Skip to main content
Erschienen in: Clinical and Experimental Nephrology 1/2012

01.02.2012 | Review Article

Renal outer medullary potassium channel knockout models reveal thick ascending limb function and dysfunction

verfasst von: Tong Wang

Erschienen in: Clinical and Experimental Nephrology | Ausgabe 1/2012

Einloggen, um Zugang zu erhalten

Abstract

The renal outer medullary potassium channel (ROMK) is an adenosine triphosphate-sensitive inward-rectifier potassium channel (Kir1.1 or KCNJ1) highly expressed in the cortical and medullary thick ascending limbs (TAL), connecting segment (CNT) and cortical collecting duct (CCD) in the mammalian kidney, where it serves to recycle potassium (K+) across the apical membrane in TAL and to secrete K+ in the CNT and CCD. ROMK channel mutations cause type II Bartter’s syndrome with salt wasting and dehydration, and ROMK knockout mice display a similar phenotype of Bartter’s syndrome in humans. Studies from ROMK null mice indicate that ROMK is required to form both the small-conductance (30pS, SK) K channels and the 70pS (IK) K channels in the TAL. The availability of ROMK−/− mice has made it possible to study electrolyte transport along the nephron in order to understand the TAL function under physiological conditions and the compensatory mechanisms of salt and water transport under the conditions of TAL dysfunction. This review summarizes previous progress in the study of K+ channel activity in the TAL and CCD, ion transporter expression and activities along the nephron, and renal functions under physiological and pathophysiological conditions using ROMK−/− mice.
Literatur
1.
Zurück zum Zitat Lee WS, Hebert SC. ROMK inwardly rectifying ATP-sensitive K+ channel. I. Expression in rat distal nephron segments. Am J Physiol. 1995;268(6 Pt 2):F1124–31.PubMed Lee WS, Hebert SC. ROMK inwardly rectifying ATP-sensitive K+ channel. I. Expression in rat distal nephron segments. Am J Physiol. 1995;268(6 Pt 2):F1124–31.PubMed
2.
Zurück zum Zitat Ashcroft SJH, Ashcroft FM. Properties and functions of ATP-sensitive K-channels. Cell Signal. 1990;2:197–214.PubMedCrossRef Ashcroft SJH, Ashcroft FM. Properties and functions of ATP-sensitive K-channels. Cell Signal. 1990;2:197–214.PubMedCrossRef
3.
Zurück zum Zitat Ashcroft SJ, Ashcroft FM. The sulfonylurea receptor. Biochim Biophys Acta. 1992;1175(1):45–59.PubMedCrossRef Ashcroft SJ, Ashcroft FM. The sulfonylurea receptor. Biochim Biophys Acta. 1992;1175(1):45–59.PubMedCrossRef
4.
Zurück zum Zitat Misler S, Giebisch G. ATP-sensitive potassium channels in physiology, pathophysiology, and pharmacology. Curr Opin Nephrol Hypertens. 1992;1(1):21–33.PubMedCrossRef Misler S, Giebisch G. ATP-sensitive potassium channels in physiology, pathophysiology, and pharmacology. Curr Opin Nephrol Hypertens. 1992;1(1):21–33.PubMedCrossRef
5.
Zurück zum Zitat Wang T, Wang WH, Klein-Robbenhaar G, Giebisch G. Effects of glyburide on renal tubule transport and potassium-channel activity. Ren Physiol Biochem. 1995;18(4):169–82.PubMed Wang T, Wang WH, Klein-Robbenhaar G, Giebisch G. Effects of glyburide on renal tubule transport and potassium-channel activity. Ren Physiol Biochem. 1995;18(4):169–82.PubMed
6.
Zurück zum Zitat Wang T, Wang WH, Klein-Robbenhaar G, Giebisch G. Effects of a novel KATP channel blocker on renal tubule function and K channel activity. J Pharmacol Exp Ther. 1995;273(3):1382–9.PubMed Wang T, Wang WH, Klein-Robbenhaar G, Giebisch G. Effects of a novel KATP channel blocker on renal tubule function and K channel activity. J Pharmacol Exp Ther. 1995;273(3):1382–9.PubMed
7.
Zurück zum Zitat Wang T. The effects of potassium channel opener minoxidil on renal electrolytes transport in the loop of Henle. J Pharmacol Exp Ther. 2003;304(2):833–40.PubMedCrossRef Wang T. The effects of potassium channel opener minoxidil on renal electrolytes transport in the loop of Henle. J Pharmacol Exp Ther. 2003;304(2):833–40.PubMedCrossRef
