Skip to main content
Erschienen in: BMC Pediatrics 1/2017

Open Access 01.12.2017 | Case report

Recurrent c.G1636A (p.G546S) mutation of COL2A1 in a Chinese family with skeletal dysplasia and different metaphyseal changes: a case report

verfasst von: Jing Chen, Xiaomin Ma, Yulin Zhou, Guimei Li, Qiwei Guo

Erschienen in: BMC Pediatrics | Ausgabe 1/2017

Abstract

Background

Mutations in the COL2A1 gene cause type II collagenopathies characterized by skeletal dysplasia with a wide spectrum of phenotypic severity. Most COL2A1 mutations located in the triple-helical region, and the glycine to bulky amino acid substitutions (e.g., glycine to serine) in the Gly-X-Y repeat were identified frequently. However, the same COL2A1 mutations are associated with different phenotypes and the genotype-phenotype relationship is still poorly understood. Therefore, the studies of more patients about the recurrent mutations in COL2A1 will be needed for further research to provide more comprehensive clinical and genetic data. In this paper, we report a rare recurrent c.G1636A (p.G546S) mutation in COL2A1 associated with different metaphyseal changes in a Chinese family.

Case presentation

The proband (III-3) was the second child of the family with skeletal dysplasia. She was 2 years and 3 months old with disproportional short stature, short neck, pectus carinatum, genu varum, bilateral pes planus, and obvious waddling gait. Notably, she displayed severe metaphyseal lesions, especially typical “dappling” and “corner fracture” appearance, whereas no particular metaphyseal involvement was detected in the proband’s mother (II-3) and elder sister (III-2) in the family. We identified a heterozygous mutation (c.1636G > A) in COL2A1 in the three patients, causing the substitution of glycine to serine in codon 546. Although the same mutation has been reported in two previous studies, the phenotypes of the previous patients were different from those of our patients, and the characteristic “dappling” and “corner fracture” metaphyseal abnormalities were not reported previously.

Conclusions

In this study, we identified a c.G1636A (p.G546S) mutation in the COL2A1 associated with different metaphyseal changes, which was never reported in the literature. Our findings revealed a different causative amino acid substitution (glycine to serine) associated with the “dappling” and “corner fracture” metaphyseal abnormalities, and may provide a useful reference for evaluating the phenotypic spectrum and variability of type II collagenopathies.
Abkürzungen
SEDC
Spondyloepiphyseal dysplasia congenital
SEMD
Spondyloepimetaphyseal dysplasia
WES
Whole exome sequencing

Background

The type II collagen gene (COL2A1, MIM #108300) encodes the alpha 1(II) chain of procollagen type II, which is crucial for constructing functional collagen. Mutations in this gene cause type II collagenopathies, which are skeletal dysplasias with a wide spectrum of phenotypic severity [1]. The most severe phenotypes include achondrogenesis type II and hypochondrogenesis, which are associated with neonatal death [2]; the intermediately severe phenotypes, such as spondyloepiphyseal dysplasia congenita (SEDC) [3] and spondyloepimetaphyseal dysplasia (SEMD), Strudwick type [4], are associated with disproportionately short stature, abnormal epiphyses, scoliosis, and/or ocular conditions; and the mildest phenotypes, such as osteoarthritis [5] and stickler syndrome type I [6] manifesting only in late childhood or adulthood, and present as isolated joint or ocular disease.
According to the Leiden Open Variation Database (LOVD, http://​databases.​lovd.​nl/​shared /genes/COL2A1), 455 variations in COL2A1 have been reported (updated on March 24, 2016). Due to the rarity of recurrent mutations, no mutational hot spots have been identified. Type II collagen is a homotrimer composed of three alpha1 (II) chains. Each alpha 1 (II) chain contains a triple-helical structure formed by a characteristic Gly-X-Y repeat sequence. The X and Y position of the Gly-X-Y repeat are occupied by proline and hydroxyproline residues, respectively [7]. Most COL2A1 mutations are located in the triple-helical region, and glycine to bulky amino acid substitutions (e.g., glycine to serine) in the Gly-X-Y repeat have been identified frequently [8], however, the same COL2A1 mutation may cause different phenotypes and the genotype- phenotype relationship is still poorly understood. In this study, we identified a recurrent c.G1636A (p.G546S) COL2A1 mutation in a Chinese family. The clinical phenotypes of three affected family members were described. This mutation is associated with a specific spondyloepimetaphyseal dysplasia characterized by “dappling” and “corner fracture” metaphyseal abnormalities in one of the three family members with skeletal dysplasia, which was never reported in the previous literature.

