Skip to main content
Erschienen in: International Urology and Nephrology 11/2021

17.01.2021 | Nephrology - Review

Renoprotective effects of estrogen on acute kidney injury: the role of SIRT1

verfasst von: Fatemeh Darvishzadeh Mahani, Mohammad Khaksari, Alireza Raji-amirhasani

Erschienen in: International Urology and Nephrology | Ausgabe 11/2021

Einloggen, um Zugang zu erhalten

Abstract

Acute kidney injury (AKI) is a common syndrome associated with high morbidity and mortality, despite progress in medical care. Many studies have shown that there are sex differences and different role of sex hormones particularly estrogens in kidney injury. In this regard, the incidence and rate of progression of kidney diseases are higher in men compared with women. These observations suggest that female sex hormone may be renoprotective. Silent information regulator 2 homolog 1 (SIRT1) is a histone deacetylase, which is implicated in multiple biologic processes in several organisms. In the kidneys, SIRT1 inhibits renal cell apoptosis, inflammation, and fibrosis. Studies have reported a link between SIRT1 and estrogen. In addition, SIRT1 regulates ERα expression and inhibition of SIRT1 activity suppresses ERα expression. This effect leads to inhibition of estrogen-responsive gene expression. In this text, we review the role of SIRT1 in mediating the protective effects of estrogen in the onset and progression of AKI.
Literatur
1.
Zurück zum Zitat Tao LP, Burdmann E, Mehta R. Acute kidney injury: global health alert. 2013. Tao LP, Burdmann E, Mehta R. Acute kidney injury: global health alert. 2013.
2.
Zurück zum Zitat National CGCU. Acute Kidney Injury: Prevention, Detection and Management Up to the Point of Renal Replacement Therapy. 2013. National CGCU. Acute Kidney Injury: Prevention, Detection and Management Up to the Point of Renal Replacement Therapy. 2013.
3.
Zurück zum Zitat Koza Y (2016) Acute kidney injury: current concepts and new insights. J Injury Violence Res 8(1):58 Koza Y (2016) Acute kidney injury: current concepts and new insights. J Injury Violence Res 8(1):58
4.
5.
Zurück zum Zitat Nash K, Hafeez A, Hou S (2002) Hospital-acquired renal insufficiency. Am J Kidney Dis 39(5):930–936PubMedCrossRef Nash K, Hafeez A, Hou S (2002) Hospital-acquired renal insufficiency. Am J Kidney Dis 39(5):930–936PubMedCrossRef
6.
Zurück zum Zitat Hoste EA, Schurgers M (2008) Epidemiology of acute kidney injury: how big is the problem? Crit Care Med 36(4):S146–S151PubMedCrossRef Hoste EA, Schurgers M (2008) Epidemiology of acute kidney injury: how big is the problem? Crit Care Med 36(4):S146–S151PubMedCrossRef
7.
Zurück zum Zitat Rahman M, Shad F, Smith MC (2012) Acute kidney injury: a guide to diagnosis and management. Am Fam Physician 86(7):631–639PubMed Rahman M, Shad F, Smith MC (2012) Acute kidney injury: a guide to diagnosis and management. Am Fam Physician 86(7):631–639PubMed
8.
Zurück zum Zitat Brar H, Olivier J, Lebrun C, Gabbard W, Fulop T, Schmidt D (2008) Predictors of mortality in a cohort of intensive care unit patients with acute renal failure receiving continuous renal replacement therapy. Am J Med Sci 335(5):342–347PubMedCrossRef Brar H, Olivier J, Lebrun C, Gabbard W, Fulop T, Schmidt D (2008) Predictors of mortality in a cohort of intensive care unit patients with acute renal failure receiving continuous renal replacement therapy. Am J Med Sci 335(5):342–347PubMedCrossRef
11.
Zurück zum Zitat Hasegawa K, Wakino S, Simic P, Sakamaki Y, Minakuchi H, Fujimura K et al (2013) Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat Med 19(11):1496–1504PubMedPubMedCentralCrossRef Hasegawa K, Wakino S, Simic P, Sakamaki Y, Minakuchi H, Fujimura K et al (2013) Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat Med 19(11):1496–1504PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Gao R, Chen J, Hu Y, Li Z, Wang S, Shetty S et al (2014) Sirt1 deletion leads to enhanced inflammation and aggravates endotoxin-induced acute kidney injury. PLoS ONE 9(6):e98909PubMedPubMedCentralCrossRef Gao R, Chen J, Hu Y, Li Z, Wang S, Shetty S et al (2014) Sirt1 deletion leads to enhanced inflammation and aggravates endotoxin-induced acute kidney injury. PLoS ONE 9(6):e98909PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Neugarten J. Gender and the progression of renal disease. Am Soc Nephrol; 2002. Neugarten J. Gender and the progression of renal disease. Am Soc Nephrol; 2002.
14.
Zurück zum Zitat Dixon A, Maric C (2007) 17β-Estradiol attenuates diabetic kidney disease by regulating extracellular matrix and transforming growth factor-β protein expression and signaling. Am J Physiol-Renal Physiol 293(5):F1678–F1690PubMedCrossRef Dixon A, Maric C (2007) 17β-Estradiol attenuates diabetic kidney disease by regulating extracellular matrix and transforming growth factor-β protein expression and signaling. Am J Physiol-Renal Physiol 293(5):F1678–F1690PubMedCrossRef
15.
Zurück zum Zitat Müller V, Szabó A, Viklicky O, Gaul I, Pörtl S, Philipp T et al (1999) Sex hormones and gender-related differences: their influence on chronic renal allograft rejection. Kidney Int 55(5):2011–2020PubMedCrossRef Müller V, Szabó A, Viklicky O, Gaul I, Pörtl S, Philipp T et al (1999) Sex hormones and gender-related differences: their influence on chronic renal allograft rejection. Kidney Int 55(5):2011–2020PubMedCrossRef
16.
Zurück zum Zitat Park KM, Kim JI, Ahn Y, Bonventre AJ, Bonventre JV (2004) Testosterone is responsible for enhanced susceptibility of males to ischemic renal injury. J Biol Chem 279(50):52282–52292PubMedCrossRef Park KM, Kim JI, Ahn Y, Bonventre AJ, Bonventre JV (2004) Testosterone is responsible for enhanced susceptibility of males to ischemic renal injury. J Biol Chem 279(50):52282–52292PubMedCrossRef
17.
Zurück zum Zitat Metcalfe PD, Leslie JA, Campbell MT, Meldrum DR, Hile KL, Meldrum KK (2008) Testosterone exacerbates obstructive renal injury by stimulating TNF-α production and increasing proapoptotic and profibrotic signaling. Am J Physiol-Endocrinol Metab 294(2):E435–E443PubMedCrossRef Metcalfe PD, Leslie JA, Campbell MT, Meldrum DR, Hile KL, Meldrum KK (2008) Testosterone exacerbates obstructive renal injury by stimulating TNF-α production and increasing proapoptotic and profibrotic signaling. Am J Physiol-Endocrinol Metab 294(2):E435–E443PubMedCrossRef
18.
Zurück zum Zitat Reed DK, Arany I (2014) Sex hormones differentially modulate STAT3-dependent antioxidant responses during oxidative stress in renal proximal tubule cells. in vivo. 28(6):1097–100. Reed DK, Arany I (2014) Sex hormones differentially modulate STAT3-dependent antioxidant responses during oxidative stress in renal proximal tubule cells. in vivo. 28(6):1097–100.
19.
Zurück zum Zitat Ibrahim IY, Elbassuoni EA, Ragy MM, Habeeb WN (2013) Gender difference in the development of cardiac lesions following acute ischemic-reperfusion renal injury in albino rats. Gen Physiol Biophys 32(3):421–428PubMedCrossRef Ibrahim IY, Elbassuoni EA, Ragy MM, Habeeb WN (2013) Gender difference in the development of cardiac lesions following acute ischemic-reperfusion renal injury in albino rats. Gen Physiol Biophys 32(3):421–428PubMedCrossRef