8.
Zurück zum Zitat Hebert SC, Desir G, Giebisch G, Wang W. Molecular diversity and regulation of renal potassium channels. Physiol Rev. 2005;85(1):319–71.PubMedCrossRef Hebert SC, Desir G, Giebisch G, Wang W. Molecular diversity and regulation of renal potassium channels. Physiol Rev. 2005;85(1):319–71.PubMedCrossRef
9.
Zurück zum Zitat Lu M, Wang W. Two types of K+ channels are present in the apical membrane of the thick ascending limb of the mouse kidney. Kidney Blood Press Res. 2000;23:75–82.PubMedCrossRef Lu M, Wang W. Two types of K+ channels are present in the apical membrane of the thick ascending limb of the mouse kidney. Kidney Blood Press Res. 2000;23:75–82.PubMedCrossRef
10.
Zurück zum Zitat Lu M, Wang T, Yan Q, et al. Absence of small conductance K+ channel (SK) activity in apical membranes of thick ascending limb and cortical collecting duct in ROMK (Bartter’s) knockout mice. J Biol Chem. 2002;277(40):37881–7.PubMedCrossRef Lu M, Wang T, Yan Q, et al. Absence of small conductance K+ channel (SK) activity in apical membranes of thick ascending limb and cortical collecting duct in ROMK (Bartter’s) knockout mice. J Biol Chem. 2002;277(40):37881–7.PubMedCrossRef
11.
Zurück zum Zitat Lu M, Wang T, Yan Q, Wang W, Giebisch G, Hebert SC. ROMK is required for expression of the 70-pS K channel in the thick ascending limb. Am J Physiol Renal Physiol. 2004;286(3):F490–5.PubMedCrossRef Lu M, Wang T, Yan Q, Wang W, Giebisch G, Hebert SC. ROMK is required for expression of the 70-pS K channel in the thick ascending limb. Am J Physiol Renal Physiol. 2004;286(3):F490–5.PubMedCrossRef
12.
Zurück zum Zitat Lorenz JN, Baird NR, Judd LM, et al. Impaired renal NaCl absorption in mice lacking the ROMK potassium channel, a model for type II Bartter’s syndrome. J Biol Chem. 2002;277(40):37871–80.PubMedCrossRef Lorenz JN, Baird NR, Judd LM, et al. Impaired renal NaCl absorption in mice lacking the ROMK potassium channel, a model for type II Bartter’s syndrome. J Biol Chem. 2002;277(40):37871–80.PubMedCrossRef
13.
Zurück zum Zitat Yan Q, Yang X, Cantone A, Giebisch G, Hebert S, Wang T. Female ROMK null mice manifest more severe Bartter II phenotype on renal function and higher PGE2 production. Am J Physiol Regul Integr Comp Physiol. 2008;295(3):R997–1004.PubMedCrossRef Yan Q, Yang X, Cantone A, Giebisch G, Hebert S, Wang T. Female ROMK null mice manifest more severe Bartter II phenotype on renal function and higher PGE2 production. Am J Physiol Regul Integr Comp Physiol. 2008;295(3):R997–1004.PubMedCrossRef
14.
Zurück zum Zitat Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP. Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na–K–2Cl cotransporter NKCC2. Nat Genet. 1996;13(2):183–8.PubMedCrossRef Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP. Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na–K–2Cl cotransporter NKCC2. Nat Genet. 1996;13(2):183–8.PubMedCrossRef
16.
Zurück zum Zitat Gu R, Wei Y, Jiang H, Balazy M, Wang W. Role of 20-HETE in mediating the effect of dietary K intake on the apical K channels in the mTAL. Am J Physiol Renal Physiol. 2001;280(2):F223–30.PubMed Gu R, Wei Y, Jiang H, Balazy M, Wang W. Role of 20-HETE in mediating the effect of dietary K intake on the apical K channels in the mTAL. Am J Physiol Renal Physiol. 2001;280(2):F223–30.PubMed
17.
Zurück zum Zitat Hebert SC, Gullans SR. The electroneutral sodium–(potassium)–chloride co-transporter family: a journey from fish to the renal co-transporters. Curr Opin Nephrol Hypertens. 1995;4(5):389–91.PubMedCrossRef Hebert SC, Gullans SR. The electroneutral sodium–(potassium)–chloride co-transporter family: a journey from fish to the renal co-transporters. Curr Opin Nephrol Hypertens. 1995;4(5):389–91.PubMedCrossRef
18.
