Skip to main content
Erschienen in: Surgery Today 8/2018

01.08.2018 | Review Article

Regenerative medicine for the esophagus

verfasst von: Kengo Kanetaka, Shinichiro Kobayashi, Susumu Eguchi

Erschienen in: Surgery Today | Ausgabe 8/2018

Einloggen, um Zugang zu erhalten

Abstract

Advances in tissue engineering techniques have made it possible to use human cells as biological material. This has enabled pharmacological studies to be conducted to investigate drug effects and toxicity, to clarify the mechanisms underlying diseases, and to elucidate how they compensate for impaired organ function. Many researchers have tried to construct artificial organs using these techniques, but none has succeeded in growing a whole organ. Unlike other digestive organs with complicated functions, such as the processing and absorption of nutrients, the esophagus has the relatively simple function of transporting content, which can be replicated easily by a substitute. In regenerative medicine, various combinations of materials have been applied, including scaffolding, cell sources, and bioreactors. Exciting results of tissue engineering techniques for the esophagus have been reported. In animal models, replacing full-thickness and full-circumferential defects remains challenging because of stenosis and leakage after implantation. Although many reports have manipulated various scaffolds, most have emphasized the importance of both epithelial and mesenchymal cells for the prevention of stenosis. However, the results of repair of partial full-thickness defects and mucosal defects have been promising. Two successful approaches for the replacement of mucosal defects in a clinical setting have been reported, although in contrast to the many animal models, there are few pilot studies in humans. We review the recent results and evaluate the future of regenerative medicine for the esophagus.
Literatur
1.
Zurück zum Zitat Campbell KH, McWhir J, Ritchie WA, Wilmut I. Sheep cloned by nuclear transfer from a cultured cell line. Nature. 1996;380:64–6.CrossRefPubMed Campbell KH, McWhir J, Ritchie WA, Wilmut I. Sheep cloned by nuclear transfer from a cultured cell line. Nature. 1996;380:64–6.CrossRefPubMed
2.
Zurück zum Zitat Wilmut I, Bai Y, Taylor J. Somatic cell nuclear transfer: origins, the present position and future opportunities. Philos Trans R Soc Lond B Biol Sci. 2015;370:20140366.CrossRefPubMedPubMedCentral Wilmut I, Bai Y, Taylor J. Somatic cell nuclear transfer: origins, the present position and future opportunities. Philos Trans R Soc Lond B Biol Sci. 2015;370:20140366.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Leushacke M, Barker N. Ex vivo culture of the intestinal epithelium: strategies and applications. Gut. 2014;63:1345–54.CrossRefPubMed Leushacke M, Barker N. Ex vivo culture of the intestinal epithelium: strategies and applications. Gut. 2014;63:1345–54.CrossRefPubMed
5.
Zurück zum Zitat Wang J, Yang W, Xie H, Song Y, Li Y, Wang L. Ischemic stroke and repair: current trends in research and tissue engineering treatments. Regen Med Res. 2014;2:3.CrossRefPubMedPubMedCentral Wang J, Yang W, Xie H, Song Y, Li Y, Wang L. Ischemic stroke and repair: current trends in research and tissue engineering treatments. Regen Med Res. 2014;2:3.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017;376:1038–46.CrossRefPubMed Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017;376:1038–46.CrossRefPubMed
7.
Zurück zum Zitat Sawa Y. Current status of myocardial regeneration therapy. Gen Thorac Cardiovasc Surg. 2013;61:17–23.CrossRefPubMed Sawa Y. Current status of myocardial regeneration therapy. Gen Thorac Cardiovasc Surg. 2013;61:17–23.CrossRefPubMed
8.
Zurück zum Zitat Yamada T, Yoshikawa M, Takaki M, Torihashi S, Kato Y, Nakajima Y, et al. In vitro functional gut-like organ formation from mouse embryonic stem cells. Stem Cells. 2002;20:41–9.CrossRefPubMed Yamada T, Yoshikawa M, Takaki M, Torihashi S, Kato Y, Nakajima Y, et al. In vitro functional gut-like organ formation from mouse embryonic stem cells. Stem Cells. 2002;20:41–9.CrossRefPubMed
9.
Zurück zum Zitat Ueda T, Yamada T, Hokuto D, Koyama F, Kasuda S, Kanehiro H, et al. Generation of functional gut-like organ from mouse induced pluripotent stem cells. Biochem Biophys Res Commun. 2010;391:38–42.CrossRefPubMed Ueda T, Yamada T, Hokuto D, Koyama F, Kasuda S, Kanehiro H, et al. Generation of functional gut-like organ from mouse induced pluripotent stem cells. Biochem Biophys Res Commun. 2010;391:38–42.CrossRefPubMed
10.
Zurück zum Zitat Bitar KN, Zakhem E. Bioengineering the gut: future prospects of regenerative medicine. Nat Rev Gastroenterol Hepatol. 2016;13:543–56.CrossRefPubMed Bitar KN, Zakhem E. Bioengineering the gut: future prospects of regenerative medicine. Nat Rev Gastroenterol Hepatol. 2016;13:543–56.CrossRefPubMed
11.