20.
Zurück zum Zitat Ghazvini H, Khaksari M, Esmaeilpour K, Shabani M, Asadi-Shekaari M, Khodamoradi M et al (2016) Effects of treatment with estrogen and progesterone on the methamphetamine-induced cognitive impairment in ovariectomized rats. Neurosci Lett 619:60–67PubMedCrossRef Ghazvini H, Khaksari M, Esmaeilpour K, Shabani M, Asadi-Shekaari M, Khodamoradi M et al (2016) Effects of treatment with estrogen and progesterone on the methamphetamine-induced cognitive impairment in ovariectomized rats. Neurosci Lett 619:60–67PubMedCrossRef
21.
Zurück zum Zitat Khaksari M, Mahmoodi M, Rezvani ME, Sajjadi MA, Karam GA, Hajizadeh S. Differences between male and female students in cardiovascular and endocrine responses to examination stress. Journal of Ayub Medical College Abbottabad. 2005;17(2). Khaksari M, Mahmoodi M, Rezvani ME, Sajjadi MA, Karam GA, Hajizadeh S. Differences between male and female students in cardiovascular and endocrine responses to examination stress. Journal of Ayub Medical College Abbottabad. 2005;17(2).
22.
Zurück zum Zitat Group KDIGHOW (2012) Definition and classification of acute kidney injury. Kidney Int 2(Suppl 2):19–36. Group KDIGHOW (2012) Definition and classification of acute kidney injury. Kidney Int 2(Suppl 2):19–36.
23.
Zurück zum Zitat Makris K, Spanou L (2016) Acute kidney injury: definition, pathophysiology and clinical phenotypes. Clin Biochem Rev 37(2):85PubMedPubMedCentral Makris K, Spanou L (2016) Acute kidney injury: definition, pathophysiology and clinical phenotypes. Clin Biochem Rev 37(2):85PubMedPubMedCentral
24.
Zurück zum Zitat Lameire N, Van Biesen W, Vanholder R (2008) Acute kidney injury. The Lancet 372(9653):1863–1865CrossRef Lameire N, Van Biesen W, Vanholder R (2008) Acute kidney injury. The Lancet 372(9653):1863–1865CrossRef
25.
Zurück zum Zitat Ozer JS, Dieterle F, Troth S, Perentes E, Cordier A, Verdes P et al (2010) A panel of urinary biomarkers to monitor reversibility of renal injury and a serum marker with improved potential to assess renal function. Nat Biotechnol 28(5):486–494PubMedCrossRef Ozer JS, Dieterle F, Troth S, Perentes E, Cordier A, Verdes P et al (2010) A panel of urinary biomarkers to monitor reversibility of renal injury and a serum marker with improved potential to assess renal function. Nat Biotechnol 28(5):486–494PubMedCrossRef
26.
Zurück zum Zitat Obermüller N, Geiger H, Weipert C, Urbschat A (2014) Current developments in early diagnosis of acute kidney injury. Int Urol Nephrol 46(1):1–7PubMedCrossRef Obermüller N, Geiger H, Weipert C, Urbschat A (2014) Current developments in early diagnosis of acute kidney injury. Int Urol Nephrol 46(1):1–7PubMedCrossRef
27.
Zurück zum Zitat Makris K, Kafkas N (2012) Neutrophil gelatinase-associated lipocalin in acute kidney injury. Adv Clin Chem 58:143 Makris K, Kafkas N (2012) Neutrophil gelatinase-associated lipocalin in acute kidney injury. Adv Clin Chem 58:143
28.
Zurück zum Zitat Xue W, Xie Y, Wang Q, Xu W, Mou S, Ni Z (2014) Diagnostic performance of urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin for acute kidney injury in an obstructive nephropathy patient. Nephrology 19(4):186–194PubMedCrossRef Xue W, Xie Y, Wang Q, Xu W, Mou S, Ni Z (2014) Diagnostic performance of urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin for acute kidney injury in an obstructive nephropathy patient. Nephrology 19(4):186–194PubMedCrossRef
29.
Zurück zum Zitat Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A, Group NM-aI. (2009) Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis 54(6):1012–24. Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A, Group NM-aI. (2009) Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis 54(6):1012–24.
30.
31.
Zurück zum Zitat Kaufman J, Dhakal M, Patel B, Hamburger R (1991) Community-acquired acute renal failure. Am J Kidney Dis 17(2):191–198PubMedCrossRef Kaufman J, Dhakal M, Patel B, Hamburger R (1991) Community-acquired acute renal failure. Am J Kidney Dis 17(2):191–198PubMedCrossRef
32.
Zurück zum Zitat Basile DP, Anderson MD, Sutton TA (2011) Pathophysiology of acute kidney injury. Comprehensive Physiol 2(2):1303–1353 Basile DP, Anderson MD, Sutton TA (2011) Pathophysiology of acute kidney injury. Comprehensive Physiol 2(2):1303–1353
33.
Zurück zum Zitat Rickert E, Fernandez MO, Choi I, Gorman M, Olefsky JM, Webster NJ (2019) Neuronal SIRT1 regulates metabolic and reproductive function and the response to caloric restriction. J Endocrine Soc 3(2):427–445CrossRef Rickert E, Fernandez MO, Choi I, Gorman M, Olefsky JM, Webster NJ (2019) Neuronal SIRT1 regulates metabolic and reproductive function and the response to caloric restriction. J Endocrine Soc 3(2):427–445CrossRef
34.
Zurück zum Zitat McBurney MW, Clark-Knowles KV, Caron AZ, Gray DA (2013) SIRT1 is a highly networked protein that mediates the adaptation to chronic physiological stress. Genes Cancer 4(3–4):125–134PubMedPubMedCentralCrossRef McBurney MW, Clark-Knowles KV, Caron AZ, Gray DA (2013) SIRT1 is a highly networked protein that mediates the adaptation to chronic physiological stress. Genes Cancer 4(3–4):125–134PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Chang H-C, Guarente L (2014) SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab 25(3):138–145PubMedCrossRef Chang H-C, Guarente L (2014) SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab 25(3):138–145PubMedCrossRef
36.
Zurück zum Zitat Bouras T, Fu M, Sauve AA, Wang F, Quong AA, Perkins ND et al (2005) SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J Biol Chem 280(11):10264–10276PubMedCrossRef Bouras T, Fu M, Sauve AA, Wang F, Quong AA, Perkins ND et al (2005) SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J Biol Chem 280(11):10264–10276PubMedCrossRef
37.
Zurück zum Zitat Guarente L (2013) Introduction: sirtuins in aging and diseases. Springer, Sirtuins, pp 3–10 Guarente L (2013) Introduction: sirtuins in aging and diseases. Springer, Sirtuins, pp 3–10
38.
Zurück zum Zitat Verdin E, Hirschey MD, Finley LW, Haigis MC (2010) Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci 35(12):669–675PubMedPubMedCentralCrossRef Verdin E, Hirschey MD, Finley LW, Haigis MC (2010) Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci 35(12):669–675PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Xu D, He H, Jiang X, Hua R, Chen H, Yang L et al (2019) SIRT2 plays a novel role on progesterone, estradiol and testosterone synthesis via PPARs/LXRα pathways in bovine ovarian granular cells. J Steroid Biochem Mol Biol 185:27–38PubMedCrossRef Xu D, He H, Jiang X, Hua R, Chen H, Yang L et al (2019) SIRT2 plays a novel role on progesterone, estradiol and testosterone synthesis via PPARs/LXRα pathways in bovine ovarian granular cells. J Steroid Biochem Mol Biol 185:27–38PubMedCrossRef
40.
