Skip to main content
Erschienen in: Annals of Intensive Care 1/2020

Open Access 01.12.2020 | Research

Respiratory virus-associated infections in HIV-infected adults admitted to the intensive care unit for acute respiratory failure: a 6-year bicenter retrospective study (HIV-VIR study)

verfasst von: Alexandre Elabbadi, Jérémie Pichon, Benoit Visseaux, Aurélie Schnuriger, Lila Bouadma, Quentin Philippot, Juliette Patrier, Vincent Labbé, Stéphane Ruckly, Muriel Fartoukh, Jean-François Timsit, Guillaume Voiriot

Erschienen in: Annals of Intensive Care | Ausgabe 1/2020

Abstract

Introduction

Acute respiratory failure is the main reason for admission to the intensive care unit (ICU) in HIV-infected adults. There is little data about the epidemiology of respiratory viruses in this population.

Methods

HIV-infected adults admitted to two intensive care units over a 6-year period for an acute respiratory failure and explored for respiratory viruses with multiplex polymerase chain reaction (mPCR) were retrospectively selected. Objectives were to describe the prevalence of respiratory viruses, coinfections with non-viral pathogens, and hospital outcome.

Results

A total of 123 episodes were included. An HIV infection was newly diagnosed in 9% of cases and 72% of the population were on antiretroviral therapy. Real-time mPCR tests identified at least one respiratory virus in the respiratory tract of 33 (27%) patients, but with a non-viral copathogen in two-thirds of cases. Rhinovirus was predominant, documented in 15 patients, followed by Influenza and Respiratory Syncytial Viruses (both n = 6). The prevalence of respiratory virus-associated infection did not vary along with the level of the CD4 T-cell deficiency, except for Rhinovirus which was more prevalent in patients with a CD4 lymphocyte count below 200 cells/µL (n = 13 (20%) vs. n = 2 (4%), p < 0.01). In multivariate analysis, respiratory virus-associated infection was not associated with a worse prognosis.

Conclusions

Viruses are frequently identified in the respiratory tract of HIV-infected patients with acute respiratory failure that requires ICU admission, but with a non-viral copathogen in two-thirds of cases. Rhinovirus is the predominant viral specie; its prevalence is highest in patients with a CD4 lymphocyte count below 200 cells/µL.
Hinweise

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13613-020-00738-9.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ARF
Acute respiratory failure
BAL
Bronchoalveolar lavage
CMV
Cytomegalovirus
COPD
Chronic obstructive pulmonary disease
ESM
Electronic supplementary material
HIV
Human immunodeficiency virus
ICU
Intensive care unit
LRT
Low respiratory tract
mPCR
Multiple polymerase chain reaction
NP
NasoPharyngeal
PCP
Pneumocystis jirovecii pneumonia
SAPS II
Simplified Acute Physiology Score
SOFA
Sepsis-related Organ Failure Assessment
WHO
World Health Organization

Introduction

Acute respiratory failure (ARF) is the leading cause of admission to the intensive care unit (ICU) in HIV-infected patients [13]. Infectious causes are predominant, although the proportion of opportunistic infections has decreased significantly in the era of combination antiretroviral therapy (ART) [2, 4, 5]. In contrast, the burden of non-HIV-related pulmonary events, such as bacterial pneumonia, acute bronchitis and acute exacerbation of chronic obstructive pulmonary disease (COPD) has been shown increasing [2, 3, 6]. These important changes in the etiologic panel of ARF in HIV-infected patients question the role of respiratory viruses. Indeed, using nucleic acid amplification test such as multiplex polymerase chain reaction (mPCR), these pathogens have been shown highly prevalent (20–56%) in large cohorts of adult patients admitted to the ICU for all-cause ARF [7, 8], community-acquired pneumonia [9, 10], hospital-acquired pneumonia [11], acute exacerbation of COPD [12, 13], and asthma [14], compared to asymptomatic adults [15, 16]. High prevalence has also been described in specific immunocompromised populations, such as cancer and hematology patients [17, 18]. In contrast, little is known about the epidemiology of respiratory viruses in HIV-infected patients [19, 20], especially those admitted to the ICU, and the prevalence of respiratory viruses according to the CD4 T-cell deficiency. Moreover, coinfections with virus and opportunistic pathogens may occur. Overall, respiratory virus-associated infections may affect prognosis.
Therefore, we conducted a comprehensive observational study among adult HIV-infected ICU patients with ARF explored with respiratory mPCR. Our goals were to describe the prevalence of respiratory viruses, coinfections with non-viral pathogens, and hospital outcome.

Methods

Study design and patient selection

We conducted a retrospective bicenter observational study in two ICU of the Paris area (the 26-bed ICU of the Bichat University Hospital and the 20-bed ICU of the Tenon University Hospital). From April 2011 to April 2017, all consecutive HIV-infected patients admitted to ICU having undergone an mPCR in the respiratory tract within 72 h following their ICU admission were screened. Medical records were independently reviewed by two physicians (AE and GV). All patients with ARF at ICU admission were included. ARF was defined by the presence of at least two of the following criteria: cough, expectoration, dyspnea, rales, signs of respiratory distress (tachypnea exceeding 30/min, paradoxical abdominal breathing), chest pain, hypoxemia requiring oxygen therapy, noninvasive ventilation or intubation. In case of multiple admissions over the 6-year study period, only the first admission was analyzed.

Data collection

At ICU admission and during ICU stay, data regarding demographics, comorbidity, HIV-related characteristics, clinical examinations, laboratory and radiological findings, microbiologic investigations, and therapeutic management were collected (for details, see Additional file 1). Mortality was defined as death from any cause within 28 days following the ICU admission.

Microbiological evaluation

Respiratory mPCRs were performed either in nasopharyngeal (NP) swabs or in lower respiratory tract (LRT) specimen, usually bronchoalveolar lavage (BAL) fluid otherwise endotracheal aspirate. During the study period, different respiratory mPCR kits (Additional file 1: Table S1) were used (for more details about microbiological evaluation, see Additional file 1).

Classification of patients according to the causative diagnosis of ARF

Medical charts were independently reviewed by two clinicians (AE and GV). They determined the causative diagnosis of ARF for each patient, using a 5-class classification. In case of an inter-reviewer discordance, a shared review of the medical charts was performed, and an agreement was found. The five mutually exclusive classes of causative diagnosis for ARF were: (i) Pneumocystis jirovecii pneumonia (PCP); (ii) other opportunistic lung infections; (iii) non-opportunistic acute lung infection; (iv) non-infectious lung disease, and (v) extra-pulmonary cause (for details, see Additional file 1).