Zurück zum Zitat Giebisch G, Klein-Robbenhaar G, Klein-Robbenhaar J, Ratheiser K, Unwin R. Renal and extrarenal sites of action of diuretics. Cardiovasc Drugs Ther. 1993;7(Suppl 1):11–21.PubMedCrossRef Giebisch G, Klein-Robbenhaar G, Klein-Robbenhaar J, Ratheiser K, Unwin R. Renal and extrarenal sites of action of diuretics. Cardiovasc Drugs Ther. 1993;7(Suppl 1):11–21.PubMedCrossRef
19.
Zurück zum Zitat Cantone A, Yang X, Yan Q, Giebisch G, Hebert SC, Wang T. Mouse model of type II Bartter’s syndrome. I. Upregulation of thiazide-sensitive Na–Cl cotransport activity. Am J Physiol Renal Physiol. 2008;294(6):F1366–72.PubMedCrossRef Cantone A, Yang X, Yan Q, Giebisch G, Hebert SC, Wang T. Mouse model of type II Bartter’s syndrome. I. Upregulation of thiazide-sensitive Na–Cl cotransport activity. Am J Physiol Renal Physiol. 2008;294(6):F1366–72.PubMedCrossRef
20.
Zurück zum Zitat Plata C, Meade P, Hall A, et al. Alternatively spliced isoform of apical Na(+)–K(+)–Cl(−) cotransporter gene encodes a furosemide-sensitive Na(+)–Cl(−) cotransporter. Am J Physiol Renal Physiol. 2001;280(4):F574–82.PubMed Plata C, Meade P, Hall A, et al. Alternatively spliced isoform of apical Na(+)–K(+)–Cl(−) cotransporter gene encodes a furosemide-sensitive Na(+)–Cl(−) cotransporter. Am J Physiol Renal Physiol. 2001;280(4):F574–82.PubMed
21.
Zurück zum Zitat Takahashi N, Chernavvsky DR, Gomez RA, Igarashi P, Gitelman HJ, Smithies O. Uncompensated polyuria in a mouse model of Bartter’s syndrome. Proc Natl Acad Sci USA. 2000;97(10):5434–9.PubMedCrossRef Takahashi N, Chernavvsky DR, Gomez RA, Igarashi P, Gitelman HJ, Smithies O. Uncompensated polyuria in a mouse model of Bartter’s syndrome. Proc Natl Acad Sci USA. 2000;97(10):5434–9.PubMedCrossRef
22.
Zurück zum Zitat Frindt G, Palmer LG. Apical potassium channels in the rat connecting tubule. Am J Physiol Renal Physiol. 2004;287(5):F1030–7.PubMedCrossRef Frindt G, Palmer LG. Apical potassium channels in the rat connecting tubule. Am J Physiol Renal Physiol. 2004;287(5):F1030–7.PubMedCrossRef
23.
Zurück zum Zitat Gray DA, Frindt G, Palmer LG. Quantification of K+ secretion through apical low-conductance K channels in the CCD. Am J Physiol Renal Physiol. 2005;289(1):F117–26.PubMedCrossRef Gray DA, Frindt G, Palmer LG. Quantification of K+ secretion through apical low-conductance K channels in the CCD. Am J Physiol Renal Physiol. 2005;289(1):F117–26.PubMedCrossRef
24.
Zurück zum Zitat Malnic G, Klose RM, Giebisch G. Micropuncture study of renal potassium excretion in the rat. Am J Physiol. 1964;206:674–86.PubMed Malnic G, Klose RM, Giebisch G. Micropuncture study of renal potassium excretion in the rat. Am J Physiol. 1964;206:674–86.PubMed
25.
Zurück zum Zitat Wang WH. Regulation of ROMK (Kir1.1) channels: new mechanisms and aspects. Am J Physiol Renal Physiol. 2006;290(1):F14–9.PubMedCrossRef Wang WH. Regulation of ROMK (Kir1.1) channels: new mechanisms and aspects. Am J Physiol Renal Physiol. 2006;290(1):F14–9.PubMedCrossRef
26.
Zurück zum Zitat Bailey MA, Cantone A, Yan Q, et al. Maxi-K channels contribute to urinary potassium excretion in the ROMK-deficient mouse model of Type II Bartter’s syndrome and in adaptation to a high-K diet. Kidney Int. 2006;70(1):51–9.PubMedCrossRef Bailey MA, Cantone A, Yan Q, et al. Maxi-K channels contribute to urinary potassium excretion in the ROMK-deficient mouse model of Type II Bartter’s syndrome and in adaptation to a high-K diet. Kidney Int. 2006;70(1):51–9.PubMedCrossRef
27.
Zurück zum Zitat Hunter M, Lopes AG, Boulpaep EL, Giebisch GH. Single channel recordings of calcium-activated potassium channels in the apical membrane of rabbit cortical collecting tubules. Proc Natl Acad Sci USA. 1984;81(13):4237–9.PubMedCrossRef Hunter M, Lopes AG, Boulpaep EL, Giebisch GH. Single channel recordings of calcium-activated potassium channels in the apical membrane of rabbit cortical collecting tubules. Proc Natl Acad Sci USA. 1984;81(13):4237–9.PubMedCrossRef
28.