Zurück zum Zitat Firestein R, Blander G, Michan S, Oberdoerffer P, Ogino S, Campbell J, et al. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PloS One. 2008;3(4). Firestein R, Blander G, Michan S, Oberdoerffer P, Ogino S, Campbell J, et al. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PloS One. 2008;3(4).
41.
Zurück zum Zitat Wang R-H, Sengupta K, Li C, Kim H-S, Cao L, Xiao C et al (2008) Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 14(4):312–323PubMedPubMedCentralCrossRef Wang R-H, Sengupta K, Li C, Kim H-S, Cao L, Xiao C et al (2008) Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 14(4):312–323PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Bindu S, Pillai VB, Gupta MP (2016) Role of sirtuins in regulating pathophysiology of the heart. Trends Endocrinol Metab 27(8):563–573PubMedCrossRef Bindu S, Pillai VB, Gupta MP (2016) Role of sirtuins in regulating pathophysiology of the heart. Trends Endocrinol Metab 27(8):563–573PubMedCrossRef
43.
Zurück zum Zitat Yacoub R, Lee K, He JC (2014) The role of SIRT1 in diabetic kidney disease. Front Endocrinol 5:166CrossRef Yacoub R, Lee K, He JC (2014) The role of SIRT1 in diabetic kidney disease. Front Endocrinol 5:166CrossRef
44.
Zurück zum Zitat Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B et al (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science (New York, NY) 305(5682):390–392CrossRef Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B et al (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science (New York, NY) 305(5682):390–392CrossRef
45.
Zurück zum Zitat Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434(7029):113–118PubMedCrossRef Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434(7029):113–118PubMedCrossRef
46.
Zurück zum Zitat Bordone L, Cohen D, Robinson A, Motta MC, Van Veen E, Czopik A et al (2007) SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6(6):759–767PubMedCrossRef Bordone L, Cohen D, Robinson A, Motta MC, Van Veen E, Czopik A et al (2007) SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6(6):759–767PubMedCrossRef
47.
Zurück zum Zitat Kume S, Uzu T, Horiike K, Chin-Kanasaki M, Isshiki K, Araki S-i, et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. The Journal of clinical investigation. 2010;120(4):1043–55. Kume S, Uzu T, Horiike K, Chin-Kanasaki M, Isshiki K, Araki S-i, et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. The Journal of clinical investigation. 2010;120(4):1043–55.
48.
49.
Zurück zum Zitat Blander G, Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73(1):417–435PubMedCrossRef Blander G, Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73(1):417–435PubMedCrossRef
50.
Zurück zum Zitat Imai S-i (2009) The NAD World: a new systemic regulatory network for metabolism and aging—Sirt1, systemic NAD biosynthesis, and their importance. Cell Biochem Biophys 53(2):65PubMedPubMedCentralCrossRef Imai S-i (2009) The NAD World: a new systemic regulatory network for metabolism and aging—Sirt1, systemic NAD biosynthesis, and their importance. Cell Biochem Biophys 53(2):65PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Gu X, Wang Z, Ye Z, Lei J, Li L, Su D et al (2014) Resveratrol, an activator of SIRT1, upregulates AMPK and improves cardiac function in heart failure. Genet Mol Res 13(1):323–335PubMedCrossRef Gu X, Wang Z, Ye Z, Lei J, Li L, Su D et al (2014) Resveratrol, an activator of SIRT1, upregulates AMPK and improves cardiac function in heart failure. Genet Mol Res 13(1):323–335PubMedCrossRef
54.
Zurück zum Zitat Das DK, Maulik N (2006) Resveratrol in cardioprotection: a therapeutic promise of alternative medicine. Mol Interventions 6(1):36CrossRef Das DK, Maulik N (2006) Resveratrol in cardioprotection: a therapeutic promise of alternative medicine. Mol Interventions 6(1):36CrossRef
55.
Zurück zum Zitat Labinskyy N, Csiszar A, Veress G, Stef G, Pacher P, Oroszi G et al (2006) Vascular dysfunction in aging: potential effects of resveratrol, an anti-inflammatory phytoestrogen. Curr Med Chem 13(9):989–996PubMedPubMedCentralCrossRef Labinskyy N, Csiszar A, Veress G, Stef G, Pacher P, Oroszi G et al (2006) Vascular dysfunction in aging: potential effects of resveratrol, an anti-inflammatory phytoestrogen. Curr Med Chem 13(9):989–996PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Mattagajasingh I, Kim C-S, Naqvi A, Yamamori T, Hoffman TA, Jung S-B et al (2007) SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci 104(37):14855–14860PubMedPubMedCentralCrossRef Mattagajasingh I, Kim C-S, Naqvi A, Yamamori T, Hoffman TA, Jung S-B et al (2007) SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci 104(37):14855–14860PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Stef G, Csiszar A, Lerea K, Ungvari Z, Veress G (2006) Resveratrol inhibits aggregation of platelets from high-risk cardiac patients with aspirin resistance. J Cardiovasc Pharmacol 48(2):1–5PubMedCrossRef Stef G, Csiszar A, Lerea K, Ungvari Z, Veress G (2006) Resveratrol inhibits aggregation of platelets from high-risk cardiac patients with aspirin resistance. J Cardiovasc Pharmacol 48(2):1–5PubMedCrossRef
58.
Zurück zum Zitat Colak Y, Ozturk O, Senates E, Tuncer I, Yorulmaz E, Adali G, et al. SIRT1 as a potential therapeutic target for treatment of nonalcoholic fatty liver disease. Medical science monitor: international medical journal of experimental and clinical research. 2011;17(5):HY5. Colak Y, Ozturk O, Senates E, Tuncer I, Yorulmaz E, Adali G, et al. SIRT1 as a potential therapeutic target for treatment of nonalcoholic fatty liver disease. Medical science monitor: international medical journal of experimental and clinical research. 2011;17(5):HY5.
59.
Zurück zum Zitat Deng XQ, Chen LL, Li NX (2007) The expression of SIRT1 in nonalcoholic fatty liver disease induced by high-fat diet in rats. Liv Int 27(5):708–715CrossRef Deng XQ, Chen LL, Li NX (2007) The expression of SIRT1 in nonalcoholic fatty liver disease induced by high-fat diet in rats. Liv Int 27(5):708–715CrossRef
60.
Zurück zum Zitat Chen L, Deng X, Li N (2007) Effects of calorie restriction on SIRT1 expression in liver of nonalcoholic fatty liver disease: experiment with rats. Zhonghua yi xue za zhi 87(20):1434–1437PubMed Chen L, Deng X, Li N (2007) Effects of calorie restriction on SIRT1 expression in liver of nonalcoholic fatty liver disease: experiment with rats. Zhonghua yi xue za zhi 87(20):1434–1437PubMed
61.
Zurück zum Zitat Imai S-I, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403(6771):795–800PubMedCrossRef Imai S-I, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403(6771):795–800PubMedCrossRef
62.
Zurück zum Zitat Vaziri H, Dessain SK, Eaton EN, Imai S-I, Frye RA, Pandita TK et al (2001) hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase. Cell 107(2):149–159PubMedCrossRef Vaziri H, Dessain SK, Eaton EN, Imai S-I, Frye RA, Pandita TK et al (2001) hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase. Cell 107(2):149–159PubMedCrossRef
63.
