureless intrascleral posterior chamber intraocular lens fixation. J Cataract Refract Surg. 2007;33(11):1851–4.PubMed
3.
Zurück zum Zitat Hu ZX, Lin HS, Ye L, Lin Z, Chen T, Lin K, Wu RH. Sutureless Intrascleral haptic-hook Lens implantation using 25-gauge trocars. J Ophthalmol. 2018;2018:9250425.PubMedPubMedCentral Hu ZX, Lin HS, Ye L, Lin Z, Chen T, Lin K, Wu RH. Sutureless Intrascleral haptic-hook Lens implantation using 25-gauge trocars. J Ophthalmol. 2018;2018:9250425.PubMedPubMedCentral
4.
Zurück zum Zitat Teichmann KD, Teichmann IA. The torque and tilt gamble. J Cataract Refract Surg. 1997;23(3):413–8.PubMed Teichmann KD, Teichmann IA. The torque and tilt gamble. J Cataract Refract Surg. 1997;23(3):413–8.PubMed
5.
Zurück zum Zitat Cho BJ, Yu HG. Surgical outcomes according to vitreous management after scleral fixation of posterior chamber intraocular lenses. Retina (Philadelphia, Pa). 2014;34(10):1977–84. Cho BJ, Yu HG. Surgical outcomes according to vitreous management after scleral fixation of posterior chamber intraocular lenses. Retina (Philadelphia, Pa). 2014;34(10):1977–84.
6.
Zurück zum Zitat Shen JF, Deng S, Hammersmith KM, Kuo AN, Li JY, Weikert MP, Shtein RM. Intraocular Lens implantation in the absence of Zonular support: an outcomes and safety update: a report by the American Academy of ophthalmology. Ophthalmology. 2020;127(9):1234–58. Shen JF, Deng S, Hammersmith KM, Kuo AN, Li JY, Weikert MP, Shtein RM. Intraocular Lens implantation in the absence of Zonular support: an outcomes and safety update: a report by the American Academy of ophthalmology. Ophthalmology. 2020;127(9):1234–58.
7.
Zurück zum Zitat Kim SK, Lanciano RC Jr, Sulewski ME. Pupillary block glaucoma associated with a secondary piggyback intraocular lens. J Cataract Refract Surg. 2007;33(10):1813–4.PubMed Kim SK, Lanciano RC Jr, Sulewski ME. Pupillary block glaucoma associated with a secondary piggyback intraocular lens. J Cataract Refract Surg. 2007;33(10):1813–4.PubMed
8.
Zurück zum Zitat Lavin M, Jagger J. Pathogenesis of pupillary capture after posterior chamber intraocular lens implantation. Br J Ophthalmol. 1986;70(12):886–9.PubMedPubMedCentral Lavin M, Jagger J. Pathogenesis of pupillary capture after posterior chamber intraocular lens implantation. Br J Ophthalmol. 1986;70(12):886–9.PubMedPubMedCentral
9.
Zurück zum Zitat Bartholomew RS. Incidence, causes, and neodymium: YAG laser treatment of pupillary capture. J Cataract Refract Surg. 1997;23(9):1404–8.PubMed Bartholomew RS. Incidence, causes, and neodymium: YAG laser treatment of pupillary capture. J Cataract Refract Surg. 1997;23(9):1404–8.PubMed
10.
Zurück zum Zitat Higashide T, Shimizu F, Nishimura A, Sugiyama K. Anterior segment optical coherence tomography findings of reverse pupillary block after scleral-fixated sutured posterior chamber intraocular lens implantation. J Cataract Refract Surg. 2009;35(9):1540–7.PubMed Higashide T, Shimizu F, Nishimura A, Sugiyama K. Anterior segment optical coherence tomography findings of reverse pupillary block after scleral-fixated sutured posterior chamber intraocular lens implantation. J Cataract Refract Surg. 2009;35(9):1540–7.PubMed
11.
Zurück zum Zitat Bucci FA Jr, Lindstrom RL. Total pupillary capture with a foldable silicone intraocular lens. Ophthalmic Surg Lasers Imaging Retina. 1991;22(7):414–5. Bucci FA Jr, Lindstrom RL. Total pupillary capture with a foldable silicone intraocular lens. Ophthalmic Surg Lasers Imaging Retina. 1991;22(7):414–5.
12.
Zurück zum Zitat Choi SR, Jeon JH, Kang JW, Heo JW. Risk factors for and management of pupillary intraocular lens capture after intraocular lens transscleral fixation. J Cataract Refract Surg. 2017;43(12):1557–62.PubMed Choi SR, Jeon JH, Kang JW, Heo JW. Risk factors for and management of pupillary intraocular lens capture after intraocular lens transscleral fixation. J Cataract Refract Surg. 2017;43(12):1557–62.PubMed
13.
Zurück zum Zitat Galvis V, Tello A, Montezuma S. Delayed pupillary capture and noninvasive repositioning of a posterior chamber intraocular lens after pupil dilation. J Cataract Refract Surg. 2002;28(10):1876–9.PubMed Galvis V, Tello A, Montezuma S. Delayed pupillary capture and noninvasive repositioning of a posterior chamber intraocular lens after pupil dilation. J Cataract Refract Surg. 2002;28(10):1876–9.PubMed
14.
Zurück zum Zitat Khokhar S, Sethi HS, Sony P, Sudan R, Soni A. Pseudophakic pupillary block caused by pupillary capture after phacoemulsification and in-the-bag AcrySof lens implantation. J Cataract Refract Surg. 2002;28(7):1291–2.PubMed Khokhar S, Sethi HS, Sony P, Sudan R, Soni A. Pseudophakic pupillary block caused by pupillary capture after phacoemulsification and in-the-bag AcrySof lens implantation. J Cataract Refract Surg. 2002;28(7):1291–2.PubMed
15.
Zurück zum Zitat Yoo YJ, Kim ET, Heo JW. Safety barricade suture for preventing pupillary capture of intraocular Lens with scleral fixation: H-technique. Retina. 2016;36(1):206–10.PubMed Yoo YJ, Kim ET, Heo JW. Safety barricade suture for preventing pupillary capture of intraocular Lens with scleral fixation: H-technique. Retina. 2016;36(1):206–10.PubMed
16.
Zurück zum Zitat Rho CR, Kim MJ, Joo CK. Influence of across-pupil sutures on the optical quality of intraocular lenses. Int Ophthalmol. 2018;38(3):909–15.PubMed Rho CR, Kim MJ, Joo CK. Influence of across-pupil sutures on the optical quality of intraocular lenses. Int Ophthalmol. 2018;38(3):909–15.PubMed
Metadaten
Titel
Rectangular loop suture to correct iris capture of the posterior chamber intraocular lens
verfasst von
Ke Lin
Zhixiang Hu
Zhong Lin
Tianyu Chen
Yongping Tang
Ronghan Wu
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Ophthalmology / Ausgabe 1/2020
Elektronische ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-020-01650-3