Case presentation

The pedigree of the patients is shown in Fig. 1a. The proband (III-3) was the second child in the family with skeletal dysplasia. She was born at 40+3 weeks of gestation by cesarean. Her birth length and weight were reported to be 46.0 cm (<3rd centile) and 2700 g (3rd–10th centile), respectively. She was brought to the Department of Pediatrics at the age of 2 years and 3 months for disproportional short stature. Her height was 66.5 cm (<3rd centile); her weight was 8.0 kg (<3rd centile); and her head circumference was 48.2 cm (50th–75th centile). Other physical examination findings included short neck, pectus carinatum, genu varum, bilateral pes planus, and an obvious waddling gait (Fig. 1b). Her early motor development was slightly delayed, while her intellectual development was normal. In contrast, the proband’s elder sister (III-2) displayed milder symptoms: she was born at 40+5 weeks of gestation by cesarean. Her birth length and weight were reported to be 48.0 cm (10th–25th centile) and 2800 g (10th–25th centile), respectively. She was brought to our clinic at the age of 8 years and 7 months. Her height was 108.5 cm (<3rd centile), and her weight was 21.0 kg (3rd–10th centile). Besides short stature, no remarkable abnormalities were found in the physical examination (Fig. 1c). The proband’s mother (II-3) was 33 years old when she received the physical examination. Her height was 128.5 cm (<3rd centile), and her weight was 35.2 kg (<3rd centile). Similar to her first child, no remarkable abnormalities were found except for the short stature. Unfortunately, she did not consent to taking pictures of her profile. None of the three patients displayed ocular defects, hearing impairment, inguinal hernia, or cleft palate.
Radiographic examinations were performed on the three patients (Figs. 2 and 3). In general, the skeletal defects of patients II-3 and III-2 were milder than those of patient III-3. For patients II-3 and III-2, the major affected structures were the spine and epiphyses, whereas in patient III-3, skeletal defects were found in the spine, epiphyses, and pelvis. Notably, patient III-3 displayed severe metaphyseal lesions, especially a typical “dappling” and “corner fracture” appearance. In contrast, no particular metaphyseal involvement was detected in patients II-3 and III-2.
Written informed consent was obtained from the patients (or guardian) and their family members for conducting the genetic tests and publishing the research data. The study protocol was approved by the ethics committee of Xiamen Maternal and Child Health Hospital. We collected peripheral blood samples from three generations of the patients’ family (Fig. 1a). Genomic DNA was extracted from 200 μL of blood using the Super/HF16 plus DNA Extraction System (MagCore, Xiamen, China) according to the manufacturer’s protocol. DNA samples from the three patients (II-3, III-2, and III-3) were analyzed by commercial whole exome sequencing (WES; Sinopath, Beijing, China). A guanine to adenosine change at position 1636 of the coding sequence of the COL2A1 gene (c.G1636A), leading to a corresponding glycine to serine change in the protein sequence (p.G546S), was detected in all of three patients by WES. The mutation was confirmed by Sanger sequencing. Related family members were also examined for this mutation by Sanger sequencing. The sequencing results revealed that the mutation found in patient II-3 was a de novo mutant because it was absent in the genomes of her parents (I-1 and I-2). In addition, a total of 15,116 variants were unique in the exome of patient III-3 compared to in patients II-3 and III-2, including three heterozygous variants in COL2A1 (Table 1).
Table 1
COL2A1 variants in the exome data of patient III-3
Variant
Nucleotide change
Protein change
aFunctional prediction by SIFT database
bFunctional prediction by PolyPhen2 database
cConservative alignment between species using HomoloGene database
rs140740708
c.2854G > T
p.P952T
Tolerated
Benign
Conserved
rs1635560
c.4317 + 43G > A
-
-
-
-
rs41272029
c.2673G > C
p.G891G
-
-
Highly conserved
Eventually, based on previous studies and the current classification of skeletal dysplasia [913], patient III-3 was diagnosed with a variant of SEMD, Strudwick type, and patients II-3 and III-2 were diagnosed with mild SEDC.