Zurück zum Zitat Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA et al (2004) Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23(12):2369–2380PubMedPubMedCentralCrossRef Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA et al (2004) Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23(12):2369–2380PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y et al (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science (New York, NY) 303(5666):2011–2015CrossRef Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y et al (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science (New York, NY) 303(5666):2011–2015CrossRef
65.
Zurück zum Zitat Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W et al (2004) Mammalian SIRT1 represses forkhead transcription factors. Cell 116(4):551–563PubMedCrossRef Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W et al (2004) Mammalian SIRT1 represses forkhead transcription factors. Cell 116(4):551–563PubMedCrossRef
66.
Zurück zum Zitat Li X, Zhang S, Blander G, Jeanette GT, Krieger M, Guarente L (2007) SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell 28(1):91–106PubMedCrossRef Li X, Zhang S, Blander G, Jeanette GT, Krieger M, Guarente L (2007) SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell 28(1):91–106PubMedCrossRef
67.
Zurück zum Zitat Grimaldi B, Nakahata Y, Kaluzova M, Masubuchi S, Sassone-Corsi P (2009) Chromatin remodeling, metabolism and circadian clocks: the interplay of CLOCK and SIRT1. Int J Biochem Cell Biol 41(1):81–86PubMedCrossRef Grimaldi B, Nakahata Y, Kaluzova M, Masubuchi S, Sassone-Corsi P (2009) Chromatin remodeling, metabolism and circadian clocks: the interplay of CLOCK and SIRT1. Int J Biochem Cell Biol 41(1):81–86PubMedCrossRef
68.
Zurück zum Zitat Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D et al (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134(2):329–340PubMedPubMedCentralCrossRef Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D et al (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134(2):329–340PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Yamazaki Y, Usui I, Kanatani Y, Matsuya Y, Tsuneyama K, Fujisaka S et al (2009) Treatment with SRT1720, a SIRT1 activator, ameliorates fatty liver with reduced expression of lipogenic enzymes in MSG mice. Am J Physiol-Endocrinol Metab 297(5):E1179–E1186PubMedCrossRef Yamazaki Y, Usui I, Kanatani Y, Matsuya Y, Tsuneyama K, Fujisaka S et al (2009) Treatment with SRT1720, a SIRT1 activator, ameliorates fatty liver with reduced expression of lipogenic enzymes in MSG mice. Am J Physiol-Endocrinol Metab 297(5):E1179–E1186PubMedCrossRef
70.
Zurück zum Zitat Dong Y-j, Liu N, Xiao Z, Sun T, Wu S-h, Sun W-x, et al. Renal protective effect of sirtuin 1. Journal of diabetes research. 2014;2014. Dong Y-j, Liu N, Xiao Z, Sun T, Wu S-h, Sun W-x, et al. Renal protective effect of sirtuin 1. Journal of diabetes research. 2014;2014.
71.
Zurück zum Zitat Chen K-H, Hung C-C, Hsu H-H, Jing Y-H, Yang C-W, Chen J-K (2011) Resveratrol ameliorates early diabetic nephropathy associated with suppression of augmented TGF-β/smad and ERK1/2 signaling in streptozotocin-induced diabetic rats. Chem Biol Interact 190(1):45–53PubMedCrossRef Chen K-H, Hung C-C, Hsu H-H, Jing Y-H, Yang C-W, Chen J-K (2011) Resveratrol ameliorates early diabetic nephropathy associated with suppression of augmented TGF-β/smad and ERK1/2 signaling in streptozotocin-induced diabetic rats. Chem Biol Interact 190(1):45–53PubMedCrossRef
72.
Zurück zum Zitat Xu Y, Nie L, Yin Y-G, Tang J-L, Zhou J-Y, Li D-D et al (2012) Resveratrol protects against hyperglycemia-induced oxidative damage to mitochondria by activating SIRT1 in rat mesangial cells. Toxicol Appl Pharmacol 259(3):395–401PubMedCrossRef Xu Y, Nie L, Yin Y-G, Tang J-L, Zhou J-Y, Li D-D et al (2012) Resveratrol protects against hyperglycemia-induced oxidative damage to mitochondria by activating SIRT1 in rat mesangial cells. Toxicol Appl Pharmacol 259(3):395–401PubMedCrossRef
73.
Zurück zum Zitat Fan H, Yang H-C, You L, Wang Y-Y, He W-J, Hao C-M (2013) The histone deacetylase, SIRT1, contributes to the resistance of young mice to ischemia/reperfusion-induced acute kidney injury. Kidney Int 83(3):404–413PubMedCrossRef Fan H, Yang H-C, You L, Wang Y-Y, He W-J, Hao C-M (2013) The histone deacetylase, SIRT1, contributes to the resistance of young mice to ischemia/reperfusion-induced acute kidney injury. Kidney Int 83(3):404–413PubMedCrossRef
74.
Zurück zum Zitat Simic P, Williams EO, Bell EL, Gong JJ, Bonkowski M, Guarente L (2013) SIRT1 suppresses the epithelial-to-mesenchymal transition in cancer metastasis and organ fibrosis. Cell Rep 3(4):1175–1186PubMedCrossRef Simic P, Williams EO, Bell EL, Gong JJ, Bonkowski M, Guarente L (2013) SIRT1 suppresses the epithelial-to-mesenchymal transition in cancer metastasis and organ fibrosis. Cell Rep 3(4):1175–1186PubMedCrossRef
75.
Zurück zum Zitat Ohse T, Vaughan MR, Kopp JB, Krofft RD, Marshall CB, Chang AM et al (2010) De novo expression of podocyte proteins in parietal epithelial cells during experimental glomerular disease. American Journal of Physiology-Renal Physiology 298(3):F702–F711PubMedCrossRef Ohse T, Vaughan MR, Kopp JB, Krofft RD, Marshall CB, Chang AM et al (2010) De novo expression of podocyte proteins in parietal epithelial cells during experimental glomerular disease. American Journal of Physiology-Renal Physiology 298(3):F702–F711PubMedCrossRef
76.
Zurück zum Zitat Zhang J, Hansen KM, Pippin JW, Chang AM, Taniguchi Y, Krofft RD et al (2012) De novo expression of podocyte proteins in parietal epithelial cells in experimental aging nephropathy. Am J Physiol-Renal Physiol 302(5):F571–F580PubMedCrossRef Zhang J, Hansen KM, Pippin JW, Chang AM, Taniguchi Y, Krofft RD et al (2012) De novo expression of podocyte proteins in parietal epithelial cells in experimental aging nephropathy. Am J Physiol-Renal Physiol 302(5):F571–F580PubMedCrossRef
77.
Zurück zum Zitat Lin Q, Geng Y, Lin S, Tian Z (2016) Sirtuin1 (SIRT1) regulates tumor necrosis factor-alpha (TNF-α-Induced) aquaporin-2 (AQP2) expression in renal medullary collecting duct cells through inhibiting the NF-κB pathway. Med Sci Monitor Basic Res 22:165CrossRef Lin Q, Geng Y, Lin S, Tian Z (2016) Sirtuin1 (SIRT1) regulates tumor necrosis factor-alpha (TNF-α-Induced) aquaporin-2 (AQP2) expression in renal medullary collecting duct cells through inhibiting the NF-κB pathway. Med Sci Monitor Basic Res 22:165CrossRef
78.
Zurück zum Zitat Kim DH, Jung YJ, Lee JE, Lee AS, Kang KP, Lee S et al (2011) SIRT1 activation by resveratrol ameliorates cisplatin-induced renal injury through deacetylation of p53. Am J Physiol-Renal Physiol 301(2):F427–F435PubMedCrossRef Kim DH, Jung YJ, Lee JE, Lee AS, Kang KP, Lee S et al (2011) SIRT1 activation by resveratrol ameliorates cisplatin-induced renal injury through deacetylation of p53. Am J Physiol-Renal Physiol 301(2):F427–F435PubMedCrossRef
79.
Zurück zum Zitat Chuang PY, Dai Y, Liu R, He H, Kretzler M, Jim B, et al. Alteration of forkhead box O (foxo4) acetylation mediates apoptosis of podocytes in diabetes mellitus. PLoS One. 2011;6(8). Chuang PY, Dai Y, Liu R, He H, Kretzler M, Jim B, et al. Alteration of forkhead box O (foxo4) acetylation mediates apoptosis of podocytes in diabetes mellitus. PLoS One. 2011;6(8).