Weitere Artikel der Ausgabe 1/2020

BMC Ophthalmology 1/2020 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

Ophthalmika in der Schwangerschaft

Die Verwendung von Ophthalmika in der Schwangerschaft und Stillzeit stellt immer eine Off-label-Anwendung dar. Ein Einsatz von Arzneimitteln muss daher besonders sorgfältig auf sein Risiko-Nutzen-Verhältnis bewertet werden. In der vorliegenden …

Operative Therapie und Keimnachweis bei endogener Endophthalmitis

Vitrektomie Originalie

Die endogene Endophthalmitis ist eine hämatogen fortgeleitete, bakterielle oder fungale Infektion, die über choroidale oder retinale Gefäße in den Augapfel eingeschwemmt wird [ 1 – 3 ]. Von dort infiltrieren die Keime in die Netzhaut, den …

Bakterielle endogene Endophthalmitis

Vitrektomie Leitthema

Eine endogene Endophthalmitis stellt einen ophthalmologischen Notfall dar, der umgehender Diagnostik und Therapie bedarf. Es sollte mit geeigneten Methoden, wie beispielsweise dem Freiburger Endophthalmitis-Set, ein Keimnachweis erfolgen. Bei der …

So erreichen Sie eine bestmögliche Wundheilung der Kornea

Die bestmögliche Wundheilung der Kornea, insbesondere ohne die Ausbildung von lichtstreuenden Narben, ist oberstes Gebot, um einer dauerhaften Schädigung der Hornhaut frühzeitig entgegenzuwirken und die Funktion des Auges zu erhalten.   

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.