Endpoints

The primary endpoint was to determine the prevalence of respiratory viruses according to the CD4 lymphocyte count. A respiratory virus documented with mPCR was always considered as a pathogen of the respiratory tract, regardless of the type of specimen (NP or LRT). The CD4 lymphocyte count measured during the ICU stay was used to group patients, with a cut-off of 200 cells/µL (≤ 200 cells/µL for the Low-CD4 group; > 200 cells/µL for the High-CD4 group) [19, 21].
Secondary endpoints were to describe the epidemiology of respiratory viruses and coinfections with non-viral pathogens, to identify risk factors for respiratory virus-associated infection, and to study outcome. A composite criterion named “complicated course” included death from any cause within 28 days following the ICU admission or mechanical ventilation for more than 7 days.

Data presentation and statistical analysis

Continuous data were expressed as median [first through third quartiles] and were compared using the pairwise Mann and Whitney test. Categorical data were expressed as number (percentage) and were evaluated using the chi-square test or Fisher exact test. p values less than 0.05 were considered significant. A univariate logistic regression with clinically relevant variables was used to identify variables associated with a respiratory virus-associated infection. A multivariate conditional logistic regression, including variables with p value less than 0.10 in the previous step, was used to identify variables independently associated with a respiratory virus-associated infection. Similar statistical analyses were performed to identify variables independently associated with death from any cause within 28 days following the ICU admission and mechanical ventilation for more than 7 days in survivors at Day-28. Quantitative variables that did not validate the log-linearity assumption were transformed into categorical variables according to their median value. Missing data were imputed to the median or the more frequent value. The accuracy of the final model was tested using area under the receiver operating characteristic curve analysis and the Hosmer–Lemeshow chi-square test. Analyses were performed using the SAS software package (SAS Institute, Cary, NC, USA).

Ethical considerations

This study was approved by the institutional review board of the French Society of Respiratory Diseases (Reference CEPRO 2018-017) according to the French regulations. The board waived the need for signing consent for patients included in the study.

Results

Population

During the 6-year study period, 135 HIV-infected adult patients were admitted at least once to ICU and underwent a respiratory mPCR in the first 72 h of the ICU stay. Among them, 12 did not fulfill criteria of ARF. The final study group consisted of 123 patients. Their main characteristics, stratified by the CD4 lymphocyte count at ICU admission, are presented in Table 1. Of these 123 patients, 2 were admitted twice during the study period and one was admitted thrice. Eleven patients (9%) were newly diagnosed as having HIV infection on ICU admission; the remaining 112 had been previously diagnosed, and 88 were on ART but with poor adherence to the treatment in 21 patients, as mentioned by the infectiologist in the medical charts. Latest available median CD4 lymphocyte count and HIV viral load were 351 cells/µL [140–600] and 0 log copies/mL [0–3.4], respectively. At least one additional factor of immunosuppression was identified in 10 (8%) patients.
Table 1
Baseline characteristics, behavior during ICU stay, and outcome of 123 HIV-infected patients admitted to the ICU for acute respiratory failure, according to the CD4 lymphocyte count on the ICU admission
Patients
All patients (n = 123)
CD4 ≤ 200 (n = 66)
CD4 > 200 (n = 57)
p
valuea
Age (year)
51 [43–59]
46 [39–56]
55 [47–59]
< 0.01
Sex male
82 (66.7)
40 (60.6)
42 (73.7)
0.12
Smoking
49 (41.2)
24 (38.7)
25 (43.9)
0.57
WHO performance status > 0
61 (50.8)
33 (50.7)
28 (50.9)
0.99
COPD GOLD III–IV
16 (13)
4 (6.1)
12 (21.1)
0.01
Arterial hypertension
32 (26)
13 (19.7)
19 (33.3)
0.09
Coronary heart disease
19 (15.4)
10 (15.2)
9 (15.8)
0.92
Baseline HIV-related characteristics
 Newly diagnosed HIV infection
11 (8.9)
10 (15.2)
1 (1.8)
0.92
 HIV viral load (log)b
0 [0–3.4]
4.7 [1.2–5.4]
0 [0–1.4]
< 0.01
 CD4 lymphocyte count (cells/µL)c
351 [140–600]
72 [30–200]
517 [406–715]
< 0.01
 ART
88 (72.1)
33 (50.8)
55 (96.5)
< 0.01
Steroid therapyd
4 (3.3)
2 (3)
2 (3.5)
0.85
Other immunosuppressive treatments
2 (1.6)
1 (1.5)
1 (1.8)
0.92
Splenectomy
1 (0.8)
0
1 (1.8)
0.28
Cancer or hematologic malignancy
6 (4.9)
1 (1.5)
5 (8.8)
0.06
Chemotherapy
2 (1.6)
1 (1.5)
1 (1.8)
0.92
Organ/bone marrow transplantation
(0.8)
1 (1.5)
0
0.35
Transfer from another warde
62 (50.4)
30 (45.5)
32 (56.2)
0.24
SOFA score
4 [2–7]
4 [2–8]
3 [2–6]
0.60
SAPS II score
44 [34–57]
44 [37–57]
41 [31–55]
0.20
Biology on ICU admission
 HIV viral load (log)f
2.5 [0–5.3]
5 [2.9–5.6]
0 [0–2]
< 0.01
 CD4 lymphocyte count (cells/µL)
170 [20–430]
29 [10–102]
461[345–533]
< 0.01
 Neutrophil count (G/L)
6.7 [3.9–9]
5.5 [2.1–7.6]
7.6 [5.3–12.1]
< 0.01
 Procalcitonin (µg/L)g
0.6 [0.2–5.9]
0.6 [0.2–3]
0.5 [0.1–8.3]
0.89
 Lactate dehydrogenase (U/L)
403 [276–637]
471 [325–675]
327 [233–575]
0.02
Organ supports during ICU stay
 High-flow nasal cannula oxygen
36 (29.2)
24 (36.3)
12 (21)
0.06
 Noninvasive ventilation
30 (24.8)
11 (17.1)
19 (33.3)
0.04
 Mechanical ventilation
43 (35.2)
24 (36.9)
19 (33.3)
0.68
 Vasopressor
36 (29.3)
22 (33.3)
14 (24.6)
0.29
 Renal replacement therapy
23 (18.7)
14 [21.2)
9 (15.8)
0.44
Outcome
 ICU length of stay (day)
7 [4–12]
7 [3.3–16.8]
6 [3–11]
0.21
 Day-28 mortalityh
15 (12.2)
8 (12.1)
7 (12.3)
0.98
 Complicated coursei
30 (24.4)
17 (25.8)
13 (22.8)
0.70
Data are presented as median [first through third quartiles] or number (%). CD4 refers to CD4 lymphocyte count (cells/µL)
HIV Human immunodeficiency virus, ICU Intensive care unit, SAPS II Simplified Acute Physiologic Score II, SOFA Sepsis-related Organ Failure Assessment, WHO World Health Organization
a P values refer to differences between Low-CD4 (≤ 200 cells/µL) and High-CD4 (> 200 cells/µL) groups in univariate logistic regression
bData were available for 76 patients
cData were available for 81 patients
d≥ 10 mg of prednisone (or equivalent) per day for more than 30 days
eTransfer from another ward included transfers from another ICU and from the medical wards
fData were available for 101 patients
gData were available for 79 patients
hMortality was defined as death from any cause within 28 days following the ICU admission
iComplicated course was defined as death from any cause within 28 days following the ICU admission and/or mechanical ventilation > 7 days
At ICU admission, median CD4 lymphocyte count was 170 cells/µL [20–430], with 66 patients (54%) equal or below 200 cells/µL (Low-CD4 group) and 57 (46%) above 200 cells/µL (High-CD4 group). Both these groups did not differ regarding demographics, performance status, factors of immunosuppression other than HIV and comorbidity, except for COPD which was more prevalent in the High-CD4 group (n = 12 (21%) vs. n = 4 (6%), p = 0.01).