80.
Zurück zum Zitat Miyazaki R, Ichiki T, Hashimoto T, Inanaga K, Imayama I, Sadoshima J et al (2008) SIRT1, a longevity gene, downregulates angiotensin II type 1 receptor expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 28(7):1263–1269PubMedCrossRef Miyazaki R, Ichiki T, Hashimoto T, Inanaga K, Imayama I, Sadoshima J et al (2008) SIRT1, a longevity gene, downregulates angiotensin II type 1 receptor expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 28(7):1263–1269PubMedCrossRef
81.
Zurück zum Zitat Gao R, Chen J, Hu Y, Li Z, Wang S, Shetty S, et al. Sirt1 deletion leads to enhanced inflammation and aggravates endotoxin-induced acute kidney injury. PLoS One. 2014;9(6). Gao R, Chen J, Hu Y, Li Z, Wang S, Shetty S, et al. Sirt1 deletion leads to enhanced inflammation and aggravates endotoxin-induced acute kidney injury. PLoS One. 2014;9(6).
82.
83.
Zurück zum Zitat Wu H, Kong L, Zhou S, Cui W, Xu F, Luo M, et al. The role of microRNAs in diabetic nephropathy. Journal of diabetes research. 2014;2014. Wu H, Kong L, Zhou S, Cui W, Xu F, Luo M, et al. The role of microRNAs in diabetic nephropathy. Journal of diabetes research. 2014;2014.
84.
Zurück zum Zitat Shimo T, Adachi Y, Yamanouchi S, Tsuji S, Kimata T, Umezawa K et al (2013) A novel nuclear factor κB inhibitor, dehydroxymethylepoxyquinomicin, ameliorates puromycin aminonucleoside-induced nephrosis in mice. Am J Nephrol 37(4):302–309PubMedCrossRef Shimo T, Adachi Y, Yamanouchi S, Tsuji S, Kimata T, Umezawa K et al (2013) A novel nuclear factor κB inhibitor, dehydroxymethylepoxyquinomicin, ameliorates puromycin aminonucleoside-induced nephrosis in mice. Am J Nephrol 37(4):302–309PubMedCrossRef
85.
Zurück zum Zitat Jung YJ, Lee JE, Lee AS, Kang KP, Lee S, Park SK et al (2012) SIRT1 overexpression decreases cisplatin-induced acetylation of NF-κB p65 subunit and cytotoxicity in renal proximal tubule cells. Biochem Biophys Res Commun 419(2):206–210PubMedCrossRef Jung YJ, Lee JE, Lee AS, Kang KP, Lee S, Park SK et al (2012) SIRT1 overexpression decreases cisplatin-induced acetylation of NF-κB p65 subunit and cytotoxicity in renal proximal tubule cells. Biochem Biophys Res Commun 419(2):206–210PubMedCrossRef
86.
Zurück zum Zitat Matsushita N, Takami Y, Kimura M, Tachiiri S, Ishiai M, Nakayama T et al (2005) Role of NAD-dependent deacetylases SIRT1 and SIRT2 in radiation and cisplatin-induced cell death in vertebrate cells. Genes Cells 10(4):321–332PubMedCrossRef Matsushita N, Takami Y, Kimura M, Tachiiri S, Ishiai M, Nakayama T et al (2005) Role of NAD-dependent deacetylases SIRT1 and SIRT2 in radiation and cisplatin-induced cell death in vertebrate cells. Genes Cells 10(4):321–332PubMedCrossRef
87.
Zurück zum Zitat Hasegawa K, Wakino S, Yoshioka K, Tatematsu S, Hara Y, Minakuchi H et al (2010) Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function. J Biol Chem 285(17):13045–13056PubMedPubMedCentralCrossRef Hasegawa K, Wakino S, Yoshioka K, Tatematsu S, Hara Y, Minakuchi H et al (2010) Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function. J Biol Chem 285(17):13045–13056PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE et al (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci 105(9):3374–3379PubMedPubMedCentralCrossRef Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE et al (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci 105(9):3374–3379PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Ginsburg ES, Owen Jr WF, editors. Reproductive Endocrinology and Pregnancy in Women on Hemodialysis: Endocrine and Metabolic Function in Renal Failure Garabed Eknoyan, Series Editor. Seminars in Dialysis; 1993: Wiley Online Library. Ginsburg ES, Owen Jr WF, editors. Reproductive Endocrinology and Pregnancy in Women on Hemodialysis: Endocrine and Metabolic Function in Renal Failure Garabed Eknoyan, Series Editor. Seminars in Dialysis; 1993: Wiley Online Library.
91.
Zurück zum Zitat Ahmed SB, Ramesh S (2016) Sex hormones in women with kidney disease. Nephrol Dial Transpl 31(11):1787–1795CrossRef Ahmed SB, Ramesh S (2016) Sex hormones in women with kidney disease. Nephrol Dial Transpl 31(11):1787–1795CrossRef
92.
Zurück zum Zitat Holley JL, Schmidt RJ, Bender FH, Dumler F, Schiff M (1997) Gynecologic and reproductive issues in women on dialysis. Am J Kidney Dis 29(5):685–690PubMedCrossRef Holley JL, Schmidt RJ, Bender FH, Dumler F, Schiff M (1997) Gynecologic and reproductive issues in women on dialysis. Am J Kidney Dis 29(5):685–690PubMedCrossRef
93.
Zurück zum Zitat Anderson GD, Odegard PS (2004) Pharmacokinetics of estrogen and progesterone in chronic kidney disease. Adv Chronic Kidney Dis 11(4):357–360PubMedCrossRef Anderson GD, Odegard PS (2004) Pharmacokinetics of estrogen and progesterone in chronic kidney disease. Adv Chronic Kidney Dis 11(4):357–360PubMedCrossRef
94.
Zurück zum Zitat Mercantepe T, Unal D, Selli J, Mercantepe F, Unal B, Karabiyik TN (2016) Protective effects of estrogen and bortezomib in kidney tissue of post-menopausal rats: an ultrastructural study. Ren Fail 38(7):1129–1135PubMedCrossRef Mercantepe T, Unal D, Selli J, Mercantepe F, Unal B, Karabiyik TN (2016) Protective effects of estrogen and bortezomib in kidney tissue of post-menopausal rats: an ultrastructural study. Ren Fail 38(7):1129–1135PubMedCrossRef
95.
Zurück zum Zitat Neugarten J, Golestaneh L (2013) Gender and the prevalence and progression of renal disease. Adv Chronic Kidney Dis 20(5):390–395PubMedCrossRef Neugarten J, Golestaneh L (2013) Gender and the prevalence and progression of renal disease. Adv Chronic Kidney Dis 20(5):390–395PubMedCrossRef
96.
Zurück zum Zitat Nielsen CB, Flyvbjerg A, Bruun JM, Forman A, Wogensen L, Thomsen K (2003) Decreases in renal functional reserve and proximal tubular fluid output in conscious oophorectomized rats: normalization with sex hormone substitution. J Am Soc Nephrol 14(12):3102–3110PubMedCrossRef Nielsen CB, Flyvbjerg A, Bruun JM, Forman A, Wogensen L, Thomsen K (2003) Decreases in renal functional reserve and proximal tubular fluid output in conscious oophorectomized rats: normalization with sex hormone substitution. J Am Soc Nephrol 14(12):3102–3110PubMedCrossRef
97.
Zurück zum Zitat Gross M-L, Adamczak M, Rabe T, Harbi NA, Krtil J, Koch A et al (2004) Beneficial effects of estrogens on indices of renal damage in uninephrectomized SHRsp rats. J Am Soc Nephrol 15(2):348–358PubMedCrossRef Gross M-L, Adamczak M, Rabe T, Harbi NA, Krtil J, Koch A et al (2004) Beneficial effects of estrogens on indices of renal damage in uninephrectomized SHRsp rats. J Am Soc Nephrol 15(2):348–358PubMedCrossRef
98.
Zurück zum Zitat Potier M, Elliot SJ, Tack I, Lenz O, Striker GE, Striker LJ et al (2001) Expression and regulation of estrogen receptors in mesangial cells: influence on matrix metalloproteinase-9. J Am Soc Nephrol 12(2):241–251PubMedCrossRef Potier M, Elliot SJ, Tack I, Lenz O, Striker GE, Striker LJ et al (2001) Expression and regulation of estrogen receptors in mesangial cells: influence on matrix metalloproteinase-9. J Am Soc Nephrol 12(2):241–251PubMedCrossRef