Zurück zum Zitat van Rijn JM, Schneeberger K, Wiegerinck CL, Nieuwenhuis EE, Middendorp S. Novel approaches: tissue engineering and stem cells—In vitro modelling of the gut. Best Pract Res Clin Gastroenterol. 2016;30:281–93.CrossRefPubMed van Rijn JM, Schneeberger K, Wiegerinck CL, Nieuwenhuis EE, Middendorp S. Novel approaches: tissue engineering and stem cells—In vitro modelling of the gut. Best Pract Res Clin Gastroenterol. 2016;30:281–93.CrossRefPubMed
12.
Zurück zum Zitat Dedhia PH, Bertaux-Skeirik N, Zavros Y, Spence JR. Organoid models of human gastrointestinal development and disease. Gastroenterology. 2016;150:1098–112.CrossRefPubMedPubMedCentral Dedhia PH, Bertaux-Skeirik N, Zavros Y, Spence JR. Organoid models of human gastrointestinal development and disease. Gastroenterology. 2016;150:1098–112.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Ootani A, Li X, Sangiorgi E, Ho QT, Ueno H, Toda S, et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med. 2009;15:701–6.CrossRefPubMedPubMedCentral Ootani A, Li X, Sangiorgi E, Ho QT, Ueno H, Toda S, et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med. 2009;15:701–6.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141:1762–72.CrossRefPubMed Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141:1762–72.CrossRefPubMed
15.
Zurück zum Zitat Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH, et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 2010;6:25–36.CrossRefPubMed Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH, et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 2010;6:25–36.CrossRefPubMed
16.
Zurück zum Zitat Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262–5.CrossRefPubMed Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262–5.CrossRefPubMed
17.
Zurück zum Zitat Jung P, Sato T, Merlos-Suarez A, Barriga FM, Iglesias M, Rossell D, et al. Isolation and in vitro expansion of human colonic stem cells. Nat Med. 2011;17:1225–7.CrossRefPubMed Jung P, Sato T, Merlos-Suarez A, Barriga FM, Iglesias M, Rossell D, et al. Isolation and in vitro expansion of human colonic stem cells. Nat Med. 2011;17:1225–7.CrossRefPubMed
18.
Zurück zum Zitat Huch M, Bonfanti P, Boj SF, Sato T, Loomans CJ, van de Wetering M, et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 2013;32:2708–21.CrossRefPubMedPubMedCentral Huch M, Bonfanti P, Boj SF, Sato T, Loomans CJ, van de Wetering M, et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 2013;32:2708–21.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Huch M, Dorrell C, Boj SF, van Es JH, Li VS, van de Wetering M, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 2013;494:247–50.CrossRefPubMedPubMedCentral Huch M, Dorrell C, Boj SF, van Es JH, Li VS, van de Wetering M, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 2013;494:247–50.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Vacanti JP, Morse MA, Saltzman WM, Domb AJ, Perez-Atayde A, Langer R. Selective cell transplantation using bioabsorbable artificial polymers as matrices. J Pediatr Surg. 1988;23:3–9.CrossRefPubMed Vacanti JP, Morse MA, Saltzman WM, Domb AJ, Perez-Atayde A, Langer R. Selective cell transplantation using bioabsorbable artificial polymers as matrices. J Pediatr Surg. 1988;23:3–9.CrossRefPubMed
21.
Zurück zum Zitat Spurrier RG, Grikscheit TC. Tissue engineering the small intestine. Clin Gastroenterol Hepatol. 2013;11:354–8.CrossRefPubMed Spurrier RG, Grikscheit TC. Tissue engineering the small intestine. Clin Gastroenterol Hepatol. 2013;11:354–8.CrossRefPubMed
22.
Zurück zum Zitat Grikscheit TC, Siddique A, Ochoa ER, Srinivasan A, Alsberg E, Hodin RA, et al. Tissue-engineered small intestine improves recovery after massive small bowel resection. Ann Surg. 2004;240:748–54.CrossRefPubMedPubMedCentral Grikscheit TC, Siddique A, Ochoa ER, Srinivasan A, Alsberg E, Hodin RA, et al. Tissue-engineered small intestine improves recovery after massive small bowel resection. Ann Surg. 2004;240:748–54.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–7.CrossRefPubMed Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–7.CrossRefPubMed
24.
Zurück zum Zitat Yui S, Nakamura T, Sato T, Nemoto Y, Mizutani T, Zheng X, et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell. Nat Med. 2012;18:618–23.CrossRefPubMed Yui S, Nakamura T, Sato T, Nemoto Y, Mizutani T, Zheng X, et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell. Nat Med. 2012;18:618–23.CrossRefPubMed
25.
Zurück zum Zitat Sala FG, Kunisaki SM, Ochoa ER, Vacanti J, Grikscheit TC. Tissue-engineered small intestine and stomach form from autologous tissue in a preclinical large animal model. J Surg Res. 2009;156:205–12.CrossRefPubMed Sala FG, Kunisaki SM, Ochoa ER, Vacanti J, Grikscheit TC. Tissue-engineered small intestine and stomach form from autologous tissue in a preclinical large animal model. J Surg Res. 2009;156:205–12.CrossRefPubMed
26.
Zurück zum Zitat Orlando G, Dominguez-Bendala J, Shupe T, Bergman C, Bitar KN, Booth C, et al. Cell and organ bioengineering technology as applied to gastrointestinal diseases. Gut. 2013;62:774–86.CrossRefPubMed Orlando G, Dominguez-Bendala J, Shupe T, Bergman C, Bitar KN, Booth C, et al. Cell and organ bioengineering technology as applied to gastrointestinal diseases. Gut. 2013;62:774–86.CrossRefPubMed