Zurück zum Zitat Pacha J, Frindt G, Sackin H, Palmer LG. Apical maxi K channels in intercalated cells of CCT. Am J Physiol. 1991;261(4 Pt 2):F696–705.PubMed Pacha J, Frindt G, Sackin H, Palmer LG. Apical maxi K channels in intercalated cells of CCT. Am J Physiol. 1991;261(4 Pt 2):F696–705.PubMed
29.
Zurück zum Zitat Liu W, Xu S, Woda C, Kim P, Weinbaum S, Satlin LM. Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct. Am J Physiol Renal Physiol. 2003;285(5):F998–1012.PubMed Liu W, Xu S, Woda C, Kim P, Weinbaum S, Satlin LM. Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct. Am J Physiol Renal Physiol. 2003;285(5):F998–1012.PubMed
30.
Zurück zum Zitat Satlin LM. Developmental regulation of expression of renal potassium secretory channels. Curr Opin Nephrol Hypertens. 2004;13(4):445–50.PubMedCrossRef Satlin LM. Developmental regulation of expression of renal potassium secretory channels. Curr Opin Nephrol Hypertens. 2004;13(4):445–50.PubMedCrossRef
31.
Zurück zum Zitat Woda CB, Bragin A, Kleyman TR, Satlin LM. Flow-dependent K+ secretion in the cortical collecting duct is mediated by a maxi-K channel. Am J Physiol Renal Physiol. 2001;280(5):F786–93.PubMed Woda CB, Bragin A, Kleyman TR, Satlin LM. Flow-dependent K+ secretion in the cortical collecting duct is mediated by a maxi-K channel. Am J Physiol Renal Physiol. 2001;280(5):F786–93.PubMed
32.
Zurück zum Zitat Wagner CA, Loffing-Cueni D, Yan Q, et al. Mouse model of type II Bartter’s syndrome. II. Altered expression of renal sodium- and water-transporting proteins. Am J Physiol Renal Physiol. 2008;294(6):F1373–80.PubMedCrossRef Wagner CA, Loffing-Cueni D, Yan Q, et al. Mouse model of type II Bartter’s syndrome. II. Altered expression of renal sodium- and water-transporting proteins. Am J Physiol Renal Physiol. 2008;294(6):F1373–80.PubMedCrossRef
33.
Zurück zum Zitat Wang T, Yang CL, Abbiati T, et al. Mechanism of proximal tubule bicarbonate absorption in NHE3 null mice. Am J Physiol. 1999;277(2 Pt 2):F298–302.PubMed Wang T, Yang CL, Abbiati T, et al. Mechanism of proximal tubule bicarbonate absorption in NHE3 null mice. Am J Physiol. 1999;277(2 Pt 2):F298–302.PubMed
34.
Zurück zum Zitat Wang T, Yang CL, Abbiati T, Shull GE, Giebisch G, Aronson PS. Essential role of NHE3 in facilitating formate-dependent NaCl absorption in the proximal tubule. Am J Physiol Renal Physiol. 2001;281(2):F288–92.PubMed Wang T, Yang CL, Abbiati T, Shull GE, Giebisch G, Aronson PS. Essential role of NHE3 in facilitating formate-dependent NaCl absorption in the proximal tubule. Am J Physiol Renal Physiol. 2001;281(2):F288–92.PubMed
35.
Zurück zum Zitat Abdallah JG, Schrier RW, Edelstein C, Jennings SD, Wyse B, Ellison DH. Loop diuretic infusion increases thiazide-sensitive Na(+)/Cl(−)-cotransporter abundance: role of aldosterone. J Am Soc Nephrol. 2001;12(7):1335–41.PubMed Abdallah JG, Schrier RW, Edelstein C, Jennings SD, Wyse B, Ellison DH. Loop diuretic infusion increases thiazide-sensitive Na(+)/Cl(−)-cotransporter abundance: role of aldosterone. J Am Soc Nephrol. 2001;12(7):1335–41.PubMed
36.
Zurück zum Zitat Reilly RF, Ellison DH. Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol Rev. 2000;80(1):277–313.PubMed Reilly RF, Ellison DH. Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol Rev. 2000;80(1):277–313.PubMed
37.
Zurück zum Zitat Na KY, Oh YK, Han JS, et al. Upregulation of Na+ transporter abundances in response to chronic thiazide or loop diuretic treatment in rats. Am J Physiol Renal Physiol. 2003;284(1):F133–43.PubMed Na KY, Oh YK, Han JS, et al. Upregulation of Na+ transporter abundances in response to chronic thiazide or loop diuretic treatment in rats. Am J Physiol Renal Physiol. 2003;284(1):F133–43.PubMed
Metadaten
Titel
Renal outer medullary potassium channel knockout models reveal thick ascending limb function and dysfunction
verfasst von
Tong Wang
Publikationsdatum
01.02.2012
Verlag
Springer Japan
Erschienen in
Clinical and Experimental Nephrology / Ausgabe 1/2012
Print ISSN: 1342-1751
Elektronische ISSN: 1437-7799
DOI
https://doi.org/10.1007/s10157-011-0495-0