Discussion

In the differential diagnosis, the “dappling” metaphyseal appearance, which results from irregular ossification, is characteristic of SEMD, Strudwick type (MIM #184250), while the “corner fracture” metaphyseal appearance, which was considered as an extra ossification center, is characteristic of spondylometaphyseal dysplasia, corner fracture type (MIM #184255). Thus far, four publications have reported a phenotype similar to that of patient III-3, with a combination of “dappling” and “corner fracture” metaphyseal abnormalities, and COL2A1 mutations were also detected in the patient in those studies [912]. Including our patient, a total of six patients of different gender and race have been described who display similar phenotypes, including the characteristic “dappling” and “corner fracture” metaphyseal abnormalities, disproportional short stature, relatively mild abnormalities in the spine with platyspondyly, shortened long bones with relatively normal small tubular bones in the hands and feet, dysplasia of the femoral heads and necks, hip dysplasia, and genu varum/valgum (Table 2). According to previous studies and the current classification of skeletal dysplasia [913], this distinct phenotype was classified as a variant of SEMD, Strudwick type. An interesting finding from these studies is that most COL2A1 mutations associated with the “dappling” and “corner fracture” metaphyseal abnormalities were glycine to arginine substitutions (in four of six patients), which suggests a potential molecular mechanism. Although more patients are needed to delineate a possible molecular mechanism, our patient reveals a different causative amino acid substitution (glycine to serine), which expands the mutational spectrum of this specific phenotype. We anticipate more patients will be discovered, which will further delineate and decipher this specific variant of SEMD, Strudwick type.
Table 2
Phenotypic comparison of the six patients with “dappling” and “corner fracture” metaphyseal abnormalities
 
Patient 1
[Kaitila and others 1996] [9]
Patient 2
[Kaitila and others 1996] [9]
Patient 3
[Walter and others 2007] [12]
Patient 4
[Walter and others 2007] [12]
Patient 5
[Matsubayashi and others 2013] [10]
Patient 6
[Our study]
SEMD-
Strudwick type
Mutation
Gender
Nationality
Physical examination
Gly154Arg
male
Finnish
Gly154Arg
female
unknown
Gly181Arg
female
unknown
Gly922Arg
female
unknown
Gly861Val
male
Japanese
Gly546Ser
female
Chinese
 