27.
Zurück zum Zitat Goodner JT, Miller TP, Pack GT, Watson WL. Torek esophagectomy; the case against segmental resection for esophageal cancer. J Thorac Surg. 1956;32:347–59.PubMed Goodner JT, Miller TP, Pack GT, Watson WL. Torek esophagectomy; the case against segmental resection for esophageal cancer. J Thorac Surg. 1956;32:347–59.PubMed
29.
Zurück zum Zitat Leonard GD, McCaffrey JA, Maher M. Optimal therapy for oesophageal cancer. Cancer Treat Rev. 2003;29:275–82.CrossRefPubMed Leonard GD, McCaffrey JA, Maher M. Optimal therapy for oesophageal cancer. Cancer Treat Rev. 2003;29:275–82.CrossRefPubMed
30.
Zurück zum Zitat Whooley BP, Law S, Murthy SC, Alexandrou A, Wong J. Analysis of reduced death and complication rates after esophageal resection. Ann Surg. 2001;233:338–44.CrossRefPubMedPubMedCentral Whooley BP, Law S, Murthy SC, Alexandrou A, Wong J. Analysis of reduced death and complication rates after esophageal resection. Ann Surg. 2001;233:338–44.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Mariette C, Taillier G, Van Seuningen I, Triboulet JP. Factors affecting postoperative course and survival after en bloc resection for esophageal carcinoma. Ann Thorac Surg. 2004;78:1177–83.CrossRefPubMed Mariette C, Taillier G, Van Seuningen I, Triboulet JP. Factors affecting postoperative course and survival after en bloc resection for esophageal carcinoma. Ann Thorac Surg. 2004;78:1177–83.CrossRefPubMed
32.
Zurück zum Zitat Atkins BZ, Shah AS, Hutcheson KA, Mangum JH, Pappas TN, Harpole DH Jr, et al. Reducing hospital morbidity and mortality following esophagectomy. Ann Thorac Surg. 2004;78:1170–6 (discussion 1170–1176).CrossRefPubMed Atkins BZ, Shah AS, Hutcheson KA, Mangum JH, Pappas TN, Harpole DH Jr, et al. Reducing hospital morbidity and mortality following esophagectomy. Ann Thorac Surg. 2004;78:1170–6 (discussion 1170–1176).CrossRefPubMed
33.
Zurück zum Zitat Takeuchi H, Miyata H, Ozawa W, Udagawa H, Osugi H, Matsubara H, et al. Comparison of short-term outcomes between open and minimally invasive esohagectomy for esophageal cancer using a nationwide database in Japan. Ann Surg Oncol 2017;24:1821–7.CrossRefPubMed Takeuchi H, Miyata H, Ozawa W, Udagawa H, Osugi H, Matsubara H, et al. Comparison of short-term outcomes between open and minimally invasive esohagectomy for esophageal cancer using a nationwide database in Japan. Ann Surg Oncol 2017;24:1821–7.CrossRefPubMed
34.
Zurück zum Zitat Gaujoux S, Le Balleur Y, Bruneval P, Larghero J, Lecourt S, Domet T, et al. Esophageal replacement by allogenic aorta in a porcine model. Surgery. 2010;148:39–47.CrossRefPubMed Gaujoux S, Le Balleur Y, Bruneval P, Larghero J, Lecourt S, Domet T, et al. Esophageal replacement by allogenic aorta in a porcine model. Surgery. 2010;148:39–47.CrossRefPubMed
35.
Zurück zum Zitat Poghosyan T, Catry J, Luong-Nguyen M, Bruneval P, Domet T, Arakelian L, et al. Esophageal tissue engineering: current status and perspectives. J Visc Surg. 2016;153:21–9.CrossRefPubMed Poghosyan T, Catry J, Luong-Nguyen M, Bruneval P, Domet T, Arakelian L, et al. Esophageal tissue engineering: current status and perspectives. J Visc Surg. 2016;153:21–9.CrossRefPubMed
36.
Zurück zum Zitat Chian KS, Leong MF, Kono K. Regenerative medicine for oesophageal reconstruction after cancer treatment. Lancet Oncol. 2015;16:e84–92.CrossRefPubMed Chian KS, Leong MF, Kono K. Regenerative medicine for oesophageal reconstruction after cancer treatment. Lancet Oncol. 2015;16:e84–92.CrossRefPubMed
38.
Zurück zum Zitat Matsuura K, Utoh R, Nagase K, Okano T. Cell sheet approach for tissue engineering and regenerative medicine. J Control Release. 2014;190:228–39.CrossRefPubMed Matsuura K, Utoh R, Nagase K, Okano T. Cell sheet approach for tissue engineering and regenerative medicine. J Control Release. 2014;190:228–39.CrossRefPubMed
39.
Zurück zum Zitat Kuppan P, Sethuraman S, Krishnan UM. Tissue engineering interventions for esophageal disorders–promises and challenges. Biotechnol Adv. 2012;30:1481–92.CrossRefPubMed Kuppan P, Sethuraman S, Krishnan UM. Tissue engineering interventions for esophageal disorders–promises and challenges. Biotechnol Adv. 2012;30:1481–92.CrossRefPubMed
40.
Zurück zum Zitat Totonelli G, Maghsoudlou P, Fishman JM, Orlando G, Ansari T, Sibbons P, et al. Esophageal tissue engineering: a new approach for esophageal replacement. World J Gastroenterol. 2012;18:6900–7.CrossRefPubMedPubMedCentral Totonelli G, Maghsoudlou P, Fishman JM, Orlando G, Ansari T, Sibbons P, et al. Esophageal tissue engineering: a new approach for esophageal replacement. World J Gastroenterol. 2012;18:6900–7.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Basu J, Bertram TA. Regenerative medicine of the gastrointestinal tract. Toxicol Pathol. 2014;42:82–90.CrossRefPubMed Basu J, Bertram TA. Regenerative medicine of the gastrointestinal tract. Toxicol Pathol. 2014;42:82–90.CrossRefPubMed