Microbiological investigations

The microbiological investigations are displayed in Additional file 1: Table S2. mPCR was performed in NP swabs exclusively (n = 46, 37%) or in LRT specimen exclusively (n = 50, 41%), or both (n = 27, 22%). Respiratory tract specimens for bacterial culture have been obtained in 110 (91%) patients. BAL fluid has been obtained in 77 (63%) patients.

Causative diagnosis of ARF

Causative diagnoses of ARF are displayed in Table 2. An opportunistic lung infection was diagnosed in 38 (31%) patients. Seven of the 11 patients with newly diagnosed HIV infection and 8 patients receiving ART, but with a poor adherence to the treatment had PCP.
Table 2
Causative diagnosis of acute respiratory failure in 123 HIV-infected patients admitted to the ICU
Patients
All patients (n = 123)
CD4 ≤ 200 (n = 66)
CD4 > 200 (n = 57)
Pneumocystis jirovecii pneumonia
29 (23.6)
26 (39.4)
3 (5.3)
Other opportunistic lung infectiona
9 (7.3)
7 (10.6)
2 (3.5)
Non-opportunistic acute lung infection
59 (48)
22 (33.3)
37 (64.9)
Bacteria
53
21
32
 Streptococcus pneumoniae
14
9
5
 Other Streptococcus
3
1
2
 Staphylococcus aureus
9
5
4
 Legionella pneumophila
3
0
3
 Haemophilus influenzae
2
0
2
 Moraxella catarrhalis
1
0
1
 Klebsiella pneumoniae/Escherichia coli
2
0
2
 Other enterobacteria
5
1
4
 Pseudomonas aeruginosa
9
4
5
 Other Gram-negative bacteria
1
1
0
 Mycoplasma pneumoniae
1
0
1
 Anaerobes
1
0
1
 Other bacteria
2
0
2
Virus
25
13
12
 Rhinovirus
8
6
2
 Adenovirus
2
1
1
 Coronavirus
1
1
0
 Influenza virus
6
2
4
 Human metapneumovirus
1
0
1
 Parainfluenza virus
3
2
1
 Respiratory syncytial virus
4
1
3
Bacteria–virus coinfection
12
8
4
Virus–virus coinfection
2
2
0
Undocumented
8
2
6
Non-infectious lung diseaseb
19 (15.4)
5 (7.6)
14 (24.6)
Extra-pulmonary causec
7 (5.7)
6 (9.1)
1 (1.8)
Data are presented as number (%). CD4 refers to CD4 lymphocyte count (cells/µL)
aOther opportunistic lung infections included CMV-associated pneumonia (n = 5) and pulmonary tuberculosis (n = 4)
bNon-infectious lung diseases included acute exacerbation of COPD of non-infectious etiology (n = 6), cardiogenic lung edema without underlying lung agent (n = 5), cryptogenic hemoptysis (n = 1), intra-alveolar hemorrhage (n = 1); acute interstitial pneumonia (n = 2), Mendelson syndrome (n = 1), sickle cell disease (acute chest syndrome) (n = 1); neoplastic pleural effusion (n = 1) and Castleman disease (n = 1)
cExtra-pulmonary causes included histoplasmosis (n = 1), Cryptococcus neoformans meningitis (n = 1), bacterial meningitis (n = 2), pyelonephritis (n = 2) and bacteremia of unknown origin (n = 1)
Non-opportunistic acute lung infections were identified as causative diagnosis of ARF in 59 (48%) patients. All the bacteria-infected patients received an appropriate antimicrobial regimen within the first 24 h of ICU stay. Eight patients had a clinical presentation suggestive of lung infection, but without microbiological documentation.
The ARF was attributed to a non-infectious lung disease in 19 (15%) patients, mainly related to a decompensated chronic condition, i.e., acute exacerbation of COPD and pulmonary edema.

Analysis according to the viral diagnosis

Overall, 36 respiratory viruses were identified in 33 (27%) patients (Table 3). Rhinovirus was predominant (n = 15), followed by Influenza (n = 6), Respiratory Syncytial Virus (n = 6) and Parainfluenza Virus (n = 5). Only one pure virus–virus coinfection was found.
Table 3
Description of respiratory virus-associated infections and coinfections with non-viral pathogens
Respiratory viruses
Rhinovirus (n = 15)
Influenza virus (n = 6)
Parainfluenza virus (n = 5)
RSV (n = 6)
Coronavirus (n = 1)
Adenovirus (n = 2)
hMPV (n = 1)
Coinfection with at least one non-viral pathogena
11
3
3
4
0
2
0
Streptococcus pneumoniae
1
2
1
0
0
0
0
Streptococcus sp.
0
0
0
1
0
0
0
Staphylococcus aureus
2
2
0
0
0
0
0
Enterobacteria
1
0
0
1
0
1
0
Pseudomonas aeruginosa
3
0
0
1
0
0
0
Corynebacterium sp.
0
0
0
0
0
1
0
Mycobacterium tuberculosis
2
0
0
0
0
0
0
Pneumocystis jirovecii
4
0
2
2
0
0
0
RSV Respiratory Syncytial Virus, hMPV human Metapneumovirus
aSome viruses had several non-viral copathogens
The prevalence of respiratory virus-associated infection did not differ among Low- and High-CD4 groups (Table 1); therefore, the median CD4 lymphocyte count in respiratory virus-infected patients was 109 [16–420] cells/µL, in comparison with 192 [27–428] cells/µL in non-infected patients (Fig. 1). However, the prevalence of Rhinovirus-associated infection was higher in the Low-CD4 group, and three-quarters of Rhinovirus-infected patients exhibited a CD4 lymphocyte count below 200 cells/µL (Fig. 2).
In 22 patients, the viral documentation was accompanied by a non-viral documentation (Additional file 1: Figure S1), with bacteria–virus coinfection in 11 patients, bacteria–virus–virus in 2 patients, P. jirovecii–virus in 7 patients and P. jirovecii–virus–virus in one patient.
The rate of viral documentation among patients explored with NP swab exclusively, LRT specimen exclusively, or both, did not differ significantly (30%, 26% and 22%, respectively; p = 0.73).
Documentation of respiratory viruses was more frequent during the winter period (October to March) (Additional file 1: Figure S2). Conversely, Rhinovirus documentation did not follow a seasonal distribution, since only 7/15 were observed during the period from October to March.
Characteristics of the population, stratified by respiratory virus-associated infection are presented in Additional file 1: Table S3. At ICU admission, respiratory virus-infected patients displayed higher respiratory rate and fever. In multivariate analysis, female gender, smoking and steroid therapy were shown as independently associated with respiratory virus-associated infection (Table 4).
Table 4
Multivariate analysis of the risk factors for respiratory virus-associated infection in 123 HIV-infected patients admitted to the ICU for acute respiratory failure
Variables
Univariate analysis
Multivariate analysis
 