 Disproportional short stature
+
+
+
+
+
+
+
Spinal deformity
       
  Scoliosis
+
+
  Kyphosis
+
  
+
  Lumbar lordosis
+
+
+
+
+
 Chest deformity
       
  Pectus excavatum
+
unknown
+
  Pectus carinatum
+
+
unknown
+
+
 Limbs
       
  Short
+
+
+
+
+
+
+
  Genu varum/valgum
+
+
+
+
+
+
+
 Normal mentation
+
+
+
+
+
+
+
 Inguinal hernia
unknown
unknown
unknown
+
 Cleft palate
 Myopia
+
+
+
 Retinal detachment
unknown
unknown
unknown
+
 Hearing loss
+
+
Radiographic findings
 Platyspondyly
+
+
+
+
+
+
+
 Odontoid hypoplasia
+
+
+
unknown
+
 Flaring and irregularities of metaphyses
+
+
+
+
+
+
+
 “Corner fracture” appearance of metaphyses
+
+
+
+
+
+
 “Dappling” appearance of metaphyses
+
+
+
+
+
+
+
 Epiphyseal dysplasia
+
+
+
+
+
+
+
 Shortened long bones
+
+
+
+
+
+
+
 Normal small tubular bones
+
+
+
+
+
+
+
 Dysplasia of femoral heads and necks
+
+
+
+
+
+
+
 Hip dysplasia
+
+
+
+
+
+
+
Autosomal dominant
+
+
+
+
+
+
+
Currently, the genotype-phenotype correlations in type II collagenopathies cannot be clarified for several reasons [14, 15]. First, there are no mutational hot spots, and most mutations are unique. Second, there is a wide range of phenotypic variation among patients, even in individuals who share the same mutation. Moreover, age-dependent transitions and/or other unidentified factors could also complicate the clinical phenotypes. However, the study of recurrent COL2A1 mutations provides an opportunity to gain insight into the phenotypic spectrum and variability of individual mutations or mutation groups, which could facilitate a more precise prognosis early in life, thus improving individualized medical care and patients’ quality of life.
Recurrent COL2A1 mutations have been reported in several studies; some mutations displayed similar phenotypes, while others displayed distinct phenotypes [8, 1520]. For example, Silveira et al. reported clinical and radiological follow-up of six unrelated patients with a R989C mutation that was associated with a severe SEDC phenotype, which was consistent with the phenotypes of twelve other R989C mutation cases [18]. In contrast, three patients with a G504S mutation showed mild SEDC, SEDT, and severe SEDC phenotypes [8, 15]. Likewise, a G513S mutation in a 4-year-old was associated with mild SEDC, but was also associated with a lethal form of SEDC that resulted in neonatal death [15, 19]. Based on previous limited data, unlike glycine to non-serine substitutions, glycine to serine substitutions produced variable effects, with both inter- and intra-familial phenotypic variation [8, 15].
Two previous reports of the c.G1636A (p.G546S) mutation were found in the online database. Xu et al. reported the c.G1636A mutation in a familial case of SEDC [20]. Unlike our patients, the major skeletal abnormalities in Xu et al.’s patients were concordant among affected family members and included dysplasia of the femoral heads and necks, abnormal acetabular roofs, moderate or mild scoliosis, and thoracic hyperkyphosis. Most of these skeletal abnormalities were not found in our patients, except for dysplasia of the femoral heads and necks and abnormal acetabular roofs, which were observed in patient III-3. In addition, marked metaphyseal abnormalities were noted in one of our patients (III-3), which was distinct from the phenotypes of Xu et al.’s patients. Kaissi et al. reported another patient of a c.G1636A mutation in a patient in Germany [21]. As the authors stated in the English abstract, the patient was characterized by short stature associated with acetabulo femoral dysplasia, spinal osteochondritis (Scheuermann’s disease), and mild thoracic kyphosis. According to the limited phenotypic information, the skeletal abnormalities in this patient were similar to those observed in Xu et al.’s patients. Therefore, in agreement with the previous findings for glycine to serine substitutions [8, 15], in this study, patients with the G546S mutation show inter- and intra-familial phenotypic variation. Due to the small number of patients with insufficient genetic information and the complicated genotype-phenotype correlation, the reason why the same COL2A1 mutation causes different phenotypes is still unclear. A reasonable hypothesis is that in addition to the causative COL2A1 mutation in a critical domain, other genetic, epigenetic, and environmental factors can be attributed to inter- and intra-familial phenotypic variation by influencing the microenvironments within the collagen domains or complex interactions with other proteins [22]. In our WES data, numerous variants were found to be unique in the exome of patient III-3 compared to in the other two patients, particularly two variants in COL2A1: one was a benign c.2854 C > A (p.P952T) located outside the triple helix repeat domain while the other was a c.4317 + 43G > A variation located in the intron region (Table 1). These data provide potential candidates for gaining insight into the phenotypic spectrum and variability of type II collagenopathies. However, the contribution of these genetic variations should be further investigated in a larger number of clinical samples and functional studies using genetic animal models. The use of genome-wide strategies, e.g., genome-wide association study, whole genome/exome sequencing, and whole genome bisulfate sequencing, with large cohorts of patients may reveal the basis of the indefinite genotype-phenotype correlation of COL2A1.