42.
Zurück zum Zitat Tevlin R, Atashroo D, Duscher D, Mc Ardle A, Gurtner GC, Wan DC, et al. Impact of surgical innovation on tissue repair in the surgical patient. Br J Surg. 2015;102:e41–55.CrossRefPubMed Tevlin R, Atashroo D, Duscher D, Mc Ardle A, Gurtner GC, Wan DC, et al. Impact of surgical innovation on tissue repair in the surgical patient. Br J Surg. 2015;102:e41–55.CrossRefPubMed
43.
Zurück zum Zitat McCracken KW, Howell JC, Wells JM, Spence JR. Generating human intestinal tissue from pluripotent stem cells in vitro. Nat Protoc. 2011;6:1920–8.CrossRefPubMedPubMedCentral McCracken KW, Howell JC, Wells JM, Spence JR. Generating human intestinal tissue from pluripotent stem cells in vitro. Nat Protoc. 2011;6:1920–8.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Watson CL, Mahe MM, Munera J, Howell JC, Sundaram N, Poling HM, et al. An in vivo model of human small intestine using pluripotent stem cells. Nat Med. 2014;20:1310–4.CrossRefPubMedPubMedCentral Watson CL, Mahe MM, Munera J, Howell JC, Sundaram N, Poling HM, et al. An in vivo model of human small intestine using pluripotent stem cells. Nat Med. 2014;20:1310–4.CrossRefPubMedPubMedCentral
45.
46.
Zurück zum Zitat Saito M, Sakamoto T, Fujimaki M, Tsukada K, Honda T, Nozaki M. Experimental study of an artificial esophagus using a collagen sponge, a latissimus dorsi muscle flap, and split-thickness skin. Surg Today. 2000;30:606–13.CrossRefPubMed Saito M, Sakamoto T, Fujimaki M, Tsukada K, Honda T, Nozaki M. Experimental study of an artificial esophagus using a collagen sponge, a latissimus dorsi muscle flap, and split-thickness skin. Surg Today. 2000;30:606–13.CrossRefPubMed
47.
Zurück zum Zitat Isch JA, Engum SA, Ruble CA, Davis MM, Grosfeld JL. Patch esophagoplasty using AlloDerm as a tissue scaffold. J Pediatr Surg. 2001;36:266–8.CrossRefPubMed Isch JA, Engum SA, Ruble CA, Davis MM, Grosfeld JL. Patch esophagoplasty using AlloDerm as a tissue scaffold. J Pediatr Surg. 2001;36:266–8.CrossRefPubMed
48.
Zurück zum Zitat Grikscheit TC, Ochoa ER, Srinivasan A, Gaissert H, Vacanti JP. Tissue-engineered esophagus: experimental substitution by onlay patch or interposition. J Thorac Cardiovasc Surg. 2003;126:537–44.CrossRefPubMed Grikscheit TC, Ochoa ER, Srinivasan A, Gaissert H, Vacanti JP. Tissue-engineered esophagus: experimental substitution by onlay patch or interposition. J Thorac Cardiovasc Surg. 2003;126:537–44.CrossRefPubMed
49.
Zurück zum Zitat Jansen PL, Klinge U, Anurov M, Titkova S, Mertens PR, Jansen M. Surgical mesh as a scaffold for tissue regeneration in the esophagus. Eur Surg Res. 2004;36:104–11.CrossRefPubMed Jansen PL, Klinge U, Anurov M, Titkova S, Mertens PR, Jansen M. Surgical mesh as a scaffold for tissue regeneration in the esophagus. Eur Surg Res. 2004;36:104–11.CrossRefPubMed
50.
Zurück zum Zitat Diemer P, Markoew S, Le DQ, Qvist N. Poly-epsilon-caprolactone mesh as a scaffold for in vivo tissue engineering in rabbit esophagus. Dis Esophagus. 2015;28:240–5.CrossRefPubMed Diemer P, Markoew S, Le DQ, Qvist N. Poly-epsilon-caprolactone mesh as a scaffold for in vivo tissue engineering in rabbit esophagus. Dis Esophagus. 2015;28:240–5.CrossRefPubMed
51.
Zurück zum Zitat Takimoto Y, Okumura N, Nakamura T, Natsume T, Shimizu Y. Long-term follow-up of the experimental replacement of the esophagus with a collagen-silicone composite tube. ASAIO J. 1993;39:M736–9.PubMed Takimoto Y, Okumura N, Nakamura T, Natsume T, Shimizu Y. Long-term follow-up of the experimental replacement of the esophagus with a collagen-silicone composite tube. ASAIO J. 1993;39:M736–9.PubMed
52.
Zurück zum Zitat Hodde JP, Record RD, Liang HA, Badylak SF. Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothelium. 2001;8:11–24.CrossRefPubMed Hodde JP, Record RD, Liang HA, Badylak SF. Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothelium. 2001;8:11–24.CrossRefPubMed
53.
Zurück zum Zitat Voytik-Harbin SL, Brightman AO, Kraine MR, Waisner B, Badylak SF. Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem. 1997;67:478–91.CrossRefPubMed Voytik-Harbin SL, Brightman AO, Kraine MR, Waisner B, Badylak SF. Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem. 1997;67:478–91.CrossRefPubMed
54.
Zurück zum Zitat Badylak SF, Meurling S, Chen M, Spievack A, Simmons-Byrd A. Resorbable bioscaffold for esophageal repair in a dog model. J Pediatr Surg. 2000;35:1097–103.CrossRefPubMed Badylak SF, Meurling S, Chen M, Spievack A, Simmons-Byrd A. Resorbable bioscaffold for esophageal repair in a dog model. J Pediatr Surg. 2000;35:1097–103.CrossRefPubMed
55.
Zurück zum Zitat Wei RQ, Tan B, Tan MY, Luo JC, Deng L, Chen XH, et al. Grafts of porcine small intestinal submucosa with cultured autologous oral mucosal epithelial cells for esophageal repair in a canine model. Exp Biol Med (Maywood). 2009;234:453–61.CrossRef Wei RQ, Tan B, Tan MY, Luo JC, Deng L, Chen XH, et al. Grafts of porcine small intestinal submucosa with cultured autologous oral mucosal epithelial cells for esophageal repair in a canine model. Exp Biol Med (Maywood). 2009;234:453–61.CrossRef