Odds ratio
95% confidence interval
p value
Odds ratio
95% confidence interval
p value
Female gender
2.45
[1.07–5.59]
0.03
2.8
[1.1–7.1]
0.03
Smoking
2.1
[0.9–4.8]
0.07
3.6
[1.4–9]
0.007
Steroid therapy
8.9
[0.9–88.8]
0.06
18.3
[1.4–236]
0.03
Maximal temperaturea
1.4
[1.01–2]
0.04
   
Maximal respiratory ratea
1.06
[1–1.12]
0.04
   
Leucocyte counta
0.9
[0.81–0.97]
< 0.01
0.9
[0.7–0.9]
0.004
Neutrophil counta
0.9
[0.79––0.98]
0.02
   
Lymphocyte counta
0.59
[0.33––1.06]
0.08
   
aRefers to values on the ICU admission

Outcome

Mortality at Day-28 was 12%, and 26% of patients displayed a complicated course, without difference between High-CD4 and Low-CD4 groups (Table 1). We investigated whether a respiratory virus-associated infection affected prognosis. In the analysis stratified by respiratory virus-associated infection, outcome was similar between infected and non-infected patients (Additional file 1: Table S3). In multivariate analysis, a respiratory virus-associated infection was not identified as an independent factor of either a complicated course (Table 5) or death at Day-28 (Additional file 1: Table S4).
Table 5
Multivariate analysis of the risk factors for complicated course in 123 HIV-infected patients admitted to the ICU for acute respiratory failure
 
Univariate analysis
Multivariate analysis
Variables
Odds ratio
95% confidence interval
p value
Odds ratio
95% confidence interval
p value
Chronic dialysis
3.1
[0.73–13.15]
0.12
   
Cirrhosis (Child B–C)
2.76
[0.49–15.65]
0.25
   
Cancer or hematologic malignancy
2.76
[0.49–15.65]
0.25
   
Use of vasopressora
7.76
[1.71–35.29]
< 0.01
7.2
[1.5–35.4]
0.01
Pleural effusion
2.34
[0.68–8.1]
0.18
3.6
[1.06–12.2]
0.04
HIV viral loadb
1.14
[0.89–1.45]
0.31
   
PaO2/FIO2 ratiob
0.995
[0.99–1]
0.05
   
Ureab
1.035
[1–1.07]
0.06
   
Alkaline phosphataseb
1.008
[1–1.01]
< 0.01
1.008
[1.002–1.01]
0.006
Minimal platelet countb
0.996
[0.99–1]
0.05
   
Fibrinogenb
0.79
[0.59–1.06]
0.12
   
Minimal prothrombin timeb
0.979
[0.95–1.01]
0.12
   
Complicated course was defined as death from any cause within 28 days following the ICU admission and/or mechanical ventilation > 7 days
aDuring the first hour of the ICU stay
bRefers to values at ICU admission