Conclusion

Our case reported a recurrent c.G1636A (p.G546S) mutation of COL2A1 in a Chinese family with skeletal dysplasia. Specific spondyloepimetaphyseal dysplasia characterized by “dappling” and “corner fracture” metaphyseal abnormalities was observed in one of the three family members. Our finding revealed a different causative amino acid substitution (glycine to serine) associated with the “dappling” and “corner fracture” metaphyseal abnormalities, and may provide a useful reference for evaluating the phenotypic spectrum and variability of type II collagenopathies.

Acknowledgments

We thank the family for their cooperation.

Funding

This work was supported by the Natural Science Foundation for Distinguished Young Scholars of Fujian Province (project no. 2015D012), Natural Science Foundation of Fujian Province (project no. 2014D003), the Medical Innovation Foundation of Fujian Province (project no. 2014-CXB-46), and the Science and Technology Project of Xiamen City (project no. 3502Z20164029).

Availability of data and materials

All data generated or analyzed during this study are included in this published article.
This study was performed in accordance with the Declaration of Helsinki, after written informed consent obtained from the participants or legal guardians, and approved by the Human Research Ethics Committee of Xiamen Maternal and Child Health Hospital (KY-2016002).
Written informed consent was obtained from the participants or legal guardians for publication of this case report and accompanying images. A copy of the written consent is available for review by the Editor of BMC Pediatrics.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Spranger J, Winterpacht A, Zabel B. The type II collagenopathies: a spectrum of chondrodysplasias. Eur J Pediatr. 1994;153(2):56–65.PubMed Spranger J, Winterpacht A, Zabel B. The type II collagenopathies: a spectrum of chondrodysplasias. Eur J Pediatr. 1994;153(2):56–65.PubMed
2.
Zurück zum Zitat Bogaert R, Tiller GE, Weis MA, Gruber HE, Rimoin DL, Cohn DH, Eyre DR. An amino acid substitution (Gly853-->Glu) in the collagen alpha 1(II) chain produces hypochondrogenesis. J Biol Chem. 1992;267(31):22522–6.PubMed Bogaert R, Tiller GE, Weis MA, Gruber HE, Rimoin DL, Cohn DH, Eyre DR. An amino acid substitution (Gly853-->Glu) in the collagen alpha 1(II) chain produces hypochondrogenesis. J Biol Chem. 1992;267(31):22522–6.PubMed
3.
Zurück zum Zitat Anderson IJ, Goldberg RB, Marion RW, Upholt WB, Tsipouras P. Spondyloepiphyseal dysplasia congenita: genetic linkage to type II collagen (COL2AI). Am J Hum Genet. 1990;46(5):896–901.PubMedPubMedCentral Anderson IJ, Goldberg RB, Marion RW, Upholt WB, Tsipouras P. Spondyloepiphyseal dysplasia congenita: genetic linkage to type II collagen (COL2AI). Am J Hum Genet. 1990;46(5):896–901.PubMedPubMedCentral
4.
Zurück zum Zitat Tiller GE, Polumbo PA, Weis MA, Bogaert R, Lachman RS, Cohn DH, Rimoin DL, Eyre DR. Dominant mutations in the type II collagen gene, COL2A1, produce spondyloepimetaphyseal dysplasia, Strudwick type. Nat Genet. 1995;11(1):87–9.CrossRefPubMed Tiller GE, Polumbo PA, Weis MA, Bogaert R, Lachman RS, Cohn DH, Rimoin DL, Eyre DR. Dominant mutations in the type II collagen gene, COL2A1, produce spondyloepimetaphyseal dysplasia, Strudwick type. Nat Genet. 1995;11(1):87–9.CrossRefPubMed