Weitere Artikel der Ausgabe 1/2012

Clinical and Experimental Nephrology 1/2012 Zur Ausgabe

Images in nephrology

“Fatal” gas in the kidney

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Battle of Experts: Sport vs. Spritze bei Adipositas und Typ-2-Diabetes

11.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Im Battle of Experts traten zwei Experten auf dem Diabeteskongress gegeneinander an: Die eine vertrat die Auffassung „Sport statt Spritze“ bei Adipositas und Typ-2-Diabetes, der andere forderte „Spritze statt Sport!“ Am Ende waren sie sich aber einig: Die Kombination aus beidem erzielt die besten Ergebnisse.

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Triglyzeridsenker schützt nicht nur Hochrisikopatienten

10.05.2024 Hypercholesterinämie Nachrichten

Patienten mit Arteriosklerose-bedingten kardiovaskulären Erkrankungen, die trotz Statineinnahme zu hohe Triglyzeridspiegel haben, profitieren von einer Behandlung mit Icosapent-Ethyl, und zwar unabhängig vom individuellen Risikoprofil.

Gibt es eine Wende bei den bioresorbierbaren Gefäßstützen?

In den USA ist erstmals eine bioresorbierbare Gefäßstütze – auch Scaffold genannt – zur Rekanalisation infrapoplitealer Arterien bei schwerer PAVK zugelassen worden. Das markiert einen Wendepunkt in der Geschichte dieser speziellen Gefäßstützen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.