Discussion

This retrospective study investigated the epidemiology of respiratory viruses in HIV-infected adults admitted to the ICU for ARF. Real-time mPCR tests identified at least one virus in the respiratory tract of 27% of patients, but with a non-viral copathogen in two-thirds of cases. The prevalence of respiratory virus-associated infection did not vary along with the level of the CD4 T-cell deficiency, except for Rhinovirus which was more prevalent in patients with a CD4 lymphocyte count below 200 cells/µL. In multivariate analysis, respiratory virus-associated infection was not associated with a worse prognosis.
In this study, more than one patient out of four (27%) were infected with at least one respiratory virus. This finding illustrated the high yield of an aggressive diagnostic strategy with a broad panel mPCR on respiratory tract specimens. Our results are original since prior works having described the etiological panel of ARF in HIV-infected ICU patients were conducted before the era of real-time mPCR [2, 4, 22]. Interestingly, the rate of viral documentation that we observed was similar to what had been described (27 to 29%) previously in non-HIV adults admitted to the ICU for an acute respiratory disorder requiring intubation [7, 8].
We identified at least one non-viral copathogen in more than two-thirds of the patients with a viral documentation, in line with a recent report in a population with a high prevalence of tuberculosis [19, 23]. Non-opportunistic acute lung infections, including pneumonia, acute bronchitis and exacerbation of COPD, were the first cause of ARF, consistent with previous reports in Western countries [2, 4]. This finding highlights the burden of chronic respiratory conditions in aging HIV-infected populations [6]. Here, more than 40% of patients were smokers. Synergistic effects of tobacco and HIV [24] in promoting chronic bronchitis and pro-COPD changes in the lung [25] have been demonstrated. Moreover, high rates of viral documentation within airways of COPD patients both at stable state and during exacerbation have been reported [26]. These data may explain the high rate of viral documentation that we observed. In multivariate analysis, smoking was independently associated with respiratory virus-associated infection. This finding is in line with previous works demonstrating that tobacco exposure alters immune responses to Rhinovirus [27], Influenza Virus [28] and Respiratory Syncytial Virus [29]. Interestingly, female gender was associated with an increased risk of respiratory virus-associated infection on multivariate analysis. Prior cohort studies in primary care described an increased risk for development of Influenza-like illnesses in women compared to men [30, 31]. However, to our knowledge, no prior study has specifically explored this point in HIV-infected populations admitted for ARF.
In this study, we also aimed to investigate a putative role of the HIV-related CD4 T-cell deficiency in promoting respiratory virus-associated infection. Previous studies explored this point in children, but with conflicting results. Annamalay et al. described similar rates of viral documentation in HIV-infected and non-infected children admitted for lower respiratory tract infections [32], whereas O’Callaghan-Gordo et al. observed that respiratory virus-associated infections were 6 to 16 times more prevalent among HIV-infected children admitted for pneumonia [33]. As we did not include a comparative non-HIV population, we rather examined whether or not the rate of viral documentation varied along with the level of CD4 T-cell deficiency. Finally, we found no association between the CD4 lymphocyte count and the risk of respiratory virus-associated infection, in line with a previous report focusing on Influenza viruses [34].
Rhinovirus was the predominant virus, accounting for more than 40% of viral documentations. This high prevalence was consistent with that of previous reports in ICU patients with ARF [7], community-acquired pneumonia [35] or acute exacerbation of COPD [13]. Surprisingly, Rhinovirus was much more prevalent in low-CD4 patients. This finding is original, since no prior work has specifically explored this point in adults. In HIV-infected children, Rhinovirus has been shown highly prevalent, during both pneumonia and bronchiolitis, but without data regarding a putative association with the level of CD4 T-cell deficiency [32, 36]. Other data in hematology and cancer adults demonstrated high rates of Rhinovirus documentation within airways during respiratory tract infections [37, 38]. To explain this high prevalence in immunocompromised patients, a mechanism of prolonged viral shedding has been proposed, rather than iterative reinfections as observed in COPD patients [39]. The prolonged Rhinovirus shedding may be attributable to an inefficient immunological control of a single infectious episode [40, 41]. Therefore, in pediatric hematopoietic stem cell transplant recipients with a persistent Rhinovirus shedding (≥ 30 days), Piralla et al. demonstrated significant lower CD4, CD8 and NK lymphocyte counts at the onset of infection, as compared to children with a brief Rhinovirus shedding. Moreover, a decrease in Rhinovirus load was associated with significant increases of the same lymphocyte counts [42]. These data would suggest an important role for the T-cell immunity in the control of Rhinovirus infection, and subsequently, may explain a delayed Rhinovirus clearance in low-CD4 HIV-infected patients, resulting in persistent shedding and increased prevalence.
We observed a high rate of dual infection, either virus–bacteria or virus–opportunistic pathogen. These findings made us consider the prognostic impact of such coinfections. Studies in ICU adult patients with pneumonia suggested that virus–bacteria coinfection was associated with a worse prognosis [43]. In mice, the coinfection of Influenza with Streptococcus pneumoniae [44], Legionella pneumophila [45] or Staphylococcus aureus [46] impaired the anti-Influenza immune response and increased mortality. Whether similar synergistic effects exist in virus–opportunistic pathogen coinfection remain unknown. Only one animal study has explored the couple Pneumocystis jirovecii–Influenza, but in a successive rather than concomitant model [47]. Unfortunately, in our study, the low number of observations prevented us from analyzing the prognosis according to the presence of coinfections.
Our study has several limitations. First, this study included adult patients with ARF that required ICU admission, preventing any conclusion on other populations such as HIV-infected children or HIV-infected adults with ARF that did not require ICU admission. Second, the study was retrospective, so we did not control the microbiological investigations. The preferred sample for mPCR test in non-intubated patients was not the sputum, but the nasopharyngeal swab [48]. Several factors may have discouraged clinicians to use sputum, including the high number of patients unable to produce sputum [49] and the highly viscous nature of this sample that can make nucleic acid extraction difficult [50]. By definition, an mPCR was performed in the respiratory tract of every included patient because it was a criterion for patient screening. But some other microbiological tests were only occasionally performed, i.e., cytomegalovirus PCR. Furthermore, the retrospective design prevented us from obtaining a number of data, which were rarely reported in medical records by physicians, including vaccine history, Pneumocystis jirovecii prophylaxis, symptoms before hospital referral, and duration of symptoms before ICU admission. Third, only patients having undergone an mPCR in the respiratory tract within the 72 h following their ICU admission were screened; this might suggest a confounding of indication. Fourth, the choice to classify patients according to their CD4 lymphocyte count on the ICU admission, instead of the latest known value, might be criticized. However, this choice was guided by the high number of missing values in the latest CD4 lymphocyte count as well as the number of newly diagnosed patients without any prior CD4 lymphocyte count. Fifth, we assumed that a virus identified with PCR in nasopharyngeal or lower respiratory tract samples was always a pathogen of the respiratory tract, whatever the clinical picture and radiological features. This might be criticized since respiratory viruses might be present in asymptomatic adult subjects [15], even if it seems rare, about 2% of asymptomatic adults seen at the emergency department [16]. Sixth, to avoid overinterpreting the data, we decided to consider respiratory viruses as a homogeneous group of pathogens in the analysis stratified by respiratory virus-associated infection. This might be criticized since the pathogenicity differs from one viral species to another.

Conclusions

Viruses are frequently identified in the respiratory tract of HIV-infected patients with ARF that required ICU admission, but with a non-viral copathogen in two-thirds of cases. Rhinovirus is the predominant viral specie; its prevalence is highest in patients with a CD4 lymphocyte count below 200 cells/µL.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13613-020-00738-9.

Acknowledgements

None.
Not applicable.