99.
Zurück zum Zitat Naderi V, Khaksari M, Abbasi R, Maghool F (2015) Estrogen provides neuroprotection against brain edema and blood brain barrier disruption through both estrogen receptors α and β following traumatic brain injury. Iran J Basic Med Sci 18(2):138PubMedPubMedCentral Naderi V, Khaksari M, Abbasi R, Maghool F (2015) Estrogen provides neuroprotection against brain edema and blood brain barrier disruption through both estrogen receptors α and β following traumatic brain injury. Iran J Basic Med Sci 18(2):138PubMedPubMedCentral
100.
Zurück zum Zitat Khaksari M, Abbasloo E, Dehghan F, Soltani Z, Asadikaram G (2015) The brain cytokine levels are modulated by estrogen following traumatic brain injury: Which estrogen receptor serves as modulator? Int Immunopharmacol 28(1):279–287PubMedCrossRef Khaksari M, Abbasloo E, Dehghan F, Soltani Z, Asadikaram G (2015) The brain cytokine levels are modulated by estrogen following traumatic brain injury: Which estrogen receptor serves as modulator? Int Immunopharmacol 28(1):279–287PubMedCrossRef
101.
Zurück zum Zitat Mankhey RW, Bhatti F, Maric C (2005) 17β-Estradiol replacement improves renal function and pathology associated with diabetic nephropathy. Am J Physiol-Renal Physiol 288(2):F399–F405PubMedCrossRef Mankhey RW, Bhatti F, Maric C (2005) 17β-Estradiol replacement improves renal function and pathology associated with diabetic nephropathy. Am J Physiol-Renal Physiol 288(2):F399–F405PubMedCrossRef
102.
Zurück zum Zitat Metcalfe PD, Meldrum KK (2006) Sex differences and the role of sex steroids in renal injury. J Urol 176(1):15–21PubMedCrossRef Metcalfe PD, Meldrum KK (2006) Sex differences and the role of sex steroids in renal injury. J Urol 176(1):15–21PubMedCrossRef
103.
Zurück zum Zitat Neugarten J, Acharya A, Silbiger SR (2000) Effect of gender on the progression of nondiabetic renal disease: a meta-analysis. J Am Soc Nephrol 11(2):319–329PubMedCrossRef Neugarten J, Acharya A, Silbiger SR (2000) Effect of gender on the progression of nondiabetic renal disease: a meta-analysis. J Am Soc Nephrol 11(2):319–329PubMedCrossRef
104.
Zurück zum Zitat Silbiger SR, Neugarten J (2003) The role of gender in the progression of renal disease. Adv Ren Replace Ther 10(1):3–14PubMedCrossRef Silbiger SR, Neugarten J (2003) The role of gender in the progression of renal disease. Adv Ren Replace Ther 10(1):3–14PubMedCrossRef
105.
Zurück zum Zitat Cherney DZ, Sochett EB, Miller JA (2005) Gender differences in renal responses to hyperglycemia and angiotensin-converting enzyme inhibition in diabetes. Kidney Int 68(4):1722–1728PubMedCrossRef Cherney DZ, Sochett EB, Miller JA (2005) Gender differences in renal responses to hyperglycemia and angiotensin-converting enzyme inhibition in diabetes. Kidney Int 68(4):1722–1728PubMedCrossRef
106.
Zurück zum Zitat Wells CC, Riazi S, Mankhey RW, Bhatti F, Ecelbarger C, Maric C (2005) Diabetic nephropathy is associated with decreasedcirculating estradiol levels and imbalance in the expression of renal estrogen receptors. Gend Med 2(4):227–237PubMedCrossRef Wells CC, Riazi S, Mankhey RW, Bhatti F, Ecelbarger C, Maric C (2005) Diabetic nephropathy is associated with decreasedcirculating estradiol levels and imbalance in the expression of renal estrogen receptors. Gend Med 2(4):227–237PubMedCrossRef
107.
Zurück zum Zitat Mankhey RW, Wells CC, Bhatti F, Maric C (2007) 17β-Estradiol supplementation reduces tubulointerstitial fibrosis by increasing MMP activity in the diabetic kidney. Am J Physiol-Regulatory Integrative Comparative Physiol 292(2):R769–R777CrossRef Mankhey RW, Wells CC, Bhatti F, Maric C (2007) 17β-Estradiol supplementation reduces tubulointerstitial fibrosis by increasing MMP activity in the diabetic kidney. Am J Physiol-Regulatory Integrative Comparative Physiol 292(2):R769–R777CrossRef
108.
Zurück zum Zitat Blush J, Lei J, Ju W, Silbiger S, Pullman J, Neugarten J (2004) Estradiol reverses renal injury in Alb/TGF-β1 transgenic mice. Kidney Int 66(6):2148–2154PubMedCrossRef Blush J, Lei J, Ju W, Silbiger S, Pullman J, Neugarten J (2004) Estradiol reverses renal injury in Alb/TGF-β1 transgenic mice. Kidney Int 66(6):2148–2154PubMedCrossRef
109.
Zurück zum Zitat Dean S, Tan J, O'Brien E, Leenen F (2005) 17beta-estradiol downregulates tissue 1046 angiotensin-converting enzyme and ANG II type 1 receptor in female rats. Am J Physiol Regul 1047 Integr Comp Physiol. 288(R759–766):1048. Dean S, Tan J, O'Brien E, Leenen F (2005) 17beta-estradiol downregulates tissue 1046 angiotensin-converting enzyme and ANG II type 1 receptor in female rats. Am J Physiol Regul 1047 Integr Comp Physiol. 288(R759–766):1048.
111.
Zurück zum Zitat Xiao S, Gillespie DG, Baylis C, Jackson EK, Dubey RK (2001) Effects of estradiol and its metabolites on glomerular endothelial nitric oxide synthesis and mesangial cell growth. Hypertension 37(2):645–650PubMedCrossRef Xiao S, Gillespie DG, Baylis C, Jackson EK, Dubey RK (2001) Effects of estradiol and its metabolites on glomerular endothelial nitric oxide synthesis and mesangial cell growth. Hypertension 37(2):645–650PubMedCrossRef
112.
Zurück zum Zitat Neugarten J, Acharya A, Lei J, Silbiger S (2000) Selective estrogen receptor modulators suppress mesangial cell collagen synthesis. Am J Physiol-Renal Physiol 279(2):F309–F318PubMedCrossRef Neugarten J, Acharya A, Lei J, Silbiger S (2000) Selective estrogen receptor modulators suppress mesangial cell collagen synthesis. Am J Physiol-Renal Physiol 279(2):F309–F318PubMedCrossRef
113.
Zurück zum Zitat Satake A, Takaoka M, Nishikawa M, Yuba M, Shibata Y, Okumura K et al (2008) Protective effect of 17β-estradiol on ischemic acute renal failure through the PI3K/Akt/eNOS pathway. Kidney Int 73(3):308–317PubMedCrossRef Satake A, Takaoka M, Nishikawa M, Yuba M, Shibata Y, Okumura K et al (2008) Protective effect of 17β-estradiol on ischemic acute renal failure through the PI3K/Akt/eNOS pathway. Kidney Int 73(3):308–317PubMedCrossRef
114.
Zurück zum Zitat Lecour S, James RW (2011) When are pro-inflammatory cytokines SAFE in heart failure? Eur Heart J 32(6):680–685PubMedCrossRef Lecour S, James RW (2011) When are pro-inflammatory cytokines SAFE in heart failure? Eur Heart J 32(6):680–685PubMedCrossRef
115.
Zurück zum Zitat Wang M, Wang Y, Abarbanell A, Tan J, Weil B, Herrmann J et al (2009) Both endogenous and exogenous testosterone decrease myocardial STAT3 activation and SOCS3 expression after acute ischemia and reperfusion. Surgery 146(2):138–144PubMedCrossRef Wang M, Wang Y, Abarbanell A, Tan J, Weil B, Herrmann J et al (2009) Both endogenous and exogenous testosterone decrease myocardial STAT3 activation and SOCS3 expression after acute ischemia and reperfusion. Surgery 146(2):138–144PubMedCrossRef
116.