56.
Zurück zum Zitat Tan B, Wei RQ, Tan MY, Luo JC, Deng L, Chen XH, et al. Tissue engineered esophagus by mesenchymal stem cell seeding for esophageal repair in a canine model. J Surg Res. 2013;182:40–8.CrossRefPubMed Tan B, Wei RQ, Tan MY, Luo JC, Deng L, Chen XH, et al. Tissue engineered esophagus by mesenchymal stem cell seeding for esophageal repair in a canine model. J Surg Res. 2013;182:40–8.CrossRefPubMed
57.
Zurück zum Zitat Poghosyan T, Sfeir R, Michaud L, Bruneval P, Domet T, Vanneaux V, et al. Circumferential esophageal replacement using a tube-shaped tissue-engineered substitute: an experimental study in minipigs. Surgery. 2015;158:266–77.CrossRefPubMed Poghosyan T, Sfeir R, Michaud L, Bruneval P, Domet T, Vanneaux V, et al. Circumferential esophageal replacement using a tube-shaped tissue-engineered substitute: an experimental study in minipigs. Surgery. 2015;158:266–77.CrossRefPubMed
58.
Zurück zum Zitat Bhrany AD, Beckstead BL, Lang TC, Farwell DG, Giachelli CM, Ratner BD. Development of an esophagus acellular matrix tissue scaffold. Tissue Eng. 2006;12:319–30.CrossRefPubMed Bhrany AD, Beckstead BL, Lang TC, Farwell DG, Giachelli CM, Ratner BD. Development of an esophagus acellular matrix tissue scaffold. Tissue Eng. 2006;12:319–30.CrossRefPubMed
59.
Zurück zum Zitat Ozeki M, Narita Y, Kagami H, Ohmiya N, Itoh A, Hirooka Y, et al. Evaluation of decellularized esophagus as a scaffold for cultured esophageal epithelial cells. J Biomed Mater Res A. 2006;79:771–8.CrossRefPubMed Ozeki M, Narita Y, Kagami H, Ohmiya N, Itoh A, Hirooka Y, et al. Evaluation of decellularized esophagus as a scaffold for cultured esophageal epithelial cells. J Biomed Mater Res A. 2006;79:771–8.CrossRefPubMed
60.
Zurück zum Zitat Marzaro M, Vigolo S, Oselladore B, Conconi MT, Ribatti D, Giuliani S, et al. In vitro and in vivo proposal of an artificial esophagus. J Biomed Mater Res A. 2006;77:795–801.CrossRefPubMed Marzaro M, Vigolo S, Oselladore B, Conconi MT, Ribatti D, Giuliani S, et al. In vitro and in vivo proposal of an artificial esophagus. J Biomed Mater Res A. 2006;77:795–801.CrossRefPubMed
61.
Zurück zum Zitat Urita Y, Komuro H, Chen G, Shinya M, Kaneko S, Kaneko M, et al. Regeneration of the esophagus using gastric acellular matrix: an experimental study in a rat model. Pediatr Surg Int. 2007;23:21–6.CrossRefPubMed Urita Y, Komuro H, Chen G, Shinya M, Kaneko S, Kaneko M, et al. Regeneration of the esophagus using gastric acellular matrix: an experimental study in a rat model. Pediatr Surg Int. 2007;23:21–6.CrossRefPubMed
62.
Zurück zum Zitat Hori Y, Nakamura T, Kimura D, Kaino K, Kurokawa Y, Satomi S, et al. Experimental study on tissue engineering of the small intestine by mesenchymal stem cell seeding. J Surg Res. 2002;102:156–60.CrossRefPubMed Hori Y, Nakamura T, Kimura D, Kaino K, Kurokawa Y, Satomi S, et al. Experimental study on tissue engineering of the small intestine by mesenchymal stem cell seeding. J Surg Res. 2002;102:156–60.CrossRefPubMed
63.
Zurück zum Zitat Nakase Y, Nakamura T, Kin S, Nakashima S, Yoshikawa T, Kuriu Y, et al. Intrathoracic esophageal replacement by in situ tissue-engineered esophagus. J Thorac Cardiovasc Surg. 2008;136:850–9.CrossRefPubMed Nakase Y, Nakamura T, Kin S, Nakashima S, Yoshikawa T, Kuriu Y, et al. Intrathoracic esophageal replacement by in situ tissue-engineered esophagus. J Thorac Cardiovasc Surg. 2008;136:850–9.CrossRefPubMed
64.
Zurück zum Zitat Sjoqvist S, Jungebluth P, Lim ML, Haag JC, Gustafsson Y, Lemon G, et al. Experimental orthotopic transplantation of a tissue-engineered oesophagus in rats. Nat Commun. 2014;5:3562.CrossRefPubMedPubMedCentral Sjoqvist S, Jungebluth P, Lim ML, Haag JC, Gustafsson Y, Lemon G, et al. Experimental orthotopic transplantation of a tissue-engineered oesophagus in rats. Nat Commun. 2014;5:3562.CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Workman MJ, Mahe MM, Trisno S, Poling HM, Watson CL, Sundaram N, et al. Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat Med. 2017;23:49–59.CrossRefPubMed Workman MJ, Mahe MM, Trisno S, Poling HM, Watson CL, Sundaram N, et al. Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat Med. 2017;23:49–59.CrossRefPubMed
66.
Zurück zum Zitat Yamamoto Y, Nakamura T, Shimizu Y, Takimoto Y, Matsumoto K, Kiyotani T, et al. Experimental replacement of the thoracic esophagus with a bioabsorbable collagen sponge scaffold supported by a silicone stent in dogs. ASAIO J. 1999;45:311–6.CrossRefPubMed Yamamoto Y, Nakamura T, Shimizu Y, Takimoto Y, Matsumoto K, Kiyotani T, et al. Experimental replacement of the thoracic esophagus with a bioabsorbable collagen sponge scaffold supported by a silicone stent in dogs. ASAIO J. 1999;45:311–6.CrossRefPubMed
67.