5.
Zurück zum Zitat Beighton P, Christy G, Learmonth ID. Namaqualand hip dysplasia: an autosomal dominant entity. Am J Med Genet. 1984;19(1):161–9.CrossRefPubMed Beighton P, Christy G, Learmonth ID. Namaqualand hip dysplasia: an autosomal dominant entity. Am J Med Genet. 1984;19(1):161–9.CrossRefPubMed
6.
Zurück zum Zitat Stickler GB, Belau PG, Farrell FJ, Jones JD, Pugh DG, Steinberg AG, Ward LE. Hereditary progressive Arthro-Ophthalmopathy. Mayo Clin Proc. 1965;40:433–55.PubMed Stickler GB, Belau PG, Farrell FJ, Jones JD, Pugh DG, Steinberg AG, Ward LE. Hereditary progressive Arthro-Ophthalmopathy. Mayo Clin Proc. 1965;40:433–55.PubMed
7.
Zurück zum Zitat Prockop DJ, Kivirikko KI. Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem. 1995;64:403–34.CrossRefPubMed Prockop DJ, Kivirikko KI. Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem. 1995;64:403–34.CrossRefPubMed
8.
Zurück zum Zitat Terhal PA, Nievelstein RJ, Verver EJ, Topsakal V, van Dommelen P, Hoornaert K, Le Merrer M, Zankl A, Simon ME, Smithson SF, et al. A study of the clinical and radiological features in a cohort of 93 patients with a COL2A1 mutation causing spondyloepiphyseal dysplasia congenita or a related phenotype. Am J Med Genet A. 2015;167A(3):461–75.CrossRefPubMed Terhal PA, Nievelstein RJ, Verver EJ, Topsakal V, van Dommelen P, Hoornaert K, Le Merrer M, Zankl A, Simon ME, Smithson SF, et al. A study of the clinical and radiological features in a cohort of 93 patients with a COL2A1 mutation causing spondyloepiphyseal dysplasia congenita or a related phenotype. Am J Med Genet A. 2015;167A(3):461–75.CrossRefPubMed
9.
Zurück zum Zitat Kaitila I, Korkko J, Marttinen E, Ala-Kokko L. Phenotypic expressions of a Gly 154Arg mutation in type II collagen in two unrelated patients with spondyloepimetaphyseal dysplasia (SEMD). Am J Med Genet. 1996;63(1):111–22.CrossRefPubMed Kaitila I, Korkko J, Marttinen E, Ala-Kokko L. Phenotypic expressions of a Gly 154Arg mutation in type II collagen in two unrelated patients with spondyloepimetaphyseal dysplasia (SEMD). Am J Med Genet. 1996;63(1):111–22.CrossRefPubMed
10.
Zurück zum Zitat Matsubayashi S, Ikema M, Ninomiya Y, Yamaguchi K, Ikegawa S, Nishimura G. COL2A1 mutation in Spondylometaphyseal dysplasia Algerian type. Mol Syndromol. 2013;4(3):148–51.PubMedPubMedCentral Matsubayashi S, Ikema M, Ninomiya Y, Yamaguchi K, Ikegawa S, Nishimura G. COL2A1 mutation in Spondylometaphyseal dysplasia Algerian type. Mol Syndromol. 2013;4(3):148–51.PubMedPubMedCentral
11.
Zurück zum Zitat Vikkula M, Ritvaniemi P, Vuorio AF, Kaitila I, Ala-Kokko L, Peltonen L. A mutation in the amino-terminal end of the triple helix of type II collagen causing severe osteochondrodysplasia. Genomics. 1993;16(1):282–5.CrossRefPubMed Vikkula M, Ritvaniemi P, Vuorio AF, Kaitila I, Ala-Kokko L, Peltonen L. A mutation in the amino-terminal end of the triple helix of type II collagen causing severe osteochondrodysplasia. Genomics. 1993;16(1):282–5.CrossRefPubMed
12.