Competing interests

The authors have reported that no potential conflicts of interest exist with any companies/organizations whose products or services may be discussed in this article.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Chiang H-H, et al. Admissions to intensive care unit of HIV-infected patients in the era of highly active antiretroviral therapy: etiology and prognostic factors. Crit Care. 2011;15:R202.PubMedPubMedCentral Chiang H-H, et al. Admissions to intensive care unit of HIV-infected patients in the era of highly active antiretroviral therapy: etiology and prognostic factors. Crit Care. 2011;15:R202.PubMedPubMedCentral
2.
Zurück zum Zitat Barbier F, et al. Etiologies and outcome of acute respiratory failure in HIV-infected patients. Intensive Care Med. 2009;35:1678–86.PubMedPubMedCentral Barbier F, et al. Etiologies and outcome of acute respiratory failure in HIV-infected patients. Intensive Care Med. 2009;35:1678–86.PubMedPubMedCentral
3.
Zurück zum Zitat Barbier F, et al. Temporal trends in critical events complicating HIV infection: 1999–2010 multicentre cohort study in France. Intensive Care Med. 2014;40:1906–15.PubMed Barbier F, et al. Temporal trends in critical events complicating HIV infection: 1999–2010 multicentre cohort study in France. Intensive Care Med. 2014;40:1906–15.PubMed
4.
Zurück zum Zitat Powell K, et al. Survival for patients with HIV admitted to the ICU continues to improve in the current era of combination antiretroviral therapy. Chest. 2009;135:11–7.PubMed Powell K, et al. Survival for patients with HIV admitted to the ICU continues to improve in the current era of combination antiretroviral therapy. Chest. 2009;135:11–7.PubMed
5.
Zurück zum Zitat Benito N, Moreno A, Miro JM, Torres A. Pulmonary infections in HIV-infected patients: an update in the 21st century. Eur Respir J. 2012;39:730–45.PubMed Benito N, Moreno A, Miro JM, Torres A. Pulmonary infections in HIV-infected patients: an update in the 21st century. Eur Respir J. 2012;39:730–45.PubMed
6.
Zurück zum Zitat Crothers K, et al. HIV infection and risk for incident pulmonary diseases in the combination antiretroviral therapy era. Am J Respir Crit Care Med. 2011;183:388–95.PubMedPubMedCentral Crothers K, et al. HIV infection and risk for incident pulmonary diseases in the combination antiretroviral therapy era. Am J Respir Crit Care Med. 2011;183:388–95.PubMedPubMedCentral
7.
Zurück zum Zitat Daubin C, et al. Epidemiology and clinical outcome of virus-positive respiratory samples in ventilated patients: a prospective cohort study. Crit Care. 2006;10:R142.PubMedPubMedCentral Daubin C, et al. Epidemiology and clinical outcome of virus-positive respiratory samples in ventilated patients: a prospective cohort study. Crit Care. 2006;10:R142.PubMedPubMedCentral
8.
Zurück zum Zitat van Someren Gréve F, et al. Respiratory viruses in invasively ventilated critically ill patients—a prospective multicenter observational study. Crit Care Med. 2018;46:29–36. van Someren Gréve F, et al. Respiratory viruses in invasively ventilated critically ill patients—a prospective multicenter observational study. Crit Care Med. 2018;46:29–36.
9.
Zurück zum Zitat Voiriot G, et al. Viral-bacterial coinfection affects the presentation and alters the prognosis of severe community-acquired pneumonia. Crit Care. 2016;20:375.PubMedPubMedCentral Voiriot G, et al. Viral-bacterial coinfection affects the presentation and alters the prognosis of severe community-acquired pneumonia. Crit Care. 2016;20:375.PubMedPubMedCentral
10.
Zurück zum Zitat Karhu J, Ala-Kokko TI, Vuorinen T, Ohtonen P, Syrjälä H. Lower respiratory tract virus findings in mechanically ventilated patients with severe community-acquired pneumonia. Clin Infect Dis. 2014;59:62–70.PubMedPubMedCentral Karhu J, Ala-Kokko TI, Vuorinen T, Ohtonen P, Syrjälä H. Lower respiratory tract virus findings in mechanically ventilated patients with severe community-acquired pneumonia. Clin Infect Dis. 2014;59:62–70.PubMedPubMedCentral
11.
Zurück zum Zitat Loubet P, et al. Impact of respiratory viruses in hospital-acquired pneumonia in the intensive care unit: a single-center retrospective study. J Clin Virol. 2017;91:52–7.PubMedPubMedCentral Loubet P, et al. Impact of respiratory viruses in hospital-acquired pneumonia in the intensive care unit: a single-center retrospective study. J Clin Virol. 2017;91:52–7.PubMedPubMedCentral
12.
Zurück zum Zitat Cameron RJ, et al. Virus infection in exacerbations of chronic obstructive pulmonary disease requiring ventilation. Intensive Care Med. 2006;32:1022–9.PubMedPubMedCentral Cameron RJ, et al. Virus infection in exacerbations of chronic obstructive pulmonary disease requiring ventilation. Intensive Care Med. 2006;32:1022–9.PubMedPubMedCentral
13.
Zurück zum Zitat Daubin C, et al. Procalcitonin algorithm to guide initial antibiotic therapy in acute exacerbations of COPD admitted to the ICU: a randomized multicenter study. Intensive Care Med. 2018;44:428–37.PubMedPubMedCentral Daubin C, et al. Procalcitonin algorithm to guide initial antibiotic therapy in acute exacerbations of COPD admitted to the ICU: a randomized multicenter study. Intensive Care Med. 2018;44:428–37.PubMedPubMedCentral
14.
Zurück zum Zitat Tan WC, et al. Epidemiology of respiratory viruses in patients hospitalized with near-fatal asthma, acute exacerbations of asthma, or chronic obstructive pulmonary disease. Am J Med. 2003;115:272–7.PubMed Tan WC, et al. Epidemiology of respiratory viruses in patients hospitalized with near-fatal asthma, acute exacerbations of asthma, or chronic obstructive pulmonary disease. Am J Med. 2003;115:272–7.PubMed
15.
Zurück zum Zitat Byington CL, et al. Community surveillance of respiratory viruses among families in the utah better identification of germs-longitudinal viral epidemiology (BIG-LoVE) study. Clin Infect Dis. 2015;61:1217–24.PubMedPubMedCentral Byington CL, et al. Community surveillance of respiratory viruses among families in the utah better identification of germs-longitudinal viral epidemiology (BIG-LoVE) study. Clin Infect Dis. 2015;61:1217–24.PubMedPubMedCentral
16.
Zurück zum Zitat Jain S, et al. Community-acquired pneumonia requiring hospitalization among U.S. adults. N Engl J Med. 2015;373:415–27.PubMedPubMedCentral Jain S, et al. Community-acquired pneumonia requiring hospitalization among U.S. adults. N Engl J Med. 2015;373:415–27.PubMedPubMedCentral
17.
Zurück zum Zitat Legoff J, et al. Clinical significance of upper airway virus detection in critically ill hematology patients. Am J Respir Crit Care Med. 2019;199:518–28.PubMed Legoff J, et al. Clinical significance of upper airway virus detection in critically ill hematology patients. Am J Respir Crit Care Med. 2019;199:518–28.PubMed
18.