Zurück zum Zitat Doede T, Bondartschuk M, Joerck C, Schulze E, Goernig M. Unsuccessful alloplastic esophageal replacement with porcine small intestinal submucosa. Artif Organs. 2009;33:328–33.CrossRefPubMed Doede T, Bondartschuk M, Joerck C, Schulze E, Goernig M. Unsuccessful alloplastic esophageal replacement with porcine small intestinal submucosa. Artif Organs. 2009;33:328–33.CrossRefPubMed
68.
Zurück zum Zitat Nieponice A, Gilbert TW, Johnson SA, Turner NJ, Badylak SF. Bone marrow-derived cells participate in the long-term remodeling in a mouse model of esophageal reconstruction. J Surg Res. 2013;182:e1–e7.CrossRefPubMed Nieponice A, Gilbert TW, Johnson SA, Turner NJ, Badylak SF. Bone marrow-derived cells participate in the long-term remodeling in a mouse model of esophageal reconstruction. J Surg Res. 2013;182:e1–e7.CrossRefPubMed
69.
Zurück zum Zitat Komuro H, Nakamura T, Kaneko M, Nakanishi Y, Shimizu Y. Application of collagen sponge scaffold to muscular defects of the esophagus: an experimental study in piglets. J Pediatr Surg. 2002;37:1409–13.CrossRefPubMed Komuro H, Nakamura T, Kaneko M, Nakanishi Y, Shimizu Y. Application of collagen sponge scaffold to muscular defects of the esophagus: an experimental study in piglets. J Pediatr Surg. 2002;37:1409–13.CrossRefPubMed
70.
Zurück zum Zitat Badylak SF, Vorp DA, Spievack AR, Simmons-Byrd A, Hanke J, Freytes DO, et al. Esophageal reconstruction with ECM and muscle tissue in a dog model. J Surg Res. 2005;128:87–97.CrossRefPubMed Badylak SF, Vorp DA, Spievack AR, Simmons-Byrd A, Hanke J, Freytes DO, et al. Esophageal reconstruction with ECM and muscle tissue in a dog model. J Surg Res. 2005;128:87–97.CrossRefPubMed
71.
Zurück zum Zitat Lopes MF, Cabrita A, Ilharco J, Pessa P, Paiva-Carvalho J, Pires A, et al. Esophageal replacement in rat using porcine intestinal submucosa as a patch or a tube-shaped graft. Dis Esophagus. 2006;19:254–9.CrossRefPubMed Lopes MF, Cabrita A, Ilharco J, Pessa P, Paiva-Carvalho J, Pires A, et al. Esophageal replacement in rat using porcine intestinal submucosa as a patch or a tube-shaped graft. Dis Esophagus. 2006;19:254–9.CrossRefPubMed
72.
Zurück zum Zitat Park SY, Choi JW, Park JK, Song EH, Park SA, Kim YS, et al. Tissue-engineered artificial oesophagus patch using three-dimensionally printed polycaprolactone with mesenchymal stem cells: a preliminary report. Interact Cardiovasc Thorac Surg. 2016;22:712–7.CrossRefPubMedPubMedCentral Park SY, Choi JW, Park JK, Song EH, Park SA, Kim YS, et al. Tissue-engineered artificial oesophagus patch using three-dimensionally printed polycaprolactone with mesenchymal stem cells: a preliminary report. Interact Cardiovasc Thorac Surg. 2016;22:712–7.CrossRefPubMedPubMedCentral
73.
Zurück zum Zitat Nieponice A, McGrath K, Qureshi I, Beckman EJ, Luketich JD, Gilbert TW, et al. An extracellular matrix scaffold for esophageal stricture prevention after circumferential EMR. Gastrointest Endosc. 2009;69:289–96.CrossRefPubMed Nieponice A, McGrath K, Qureshi I, Beckman EJ, Luketich JD, Gilbert TW, et al. An extracellular matrix scaffold for esophageal stricture prevention after circumferential EMR. Gastrointest Endosc. 2009;69:289–96.CrossRefPubMed
74.
Zurück zum Zitat Ohki T, Yamato M, Murakami D, Takagi R, Yang J, Namiki H, et al. Treatment of oesophageal ulcerations using endoscopic transplantation of tissue-engineered autologous oral mucosal epithelial cell sheets in a canine model. Gut. 2006;55:1704–10.CrossRefPubMedPubMedCentral Ohki T, Yamato M, Murakami D, Takagi R, Yang J, Namiki H, et al. Treatment of oesophageal ulcerations using endoscopic transplantation of tissue-engineered autologous oral mucosal epithelial cell sheets in a canine model. Gut. 2006;55:1704–10.CrossRefPubMedPubMedCentral
75.
Zurück zum Zitat Sakurai T, Miyazaki S, Miyata G, Satomi S, Hori Y. Autologous buccal keratinocyte implantation for the prevention of stenosis after EMR of the esophagus. Gastrointest Endosc. 2007;66:167–73.CrossRefPubMed Sakurai T, Miyazaki S, Miyata G, Satomi S, Hori Y. Autologous buccal keratinocyte implantation for the prevention of stenosis after EMR of the esophagus. Gastrointest Endosc. 2007;66:167–73.CrossRefPubMed
76.
Zurück zum Zitat Shimizu Y, Tsukagoshi H, Fujita M, Hosokawa M, Kato M, Asaka M. Long-term outcome after endoscopic mucosal resection in patients with esophageal squamous cell carcinoma invading the muscularis mucosae or deeper. Gastrointest Endosc. 2002;56:387–90.CrossRefPubMed Shimizu Y, Tsukagoshi H, Fujita M, Hosokawa M, Kato M, Asaka M. Long-term outcome after endoscopic mucosal resection in patients with esophageal squamous cell carcinoma invading the muscularis mucosae or deeper. Gastrointest Endosc. 2002;56:387–90.CrossRefPubMed
77.
Zurück zum Zitat Oyama T, Tomori A, Hotta K, Morita S, Kominato K, Tanaka M, et al. Endoscopic submucosal dissection of early esophageal cancer. Clin Gastroenterol Hepatol. 2005;3:S67–70.CrossRefPubMed Oyama T, Tomori A, Hotta K, Morita S, Kominato K, Tanaka M, et al. Endoscopic submucosal dissection of early esophageal cancer. Clin Gastroenterol Hepatol. 2005;3:S67–70.CrossRefPubMed