Zurück zum Zitat Walter K, Tansek M, Tobias ES, Ikegawa S, Coucke P, Hyland J, Mortier G, Iwaya T, Nishimura G, Superti-Furga A, et al. COL2A1-related skeletal dysplasias with predominant metaphyseal involvement. Am J Med Genet A. 2007;143A(2):161–7.CrossRefPubMed Walter K, Tansek M, Tobias ES, Ikegawa S, Coucke P, Hyland J, Mortier G, Iwaya T, Nishimura G, Superti-Furga A, et al. COL2A1-related skeletal dysplasias with predominant metaphyseal involvement. Am J Med Genet A. 2007;143A(2):161–7.CrossRefPubMed
13.
Zurück zum Zitat Warman ML, Cormier-Daire V, Hall C, Krakow D, Lachman R, LeMerrer M, Mortier G, Mundlos S, Nishimura G, Rimoin DL, et al. Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet A. 2011;155A(5):943–68.CrossRefPubMed Warman ML, Cormier-Daire V, Hall C, Krakow D, Lachman R, LeMerrer M, Mortier G, Mundlos S, Nishimura G, Rimoin DL, et al. Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet A. 2011;155A(5):943–68.CrossRefPubMed
14.
Zurück zum Zitat Barat-Houari M, Dumont B, Fabre A, Them FT, Alembik Y, Alessandri JL, Amiel J, Audebert S, Baumann-Morel C, Blanchet P, et al. The expanding spectrum of COL2A1 gene variants IN 136 patients with a skeletal dysplasia phenotype. Eur J Hum Genet. 2016;24(7):992–1000.CrossRefPubMed Barat-Houari M, Dumont B, Fabre A, Them FT, Alembik Y, Alessandri JL, Amiel J, Audebert S, Baumann-Morel C, Blanchet P, et al. The expanding spectrum of COL2A1 gene variants IN 136 patients with a skeletal dysplasia phenotype. Eur J Hum Genet. 2016;24(7):992–1000.CrossRefPubMed
15.
Zurück zum Zitat Nishimura G, Haga N, Kitoh H, Tanaka Y, Sonoda T, Kitamura M, Shirahama S, Itoh T, Nakashima E, Ohashi H, et al. The phenotypic spectrum of COL2A1 mutations. Hum Mutat. 2005;26(1):36–43.CrossRefPubMed Nishimura G, Haga N, Kitoh H, Tanaka Y, Sonoda T, Kitamura M, Shirahama S, Itoh T, Nakashima E, Ohashi H, et al. The phenotypic spectrum of COL2A1 mutations. Hum Mutat. 2005;26(1):36–43.CrossRefPubMed
16.
Zurück zum Zitat Chung BH, Luk HM, Lo IF, Lam ST, Li RH. A second report of p.Pro986Leu variant in COL2A1-phenotypic overlap with SEDC and other forms of type II collagenopathies. Am J Med Genet A. 2013;161A(4):918–20.CrossRefPubMed Chung BH, Luk HM, Lo IF, Lam ST, Li RH. A second report of p.Pro986Leu variant in COL2A1-phenotypic overlap with SEDC and other forms of type II collagenopathies. Am J Med Genet A. 2013;161A(4):918–20.CrossRefPubMed
17.
Zurück zum Zitat Hoornaert KP, Dewinter C, Vereecke I, Beemer FA, Courtens W, Fryer A, Fryssira H, Lees M, Mullner-Eidenbock A, Rimoin DL, et al. The phenotypic spectrum in patients with arginine to cysteine mutations in the COL2A1 gene. J Med Genet. 2006;43(5):406–13.CrossRefPubMed Hoornaert KP, Dewinter C, Vereecke I, Beemer FA, Courtens W, Fryer A, Fryssira H, Lees M, Mullner-Eidenbock A, Rimoin DL, et al. The phenotypic spectrum in patients with arginine to cysteine mutations in the COL2A1 gene. J Med Genet. 2006;43(5):406–13.CrossRefPubMed
18.
Zurück zum Zitat Silveira KC, Bonadia LC, Superti-Furga A, Bertola DR, Jorge AA, Cavalcanti DP. Six additional cases of SEDC due to the same and recurrent R989C mutation in the COL2A1 gene--the clinical and radiological follow-up. Am J Med Genet A. 2015;167A(4):894–901.CrossRefPubMed Silveira KC, Bonadia LC, Superti-Furga A, Bertola DR, Jorge AA, Cavalcanti DP. Six additional cases of SEDC due to the same and recurrent R989C mutation in the COL2A1 gene--the clinical and radiological follow-up. Am J Med Genet A. 2015;167A(4):894–901.CrossRefPubMed