Zurück zum Zitat Chemaly RF, Shah DP, Boeckh MJ. Management of respiratory viral infections in hematopoietic cell transplant recipients and patients with hematologic malignancies. Clin Infect Dis. 2014;59(Suppl 5):S344–51.PubMedPubMedCentral Chemaly RF, Shah DP, Boeckh MJ. Management of respiratory viral infections in hematopoietic cell transplant recipients and patients with hematologic malignancies. Clin Infect Dis. 2014;59(Suppl 5):S344–51.PubMedPubMedCentral
19.
Zurück zum Zitat Figueiredo-Mello C, Naucler P, Negra MD, Levin AS. Prospective etiological investigation of community-acquired pulmonary infections in hospitalized people living with HIV. Medicine (Baltimore). 2017;96:e5778. Figueiredo-Mello C, Naucler P, Negra MD, Levin AS. Prospective etiological investigation of community-acquired pulmonary infections in hospitalized people living with HIV. Medicine (Baltimore). 2017;96:e5778.
20.
Zurück zum Zitat Garbino J, Inoubli S, Mossdorf E, Weber R, Tamm M, Soccal P, Aubert JD, Bridevaux PO, Tapparel C, Kaiser L, Swiss HIV Cohort Study. Respiratory viruses in HIV-infected patients with suspected respiratory opportunistic infection. AIDS. 2008;22(6):701–5.PubMed Garbino J, Inoubli S, Mossdorf E, Weber R, Tamm M, Soccal P, Aubert JD, Bridevaux PO, Tapparel C, Kaiser L, Swiss HIV Cohort Study. Respiratory viruses in HIV-infected patients with suspected respiratory opportunistic infection. AIDS. 2008;22(6):701–5.PubMed
21.
Zurück zum Zitat Khouli H, Afrasiabi A, Shibli M, Hajal R, Barrett CR, Homel P. Outcome of critically ill human immunodeficiency virus-infected patients in the era of highly active antiretroviral therapy. J Intensive Care Med. 2005;20(6):327–33.PubMed Khouli H, Afrasiabi A, Shibli M, Hajal R, Barrett CR, Homel P. Outcome of critically ill human immunodeficiency virus-infected patients in the era of highly active antiretroviral therapy. J Intensive Care Med. 2005;20(6):327–33.PubMed
22.
Zurück zum Zitat Dickson SJ, et al. Survival of HIV-infected patients in the intensive care unit in the era of highly active antiretroviral therapy. Thorax. 2007;62:964–8.PubMedPubMedCentral Dickson SJ, et al. Survival of HIV-infected patients in the intensive care unit in the era of highly active antiretroviral therapy. Thorax. 2007;62:964–8.PubMedPubMedCentral
24.
Zurück zum Zitat Rossouw TM, Anderson R, Feldman C. Impact of HIV infection and smoking on lung immunity and related disorders. Eur Respir J. 2015;46:1781–95.PubMed Rossouw TM, Anderson R, Feldman C. Impact of HIV infection and smoking on lung immunity and related disorders. Eur Respir J. 2015;46:1781–95.PubMed
25.
Zurück zum Zitat Chand HS, et al. Cigarette smoke and HIV synergistically affect lung pathology in cynomolgus macaques. J Clin Invest. 2018;128:5428–33.PubMedPubMedCentral Chand HS, et al. Cigarette smoke and HIV synergistically affect lung pathology in cynomolgus macaques. J Clin Invest. 2018;128:5428–33.PubMedPubMedCentral
26.
Zurück zum Zitat Wilkinson TMA, et al. A prospective, observational cohort study of the seasonal dynamics of airway pathogens in the aetiology of exacerbations in COPD. Thorax. 2017;72:919–27.PubMedPubMedCentral Wilkinson TMA, et al. A prospective, observational cohort study of the seasonal dynamics of airway pathogens in the aetiology of exacerbations in COPD. Thorax. 2017;72:919–27.PubMedPubMedCentral
27.
Zurück zum Zitat Eddleston J, Lee RU, Doerner AM, Herschbach J, Zuraw BL. Cigarette smoke decreases innate responses of epithelial cells to rhinovirus infection. Am J Respir Cell Mol Biol. 2011;44:118–26.PubMed Eddleston J, Lee RU, Doerner AM, Herschbach J, Zuraw BL. Cigarette smoke decreases innate responses of epithelial cells to rhinovirus infection. Am J Respir Cell Mol Biol. 2011;44:118–26.PubMed
28.
Zurück zum Zitat Wu W, et al. Cigarette smoke attenuates the RIG-I-initiated innate antiviral response to influenza infection in two murine models. Am J Physiol Lung Cell Mol Physiol. 2014;307:L848–58.PubMedPubMedCentral Wu W, et al. Cigarette smoke attenuates the RIG-I-initiated innate antiviral response to influenza infection in two murine models. Am J Physiol Lung Cell Mol Physiol. 2014;307:L848–58.PubMedPubMedCentral
29.
Zurück zum Zitat Castro SM, Chakraborty K, Guerrero-Plata A. Cigarette smoke suppresses TLR-7 stimulation in response to virus infection in plasmacytoid dendritic cells. Toxicol In Vitro BIBRA. 2011;25:1106–13. Castro SM, Chakraborty K, Guerrero-Plata A. Cigarette smoke suppresses TLR-7 stimulation in response to virus infection in plasmacytoid dendritic cells. Toxicol In Vitro BIBRA. 2011;25:1106–13.
30.
Zurück zum Zitat Hardelid P, Rait G, Gilbert R, Petersen I. Recording of influenza-like illness in UK primary care 1995–2013: cohort study. PLoS ONE. 2015;10:e0138659.PubMedPubMedCentral Hardelid P, Rait G, Gilbert R, Petersen I. Recording of influenza-like illness in UK primary care 1995–2013: cohort study. PLoS ONE. 2015;10:e0138659.PubMedPubMedCentral
31.
Zurück zum Zitat Adler AJ, Eames KTD, Funk S, Edmunds WJ. Incidence and risk factors for influenza-like-illness in the UK: online surveillance using Flusurvey. BMC Infect Dis. 2014;14:232.PubMedPubMedCentral Adler AJ, Eames KTD, Funk S, Edmunds WJ. Incidence and risk factors for influenza-like-illness in the UK: online surveillance using Flusurvey. BMC Infect Dis. 2014;14:232.PubMedPubMedCentral
32.
Zurück zum Zitat Annamalay AA, et al. Respiratory viruses in young South African children with acute lower respiratory infections and interactions with HIV. J Clin Virol. 2016;81:58–63.PubMedPubMedCentral Annamalay AA, et al. Respiratory viruses in young South African children with acute lower respiratory infections and interactions with HIV. J Clin Virol. 2016;81:58–63.PubMedPubMedCentral
33.
Zurück zum Zitat O’Callaghan-Gordo C, et al. Etiology and epidemiology of viral pneumonia among hospitalized children in rural Mozambique: a malaria endemic area with high prevalence of human immunodeficiency virus. Pediatr Infect Dis J. 2011;30:39–44.PubMed O’Callaghan-Gordo C, et al. Etiology and epidemiology of viral pneumonia among hospitalized children in rural Mozambique: a malaria endemic area with high prevalence of human immunodeficiency virus. Pediatr Infect Dis J. 2011;30:39–44.PubMed
34.
Zurück zum Zitat Kok J, et al. Pandemic (H1N1) 2009 influenza virus seroconversion rates in HIV-infected individuals. J Acquir Immune Defic Syndr. 2011;1999(56):91–4. Kok J, et al. Pandemic (H1N1) 2009 influenza virus seroconversion rates in HIV-infected individuals. J Acquir Immune Defic Syndr. 2011;1999(56):91–4.
35.
Zurück zum Zitat Wiemken T, et al. Incidence of respiratory viruses in patients with community-acquired pneumonia admitted to the intensive care unit: results from the Severe Influenza Pneumonia Surveillance (SIPS) project. Eur J Clin Microbiol Infect Dis. 2013;32:705–10.PubMed Wiemken T, et al. Incidence of respiratory viruses in patients with community-acquired pneumonia admitted to the intensive care unit: results from the Severe Influenza Pneumonia Surveillance (SIPS) project. Eur J Clin Microbiol Infect Dis. 2013;32:705–10.PubMed