Zurück zum Zitat Sehara Y, Sawicka K, Hwang J-Y, Latuszek-Barrantes A, Etgen AM, Zukin RS (2013) Survivin is a transcriptional target of STAT3 critical to estradiol neuroprotection in global ischemia. J Neurosci 33(30):12364–12374PubMedPubMedCentralCrossRef Sehara Y, Sawicka K, Hwang J-Y, Latuszek-Barrantes A, Etgen AM, Zukin RS (2013) Survivin is a transcriptional target of STAT3 critical to estradiol neuroprotection in global ischemia. J Neurosci 33(30):12364–12374PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Diaz MN, Rodriguez AR, Martin JF, Arias MS, Rodriguez PM, Andia JC (2007) Effects of estradiol, calcitriol and both treatments combined on bone histomorphometry in rats with chronic kidney disease and ovariectomy. Bone 41(4):614–619CrossRef Diaz MN, Rodriguez AR, Martin JF, Arias MS, Rodriguez PM, Andia JC (2007) Effects of estradiol, calcitriol and both treatments combined on bone histomorphometry in rats with chronic kidney disease and ovariectomy. Bone 41(4):614–619CrossRef
118.
Zurück zum Zitat Yap FC, Taylor MS, Lin MT (2014) Ovariectomy-induced reductions in endothelial SK3 channel activity and endothelium-dependent vasorelaxation in murine mesenteric arteries. PLoS ONE 9(8):e104686PubMedPubMedCentralCrossRef Yap FC, Taylor MS, Lin MT (2014) Ovariectomy-induced reductions in endothelial SK3 channel activity and endothelium-dependent vasorelaxation in murine mesenteric arteries. PLoS ONE 9(8):e104686PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Singh AP, Singh N, Bedi PMS (2016) Estrogen attenuates renal IRI through PPAR-γ agonism in rats. J Surg Res 203(2):324–330PubMedCrossRef Singh AP, Singh N, Bedi PMS (2016) Estrogen attenuates renal IRI through PPAR-γ agonism in rats. J Surg Res 203(2):324–330PubMedCrossRef
120.
Zurück zum Zitat Margueron R, Duong V, Castet A, Cavaillès V (2004) Histone deacetylase inhibition and estrogen signalling in human breast cancer cells. Biochem Pharmacol 68(6):1239–1246PubMedCrossRef Margueron R, Duong V, Castet A, Cavaillès V (2004) Histone deacetylase inhibition and estrogen signalling in human breast cancer cells. Biochem Pharmacol 68(6):1239–1246PubMedCrossRef
121.
Zurück zum Zitat Reid G, Metivier R, Lin C-Y, Denger S, Ibberson D, Ivacevic T et al (2005) Multiple mechanisms induce transcriptional silencing of a subset of genes, including oestrogen receptor α, in response to deacetylase inhibition by valproic acid and trichostatin A. Oncogene 24(31):4894–4907PubMedCrossRef Reid G, Metivier R, Lin C-Y, Denger S, Ibberson D, Ivacevic T et al (2005) Multiple mechanisms induce transcriptional silencing of a subset of genes, including oestrogen receptor α, in response to deacetylase inhibition by valproic acid and trichostatin A. Oncogene 24(31):4894–4907PubMedCrossRef
122.
Zurück zum Zitat Liarte S, Alonso-Romero JL, Nicolás FJ (2018) SIRT1 and estrogen signaling cooperation for breast cancer onset and progression. Front Endocrinol 9:552CrossRef Liarte S, Alonso-Romero JL, Nicolás FJ (2018) SIRT1 and estrogen signaling cooperation for breast cancer onset and progression. Front Endocrinol 9:552CrossRef
123.
Zurück zum Zitat Yao Y, Li H, Gu Y, Davidson NE, Zhou Q (2010) Inhibition of SIRT1 deacetylase suppresses estrogen receptor signaling. Carcinogenesis 31(3):382–387PubMedCrossRef Yao Y, Li H, Gu Y, Davidson NE, Zhou Q (2010) Inhibition of SIRT1 deacetylase suppresses estrogen receptor signaling. Carcinogenesis 31(3):382–387PubMedCrossRef
124.
Zurück zum Zitat Moore R, Dai Y, Faller D (2012) Sirtuin 1 (SIRT1) and steroid hormone receptor activity in cancer. J Endocrinol 213(1):37PubMedCrossRef Moore R, Dai Y, Faller D (2012) Sirtuin 1 (SIRT1) and steroid hormone receptor activity in cancer. J Endocrinol 213(1):37PubMedCrossRef
125.
Zurück zum Zitat Sasaki Y, Ikeda Y, Miyauchi T, Uchikado Y, Akasaki Y, Ohishi M. Estrogen-SIRT1 axis plays a pivotal role in protecting arteries against menopause-induced senescence and atherosclerosis. J Atherosclerosis Thrombosis. 2019:47993. Sasaki Y, Ikeda Y, Miyauchi T, Uchikado Y, Akasaki Y, Ohishi M. Estrogen-SIRT1 axis plays a pivotal role in protecting arteries against menopause-induced senescence and atherosclerosis. J Atherosclerosis Thrombosis. 2019:47993.
126.
Zurück zum Zitat Elangovan S, Ramachandran S, Venkatesan N, Ananth S, Gnana-Prakasam JP, Martin PM et al (2011) SIRT1 is essential for oncogenic signaling by estrogen/estrogen receptor α in breast cancer. Can Res 71(21):6654–6664CrossRef Elangovan S, Ramachandran S, Venkatesan N, Ananth S, Gnana-Prakasam JP, Martin PM et al (2011) SIRT1 is essential for oncogenic signaling by estrogen/estrogen receptor α in breast cancer. Can Res 71(21):6654–6664CrossRef
127.
Zurück zum Zitat Guo JM, Shu H, Wang L, Xu JJ, Niu XC, Zhang L (2017) SIRT 1-dependent AMPK pathway in the protection of estrogen against ischemic brain injury. CNS Neurosci Ther 23(4):360–369PubMedPubMedCentralCrossRef Guo JM, Shu H, Wang L, Xu JJ, Niu XC, Zhang L (2017) SIRT 1-dependent AMPK pathway in the protection of estrogen against ischemic brain injury. CNS Neurosci Ther 23(4):360–369PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Zheng Y, Hu Q, Manaenko A, Zhang Y, Peng Y, Xu L et al (2015) 17β-Estradiol attenuates hematoma expansion through ERα/Sirt1/NF-κB pathway in hyperglycemic intracerebral hemorrhage mice. Stroke 46(2):485PubMedCrossRef Zheng Y, Hu Q, Manaenko A, Zhang Y, Peng Y, Xu L et al (2015) 17β-Estradiol attenuates hematoma expansion through ERα/Sirt1/NF-κB pathway in hyperglycemic intracerebral hemorrhage mice. Stroke 46(2):485PubMedCrossRef
129.
Zurück zum Zitat Shen T, Ding L, Ruan Y, Qin W, Lin Y, Xi C, et al. SIRT1 functions as an important regulator of estrogen-mediated cardiomyocyte protection in angiotensin II-induced heart hypertrophy. Oxidative medicine and cellular longevity. 2014;2014. Shen T, Ding L, Ruan Y, Qin W, Lin Y, Xi C, et al. SIRT1 functions as an important regulator of estrogen-mediated cardiomyocyte protection in angiotensin II-induced heart hypertrophy. Oxidative medicine and cellular longevity. 2014;2014.
130.
Zurück zum Zitat Zuo H-L, Xin H, Yan X-N, Huang J, Zhang Y-P, Du H. 17β-Estradiol improves osteoblastic cell function through the Sirt1/NF-κB/MMP-8 pathway. Climacteric. 2020:1–6. Zuo H-L, Xin H, Yan X-N, Huang J, Zhang Y-P, Du H. 17β-Estradiol improves osteoblastic cell function through the Sirt1/NF-κB/MMP-8 pathway. Climacteric. 2020:1–6.
131.
Zurück zum Zitat Khan M, Ullah R, Rehman SU, Shah SA, Saeed K, Muhammad T et al (2019) 17β-Estradiol Modulates SIRT1 and halts oxidative stress-mediated cognitive impairment in a male aging mouse model. Cells 8(8):928PubMedCentralCrossRef Khan M, Ullah R, Rehman SU, Shah SA, Saeed K, Muhammad T et al (2019) 17β-Estradiol Modulates SIRT1 and halts oxidative stress-mediated cognitive impairment in a male aging mouse model. Cells 8(8):928PubMedCentralCrossRef
Metadaten
Titel
Renoprotective effects of estrogen on acute kidney injury: the role of SIRT1
verfasst von
Fatemeh Darvishzadeh Mahani
Mohammad Khaksari
Alireza Raji-amirhasani
Publikationsdatum
17.01.2021
Verlag
Springer Netherlands
Erschienen in
International Urology and Nephrology / Ausgabe 11/2021
Print ISSN: 0301-1623
Elektronische ISSN: 1573-2584
DOI
https://doi.org/10.1007/s11255-020-02761-y