78.
Zurück zum Zitat Katada C, Muto M, Momma K, Arima M, Tajiri H, Kanamaru C, et al. Clinical outcome after endoscopic mucosal resection for esophageal squamous cell carcinoma invading the muscularis mucosae—a multicenter retrospective cohort study. Endoscopy. 2007;39:779–83.CrossRefPubMed Katada C, Muto M, Momma K, Arima M, Tajiri H, Kanamaru C, et al. Clinical outcome after endoscopic mucosal resection for esophageal squamous cell carcinoma invading the muscularis mucosae—a multicenter retrospective cohort study. Endoscopy. 2007;39:779–83.CrossRefPubMed
79.
Zurück zum Zitat Lewis JJ, Rubenstein JH, Singal AG, Elmunzer BJ, Kwon RS, Piraka CR. Factors associated with esophageal stricture formation after endoscopic mucosal resection for neoplastic Barrett’s esophagus. Gastrointest Endosc. 2011;74:753–60.CrossRefPubMedPubMedCentral Lewis JJ, Rubenstein JH, Singal AG, Elmunzer BJ, Kwon RS, Piraka CR. Factors associated with esophageal stricture formation after endoscopic mucosal resection for neoplastic Barrett’s esophagus. Gastrointest Endosc. 2011;74:753–60.CrossRefPubMedPubMedCentral
80.
Zurück zum Zitat Kobayashi S, Kanai N, Ohki T, Takagi R, Yamaguchi N, Isomoto H, et al. Prevention of esophageal strictures after endoscopic submucosal dissection. World J Gastroenterol. 2014;20:15098–109.CrossRefPubMedPubMedCentral Kobayashi S, Kanai N, Ohki T, Takagi R, Yamaguchi N, Isomoto H, et al. Prevention of esophageal strictures after endoscopic submucosal dissection. World J Gastroenterol. 2014;20:15098–109.CrossRefPubMedPubMedCentral
81.
Zurück zum Zitat Badylak SF, Hoppo T, Nieponice A, Gilbert TW, Davison JM, Jobe BA. Esophageal preservation in five male patients after endoscopic inner-layer circumferential resection in the setting of superficial cancer: a regenerative medicine approach with a biologic scaffold. Tissue Eng Part A. 2011;17:1643–50.CrossRefPubMedPubMedCentral Badylak SF, Hoppo T, Nieponice A, Gilbert TW, Davison JM, Jobe BA. Esophageal preservation in five male patients after endoscopic inner-layer circumferential resection in the setting of superficial cancer: a regenerative medicine approach with a biologic scaffold. Tissue Eng Part A. 2011;17:1643–50.CrossRefPubMedPubMedCentral
82.
Zurück zum Zitat Nieponice A, Ciotola FF, Nachman F, Jobe BA, Hoppo T, Londono R, et al. Patch esophagoplasty: esophageal reconstruction using biologic scaffolds. Ann Thorac Surg. 2014;97:283–8.CrossRefPubMed Nieponice A, Ciotola FF, Nachman F, Jobe BA, Hoppo T, Londono R, et al. Patch esophagoplasty: esophageal reconstruction using biologic scaffolds. Ann Thorac Surg. 2014;97:283–8.CrossRefPubMed
83.
Zurück zum Zitat Ohki T, Yamato M, Ota M, Takagi R, Murakami D, Kondo M, et al. Prevention of esophageal stricture after endoscopic submucosal dissection using tissue-engineered cell sheets. Gastroenterology. 2012;143:582–8 e581-582.CrossRefPubMed Ohki T, Yamato M, Ota M, Takagi R, Murakami D, Kondo M, et al. Prevention of esophageal stricture after endoscopic submucosal dissection using tissue-engineered cell sheets. Gastroenterology. 2012;143:582–8 e581-582.CrossRefPubMed
84.
Zurück zum Zitat Dua KS, Hogan WJ, Aadam AA, Gasparri M. In-vivo oesophageal regeneration in a human being by use of a non-biological scaffold and extracellular matrix. Lancet. 2016;388:55–61.CrossRefPubMed Dua KS, Hogan WJ, Aadam AA, Gasparri M. In-vivo oesophageal regeneration in a human being by use of a non-biological scaffold and extracellular matrix. Lancet. 2016;388:55–61.CrossRefPubMed
85.
Zurück zum Zitat Murakami D, Yamato M, Nishida K, Ohki T, Takagi R, Yang J, et al. Fabrication of transplantable human oral mucosal epithelial cell sheets using temperature-responsive culture inserts without feeder layer cells. J Artif Organs. 2006;9:185–91.CrossRefPubMed Murakami D, Yamato M, Nishida K, Ohki T, Takagi R, Yang J, et al. Fabrication of transplantable human oral mucosal epithelial cell sheets using temperature-responsive culture inserts without feeder layer cells. J Artif Organs. 2006;9:185–91.CrossRefPubMed
86.
Zurück zum Zitat Takagi R, Murakami D, Kondo M, Ohki T, Sasaki R, Mizutani M, et al. Fabrication of human oral mucosal epithelial cell sheets for treatment of esophageal ulceration by endoscopic submucosal dissection. Gastrointest Endosc. 2010;72:1253–9.CrossRefPubMed Takagi R, Murakami D, Kondo M, Ohki T, Sasaki R, Mizutani M, et al. Fabrication of human oral mucosal epithelial cell sheets for treatment of esophageal ulceration by endoscopic submucosal dissection. Gastrointest Endosc. 2010;72:1253–9.CrossRefPubMed
Metadaten
Titel
Regenerative medicine for the esophagus
verfasst von
Kengo Kanetaka
Shinichiro Kobayashi
Susumu Eguchi
Publikationsdatum
01.08.2018
Verlag
Springer Singapore
Erschienen in
Surgery Today / Ausgabe 8/2018
Print ISSN: 0941-1291
Elektronische ISSN: 1436-2813
DOI
https://doi.org/10.1007/s00595-017-1610-y