36.
Zurück zum Zitat Nunes MC, et al. Clinical epidemiology of bocavirus, rhinovirus, two polyomaviruses and four coronaviruses in HIV-infected and HIV-uninfected South African children. PLoS ONE. 2014;9:e86448.PubMedPubMedCentral Nunes MC, et al. Clinical epidemiology of bocavirus, rhinovirus, two polyomaviruses and four coronaviruses in HIV-infected and HIV-uninfected South African children. PLoS ONE. 2014;9:e86448.PubMedPubMedCentral
37.
Zurück zum Zitat Hammond SP, et al. Respiratory virus detection in immunocompromised patients with FilmArray respiratory panel compared to conventional methods. J Clin Microbiol. 2012;50:3216–21.PubMedPubMedCentral Hammond SP, et al. Respiratory virus detection in immunocompromised patients with FilmArray respiratory panel compared to conventional methods. J Clin Microbiol. 2012;50:3216–21.PubMedPubMedCentral
38.
Zurück zum Zitat Camps Serra M, et al. Virological diagnosis in community-acquired pneumonia in immunocompromised patients. Eur Respir J. 2008;31:618–24. Camps Serra M, et al. Virological diagnosis in community-acquired pneumonia in immunocompromised patients. Eur Respir J. 2008;31:618–24.
39.
Zurück zum Zitat Zlateva KT, et al. Prolonged shedding of rhinovirus and re-infection in adults with respiratory tract illness. Eur Respir J. 2014;44:169–77.PubMed Zlateva KT, et al. Prolonged shedding of rhinovirus and re-infection in adults with respiratory tract illness. Eur Respir J. 2014;44:169–77.PubMed
40.
Zurück zum Zitat Kaiser L, et al. Chronic rhinoviral infection in lung transplant recipients. Am J Respir Crit Care Med. 2006;174:1392–9.PubMed Kaiser L, et al. Chronic rhinoviral infection in lung transplant recipients. Am J Respir Crit Care Med. 2006;174:1392–9.PubMed
41.
Zurück zum Zitat Pathak AK, Adams RH, Shah NC, Gustin KE. Persistent human rhinovirus type C infection of the lower respiratory tract in a pediatric cord blood transplant recipient. Bone Marrow Transplant. 2013;48:747–8.PubMed Pathak AK, Adams RH, Shah NC, Gustin KE. Persistent human rhinovirus type C infection of the lower respiratory tract in a pediatric cord blood transplant recipient. Bone Marrow Transplant. 2013;48:747–8.PubMed
42.
Zurück zum Zitat Piralla A, et al. Persistent rhinovirus infection in pediatric hematopoietic stem cell transplant recipients with impaired cellular immunity. J Clin Virol. 2015;67:38–42.PubMedPubMedCentral Piralla A, et al. Persistent rhinovirus infection in pediatric hematopoietic stem cell transplant recipients with impaired cellular immunity. J Clin Virol. 2015;67:38–42.PubMedPubMedCentral
43.
Zurück zum Zitat Burk M, El-Kersh K, Saad M, Wiemken T, Ramirez J, Cavallazzi R. Viral infection in community-acquired pneumonia: a systematic review and meta-analysis. Eur Respir Rev. 2016;25(140):178–88.PubMed Burk M, El-Kersh K, Saad M, Wiemken T, Ramirez J, Cavallazzi R. Viral infection in community-acquired pneumonia: a systematic review and meta-analysis. Eur Respir Rev. 2016;25(140):178–88.PubMed
44.
Zurück zum Zitat Blevins LK, Wren JT, Holbrook BC, Hayward SL, Swords WE, Parks GD, Alexander-Miller MA. Coinfection with Streptococcus pneumoniae negatively modulates the size and composition of the ongoing influenza-specific CD8+ T cell response. J Immunol. 2014;193(10):5076–87.PubMedPubMedCentral Blevins LK, Wren JT, Holbrook BC, Hayward SL, Swords WE, Parks GD, Alexander-Miller MA. Coinfection with Streptococcus pneumoniae negatively modulates the size and composition of the ongoing influenza-specific CD8+ T cell response. J Immunol. 2014;193(10):5076–87.PubMedPubMedCentral
45.
Zurück zum Zitat Jamieson AM, Pasman L, Yu S, Gamradt P, Homer RJ, Decker T, Medzhitov R. Role of tissue protection in lethal respiratory viral-bacterial coinfection. Science. 2013;340(6137):1230–4.PubMedPubMedCentral Jamieson AM, Pasman L, Yu S, Gamradt P, Homer RJ, Decker T, Medzhitov R. Role of tissue protection in lethal respiratory viral-bacterial coinfection. Science. 2013;340(6137):1230–4.PubMedPubMedCentral
46.
Zurück zum Zitat Iverson AR, Boyd KL, McAuley JL, Plano LR, Hart ME, McCullers JA. Influenza virus primes mice for pneumonia from Staphylococcus aureus. J Infect Dis. 2011;203(6):880–8.PubMedPubMedCentral Iverson AR, Boyd KL, McAuley JL, Plano LR, Hart ME, McCullers JA. Influenza virus primes mice for pneumonia from Staphylococcus aureus. J Infect Dis. 2011;203(6):880–8.PubMedPubMedCentral
47.
Zurück zum Zitat Wiley JA, Harmsen AG. Pneumocystis infection enhances antibody-mediated resistance to a subsequent influenza infection. J Immunol. 2008;180(8):5613–24.PubMedPubMedCentral Wiley JA, Harmsen AG. Pneumocystis infection enhances antibody-mediated resistance to a subsequent influenza infection. J Immunol. 2008;180(8):5613–24.PubMedPubMedCentral
48.
Zurück zum Zitat Philippot Q, Labbé V, Pichon J, Djibré M, Fartoukh M, Voiriot G. Diagnosis and management of respiratory viruses in critically ill adult patients: an international survey of knowledge and practice among intensivists. Ann Intensive Care. 2020;10(1):50.PubMedPubMedCentral Philippot Q, Labbé V, Pichon J, Djibré M, Fartoukh M, Voiriot G. Diagnosis and management of respiratory viruses in critically ill adult patients: an international survey of knowledge and practice among intensivists. Ann Intensive Care. 2020;10(1):50.PubMedPubMedCentral
49.
Zurück zum Zitat Musher DM, Montoya R, Wanahita A. Diagnostic value of microscopic examination of Gram-stained sputum and sputum cultures in patients with bacteremic pneumococcal pneumonia. Clin Infect Dis. 2004;39(2):165–9.PubMed Musher DM, Montoya R, Wanahita A. Diagnostic value of microscopic examination of Gram-stained sputum and sputum cultures in patients with bacteremic pneumococcal pneumonia. Clin Infect Dis. 2004;39(2):165–9.PubMed
50.
Zurück zum Zitat Jeong JH, Kim KH, Jeong SH, Park JW, Lee SM, Seo YH. Comparison of sputum and nasopharyngeal swabs for detection of respiratory viruses. J Med Virol. 2014;86(12):2122–7.PubMedPubMedCentral Jeong JH, Kim KH, Jeong SH, Park JW, Lee SM, Seo YH. Comparison of sputum and nasopharyngeal swabs for detection of respiratory viruses. J Med Virol. 2014;86(12):2122–7.PubMedPubMedCentral
Metadaten
Titel
Respiratory virus-associated infections in HIV-infected adults admitted to the intensive care unit for acute respiratory failure: a 6-year bicenter retrospective study (HIV-VIR study)
verfasst von
Alexandre Elabbadi
Jérémie Pichon
Benoit Visseaux
Aurélie Schnuriger
Lila Bouadma
Quentin Philippot
Juliette Patrier
Vincent Labbé
Stéphane Ruckly
Muriel Fartoukh
Jean-François Timsit
Guillaume Voiriot
Publikationsdatum
01.12.2020
Verlag
Springer International Publishing
Erschienen in
Annals of Intensive Care / Ausgabe 1/2020
Elektronische ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-020-00738-9

Weitere Artikel der Ausgabe 1/2020

Annals of Intensive Care 1/2020 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.