19.
Zurück zum Zitat Mortier GR, Weis M, Nuytinck L, King LM, Wilkin DJ, De Paepe A, Lachman RS, Rimoin DL, Eyre DR, Cohn DH. Report of five novel and one recurrent COL2A1 mutations with analysis of genotype-phenotype correlation in patients with a lethal type II collagen disorder. J Med Genet. 2000;37(4):263–71.CrossRefPubMedPubMedCentral Mortier GR, Weis M, Nuytinck L, King LM, Wilkin DJ, De Paepe A, Lachman RS, Rimoin DL, Eyre DR, Cohn DH. Report of five novel and one recurrent COL2A1 mutations with analysis of genotype-phenotype correlation in patients with a lethal type II collagen disorder. J Med Genet. 2000;37(4):263–71.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Xu L, Qiu X, Zhu Z, Yi L, Qiu Y. A novel mutation in COL2A1 leading to spondyloepiphyseal dysplasia congenita in a three-generation family. Eur Spine J. 2014;23(Suppl 2):271–7.CrossRefPubMed Xu L, Qiu X, Zhu Z, Yi L, Qiu Y. A novel mutation in COL2A1 leading to spondyloepiphyseal dysplasia congenita in a three-generation family. Eur Spine J. 2014;23(Suppl 2):271–7.CrossRefPubMed
21.
Zurück zum Zitat Al Kaissi A, Laccone F, Karner C, Ganger R, Klaushofer K, Grill F. Hip dysplasia and spinal osteochondritis (Scheuermann's disease) in a girl with type II manifesting collagenopathy. Orthopade. 2013;42(11):963–8.CrossRefPubMed Al Kaissi A, Laccone F, Karner C, Ganger R, Klaushofer K, Grill F. Hip dysplasia and spinal osteochondritis (Scheuermann's disease) in a girl with type II manifesting collagenopathy. Orthopade. 2013;42(11):963–8.CrossRefPubMed
22.
Zurück zum Zitat Deng H, Huang X, Yuan L. Molecular genetics of the COL2A1-related disorders. Mutat Res Rev Mutat Res. 2016;768:1–13.CrossRefPubMed Deng H, Huang X, Yuan L. Molecular genetics of the COL2A1-related disorders. Mutat Res Rev Mutat Res. 2016;768:1–13.CrossRefPubMed
Metadaten
Titel
Recurrent c.G1636A (p.G546S) mutation of COL2A1 in a Chinese family with skeletal dysplasia and different metaphyseal changes: a case report
verfasst von
Jing Chen
Xiaomin Ma
Yulin Zhou
Guimei Li
Qiwei Guo
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
BMC Pediatrics / Ausgabe 1/2017
Elektronische ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-017-0930-9

Weitere Artikel der Ausgabe 1/2017

BMC Pediatrics 1/2017 Zur Ausgabe

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Häufigste Gründe für Brustschmerzen bei Kindern

06.05.2024 Pädiatrische Diagnostik Nachrichten

Akute Brustschmerzen sind ein Alarmsymptom par exellence, schließlich sind manche Auslöser lebensbedrohlich. Auch Kinder klagen oft über Schmerzen in der Brust. Ein Studienteam ist den Ursachen nachgegangen.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Durch übermäßige Internetnutzung wird oft die Schule verpasst

Häufige Fehlzeiten in der Schule können durch physische und psychische Probleme verursacht werden. Wie in einer Studie aus Finnland nun belegt wird, führt auch die exzessive Nutzung des Internets gehäuft zu Abwesenheiten.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.