Weitere Artikel der Ausgabe 8/2018

Surgery Today 8/2018 Zur Ausgabe

Wie erfolgreich ist eine Re-Ablation nach Rezidiv?

23.04.2024 Ablationstherapie Nachrichten

Nach der Katheterablation von Vorhofflimmern kommt es bei etwa einem Drittel der Patienten zu Rezidiven, meist binnen eines Jahres. Wie sich spätere Rückfälle auf die Erfolgschancen einer erneuten Ablation auswirken, haben Schweizer Kardiologen erforscht.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Mehr Schaden als Nutzen durch präoperatives Aussetzen von GLP-1-Agonisten?

23.04.2024 Operationsvorbereitung Nachrichten

Derzeit wird empfohlen, eine Therapie mit GLP-1-Rezeptoragonisten präoperativ zu unterbrechen. Eine neue Studie nährt jedoch Zweifel an der Notwendigkeit der Maßnahme.

Ureterstriktur: Innovative OP-Technik bewährt sich

19.04.2024 EAU 2024 Kongressbericht

Die Ureterstriktur ist eine relativ seltene Komplikation, trotzdem bedarf sie einer differenzierten Versorgung. In komplexen Fällen wird dies durch die roboterassistierte OP-Technik gewährleistet. Erste Resultate ermutigen.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.