Weitere Artikel der Ausgabe 11/2021

International Urology and Nephrology 11/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

ADT zur Radiatio nach Prostatektomie: Wenn, dann wohl länger

24.05.2024 Prostatakarzinom Nachrichten

Welchen Nutzen es trägt, wenn die Strahlentherapie nach radikaler Prostatektomie um eine Androgendeprivation ergänzt wird, hat die RADICALS-HD-Studie untersucht. Nun liegen die Ergebnisse vor. Sie sprechen für länger dauernden Hormonentzug.

„Überwältigende“ Evidenz für Tripeltherapie beim metastasierten Prostata-Ca.

22.05.2024 Prostatakarzinom Nachrichten

Patienten mit metastasiertem hormonsensitivem Prostatakarzinom sollten nicht mehr mit einer alleinigen Androgendeprivationstherapie (ADT) behandelt werden, mahnt ein US-Team nach Sichtung der aktuellen Datenlage. Mit einer Tripeltherapie haben die Betroffenen offenbar die besten Überlebenschancen.

So sicher sind Tattoos: Neue Daten zur Risikobewertung

22.05.2024 Melanom Nachrichten

Das größte medizinische Problem bei Tattoos bleiben allergische Reaktionen. Melanome werden dadurch offensichtlich nicht gefördert, die Farbpigmente könnten aber andere Tumoren begünstigen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.